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One of the central problems in machine learning and pattern recognition
is to develop appropriate representations for complex data. We consider
the problem of constructing a representation for data lying on a low-
dimensional manifold embedded in a high-dimensional space. Drawing
on the correspondence between the graph Laplacian, the Laplace Beltrami
operator on the manifold, and the connections to the heat equation, we
propose a geometrically motivated algorithm for representing the high-
dimensional data. The algorithm provides a computationally efficient ap-
proach to nonlinear dimensionality reduction that has locality-preserving
properties and a natural connection to clustering. Some potential appli-
cations and illustrative examples are discussed.

1 Introduction

In many areas of artificial intelligence, information retrieval, and data min-
ing, one is often confronted with intrinsically low-dimensional data lying in
a very high-dimensional space. Consider, for example, gray-scale images of
an object taken under fixed lighting conditions with a moving camera. Each
such image would typically be represented by a brightness value at each
pixel. If there were n2 pixels in all (corresponding to an n × n image), then
each image yields a data point in Rn2

. However, the intrinsic dimensional-
ity of the space of all images of the same object is the number of degrees of
freedom of the camera. In this case, the space under consideration has the
natural structure of a low-dimensional manifold embedded in Rn2

.
Recently, there has been some renewed interest (Tenenbaum, de Silva,

& Langford, 2000; Roweis & Saul, 2000) in the problem of developing low-
dimensional representations when data arise from sampling a probabil-
ity distribution on a manifold. In this letter, we present a geometrically
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motivated algorithm and an accompanying framework of analysis for this
problem.

The general problem of dimensionality reduction has a long history. Clas-
sical approaches include principal components analysis (PCA) and multi-
dimensional scaling. Various methods that generate nonlinear maps have
also been considered. Most of them, such as self-organizing maps and other
neural network–based approaches (e.g., Haykin, 1999), set up a nonlin-
ear optimization problem whose solution is typically obtained by gradient
descent that is guaranteed only to produce a local optimum; global op-
tima are difficult to attain by efficient means. Note, however, that the re-
cent approach of generalizing the PCA through kernel-based techniques
(Schölkopf, Smola, & Müller, 1998) does not have this shortcoming. Most of
these methods do not explicitly consider the structure of the manifold on
which the data may possibly reside.

In this letter, we explore an approach that builds a graph incorporating
neighborhood information of the data set. Using the notion of the Laplacian
of the graph, we then compute a low-dimensional representation of the data
set that optimally preserves local neighborhood information in a certain
sense. The representation map generated by the algorithm may be viewed
as a discrete approximation to a continuous map that naturally arises from
the geometry of the manifold.

It is worthwhile to highlight several aspects of the algorithm and the
framework of analysis presented here:

• The core algorithm is very simple. It has a few local computations and
one sparse eigenvalue problem. The solution reflects the intrinsic geo-
metric structure of the manifold. It does, however, require a search for
neighboring points in a high-dimensional space. We note that there are
several efficient approximate techniques for finding nearest neighbors
(e.g., Indyk, 2000).

• The justification for the algorithm comes from the role of the Laplace
Beltrami operator in providing an optimal embedding for the mani-
fold. The manifold is approximated by the adjacency graph computed
from the data points. The Laplace Beltrami operator is approximated
by the weighted Laplacian of the adjacency graph with weights cho-
sen appropriately. The key role of the Laplace Beltrami operator in the
heat equation enables us to use the heat kernel to choose the weight
decay function in a principled manner. Thus, the embedding maps for
the data approximate the eigenmaps of the Laplace Beltrami operator,
which are maps intrinsically defined on the entire manifold.

• The framework of analysis presented here makes explicit use of these
connections to interpret dimensionality-reduction algorithms in a ge-
ometric fashion. In addition to the algorithms presented in this letter,
we are also able to reinterpret the recently proposed locally linear em-



Laplacian Eigenmaps 1375

bedding (LLE) algorithm of Roweis and Saul (2000) within this frame-
work.
The graph Laplacian has been widely used for different clustering and
partition problems (Shi & Malik, 1997; Simon, 1991; Ng, Jordan, &
Weiss, 2002). Although the connections between the Laplace Beltrami
operator and the graph Laplacian are well known to geometers and
specialists in spectral graph theory (Chung, 1997; Chung, Grigor’yan,
& Yau, 2000), so far we are not aware of any application to dimen-
sionality reduction or data representation. We note, however, recent
work on using diffusion kernels on graphs and other discrete struc-
tures (Kondor & Lafferty, 2002).

• The locality-preserving character of the Laplacian eigenmap algorithm
makes it relatively insensitive to outliers and noise. It is also not prone
to short circuiting, as only the local distances are used. We show that by
trying to preserve local information in the embedding, the algorithm
implicitly emphasizes the natural clusters in the data. Close connec-
tions to spectral clustering algorithms developed in learning and com-
puter vision (in particular, the approach of Shi & Malik, 1997) then
become very clear. In this sense, dimensionality reduction and cluster-
ing are two sides of the same coin, and we explore this connection in
some detail. In contrast, global methods like that in Tenenbaum et al.
(2000), do not show any tendency to cluster, as an attempt is made to
preserve all pairwise geodesic distances between points.
However, not all data sets necessarily have meaningful clusters. Other
methods such as PCA or Isomap might be more appropriate in that
case. We will demonstate, however, that at least in one example of such
a data set ( the “swiss roll”), our method produces reasonable results.

• Since much of the discussion of Seung and Lee (2000), Roweis and
Saul (2000), and Tenenbaum et al. (2000) is motivated by the role that
nonlinear dimensionality reduction may play in human perception
and learning, it is worthwhile to consider the implication of the pre-
vious remark in this context. The biological perceptual apparatus is
confronted with high-dimensional stimuli from which it must recover
low-dimensional structure. If the approach to recovering such low-
dimensional structure is inherently local (as in the algorithm proposed
here), then a natural clustering will emerge and may serve as the basis
for the emergence of categories in biological perception.

• Since our approach is based on the intrinsic geometric structure of the
manifold, it exhibits stability with respect to the embedding. As long
as the embedding is isometric, the representation will not change. In
the example with the moving camera, different resolutions of the cam-
era (i.e., different choices of n in the n × n image grid) should lead to
embeddings of the same underlying manifold into spaces of very dif-
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ferent dimension. Our algorithm will produce similar representations
independent of the resolution.

The generic problem of dimensionality reduction is the following. Given
a set x1, . . . , xk of k points in Rl, find a set of points y1, . . . , yk in Rm (m � l)
such that yi “represents” xi. In this letter, we consider the special case where
x1, . . . , xk ∈ M and M is a manifold embedded in Rl.

We now consider an algorithm to construct representative yi’s for this
special case. The sense in which such a representation is optimal will become
clear later in this letter.

2 The Algorithm

Given k points x1, . . . , xk in Rl, we construct a weighted graph with k nodes,
one for each point, and a set of edges connecting neighboring points. The
embedding map is now provided by computing the eigenvectors of the
graph Laplacian. The algorithmic procedure is formally stated below.

1. Step 1 (constructing the adjacency graph). We put an edge between
nodes i and j if xi and xj are “close.” There are two variations:

(a) ε-neighborhoods (parameter ε ∈ R). Nodes i and j are con-
nected by an edge if ‖xi − xj‖2 < ε where the norm is the usual
Euclidean norm in Rl. Advantages: Geometrically motivated,
the relationship is naturally symmetric. Disadvantages: Often
leads to graphs with several connected components, difficult
to choose ε.

(b) n nearest neighbors (parameter n ∈ N). Nodes i and j are con-
nected by an edge if i is among n nearest neighbors of j or j is
among n nearest neighbors of i. Note that this relation is sym-
metric. Advantages: Easier to choose; does not tend to lead to
disconnected graphs. Disadvantages: Less geometrically intu-
itive.

2. Step 2 (choosing the weights).1 Here as well, we have two variations
for weighting the edges:

(a) Heat kernel (parameter t ∈ R). If nodes i and j are connected,
put

Wij = e− ‖xi−xj‖2

t ;
otherwise, put Wij = 0. The justification for this choice of
weights will be provided later.

1 In a computer implementation of the algorithm, steps 1 and 2 are executed
simultaneously.
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(b) Simple-minded (no parameters (t = ∞)). Wij = 1 if vertices i
and j are connected by an edge and Wij = 0 if vertices i and
j are not connected by an edge. This simplification avoids the
need to choose t.

3. Step 3 (eigenmaps). Assume the graph G, constructed above, is con-
nected. Otherwise, proceed with step 3 for each connected component.
Compute eigenvalues and eigenvectors for the generalized eigenvec-
tor problem,

Lf = λDf, (2.1)

where D is diagonal weight matrix, and its entries are column (or
row, since W is symmetric) sums of W, Dii = ∑

j Wji. L = D − W is
the Laplacian matrix. Laplacian is a symmetric, positive semidefinite
matrix that can be thought of as an operator on functions defined on
vertices of G.

Let f0, . . . , fk−1 be the solutions of equation 2.1, ordered according
to their eigenvalues:

Lf0 = λ0Df0

Lf1 = λ1Df1

· · ·
Lfk−1 = λk−1Dfk−1

0 = λ0 ≤ λ1 ≤ · · · ≤ λk−1.

We leave out the eigenvector f0 corresponding to eigenvalue 0 and use
the next m eigenvectors for embedding in m-dimensional Euclidean
space:

xi → (f1(i), . . . , fm(i)).

3 Justification

3.1 Optimal Embeddings. Let us first show that the embedding pro-
vided by the Laplacian eigenmap algorithm preserves local information
optimally in a certain sense.

The following section is based on standard spectral graph theory. (See
Chung, 1997, for a comprehensive reference.)

Recall that given a data set, we construct a weighted graph G = (V, E)

with edges connecting nearby points to each other. For the purposes of
this discussion, assume the graph is connected. Consider the problem of
mapping the weighted graph G to a line so that connected points stay as close
together as possible. Let y = (y1, y2, . . . , yn)T be such a map. A reasonable
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criterion for choosing a “good” map is to minimize the following objective
function,∑

ij

(yi − yj)
2Wij,

under appropriate constraints. The objective function with our choice of
weights Wij incurs a heavy penalty if neighboring points xi and xj are
mapped far apart. Therefore, minimizing it is an attempt to ensure that
if xi and xj are “close,” then yi and yj are close as well.

It turns out that for any y, we have

1
2

∑
i,j

(yi − yj)
2Wij = yTLy, (3.1)

where as before, L = D − W. To see this, notice that Wij is symmetric and
Dii = ∑

j Wij. Thus,

∑
i,j

(yi − yj)
2Wij =

∑
i,j

(y2
i + y2

j − 2yiyj)Wij

=
∑

i
y2

i Dii +
∑

j

y2
j Djj − 2

∑
i,j

yiyjWij = 2yTLy.

Note that this calculation also shows that L is positive semidefinite.
Therefore, the minimization problem reduces to finding

argmin
y

yTDy=1

yTLy.

The constraint yTDy = 1 removes an arbitrary scaling factor in the embed-
ding. Matrix D provides a natural measure on the vertices of the graph.
The bigger the value Dii (corresponding to the ith vertex) is, the more “im-
portant” is that vertex. It follows from equation 3.1 that L is a positive
semidefinite matrix, and the vector y that minimizes the objective function
is given by the minimum eigenvalue solution to the generalized eigenvalue
problem:

Ly = λDy.

Let 1 be the constant function taking 1 at each vertex. It is easy to see that 1
is an eigenvector with eigenvalue 0. If the graph is connected, 1 is the only
eigenvector for λ = 0. To eliminate this trivial solution, which collapses all
vertices of G onto the real number 1, we put an additional constraint of
orthogonality and look for

argmin
yTDy=1

yTD1=0

yTLy.
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Thus, the solution is now given by the eigenvector with the smallest nonzero
eigenvalue. The condition yTD1 = 0 can be interpreted as removing a trans-
lation invariance in y.

Now consider the more general problem of embedding the graph into
m-dimensional Euclidean space. The embedding is given by the k×m matrix
Y = [y1y2, . . . , ym], where the ith row provides the embedding coordinates
of the ith vertex. Similarly, we need to minimize∑

i,j

‖y(i) − y(j)‖2Wij = tr(YTLY),

where y(i) = [y1(i), . . . , ym(i)]T is the m-dimensional representation of the
ith vertex. This reduces to finding

argmin
YTDY=I

tr(YTLY).

For the one-dimensional embedding problem, the constraint prevents
collapse onto a point. For the m-dimensional embedding problem, the con-
straint presented above prevents collapse onto a subspace of dimension less
than m−1 (m if, as in one-dimensional case, we require orthogonality to the
constant vector). Standard methods show that the solution is provided by
the matrix of eigenvectors corresponding to the lowest eigenvalues of the
generalized eigenvalue problem Ly = λDy.

3.2 The Laplace Beltrami Operator. The Laplacian of a graph is anal-
ogous to the Laplace Beltrami operator on manifolds. In this section, we
provide a justification for why the eigenfunctions of the Laplace Beltrami
operator have properties desirable for embedding.

Let M be a smooth, compact, m-dimensional Riemannian manifold. If
the manifold is embedded in Rl, the Riemannian structure (metric tensor)
on the manifold is induced by the standard Riemannian structure on Rl.

As we did with the graph, we are looking here for a map from the
manifold to the real line such that points close together on the manifold
are mapped close together on the line. Let f be such a map. Assume that
f : M → R is twice differentiable.

Consider two neighboring points x, z ∈ M. They are mapped to f (x)

and f (z), respectively. We first show that

| f (z) − f (x)| ≤ distM(x, z)‖∇ f (x)‖ + o(distM(x, z)). (3.2)

The gradient ∇ f (x) is a vector in the tangent space TMx, such that given
another vector v ∈ TMx, df (v) = 〈∇ f (x), v〉M.

Let l = distM(x, z). Let c(t) be the geodesic curve parameterized by
length connecting x = c(0) and z = c(l). Then

f (z) = f (x) +
∫ l

0
df (c′(t)) dt = f (x) +

∫ l

0
〈∇ f (c(t)), c′(t)〉 dt.
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Now by Schwartz inequality,

〈∇ f (c(t)), c′(t)〉 ≤ ‖∇ f (c(t))‖ ‖c′(t)‖ = ‖∇ f (c(t))‖.
Since c(t) is parameterized by length, we have ‖c′(t)‖ = 1. We also have

‖∇ f (c(t))‖ = ‖∇ f (x)‖ + O(t) (by Taylor’s approximation). Finally, by inte-
grating, we have

| f (z) − f (x)| ≤ l‖∇ f (x)‖ + o(l),

where both O and o are used in the infinitesimal sense.
If M is isometrically embedded in Rl, then distM(x, z) = ‖x − z‖Rl +

o(‖x − z‖Rl) and

| f (z) − f (x)| ≤ ‖∇ f (x)‖ ‖z − x‖ + o(‖z − x‖).
Thus, we see that ‖∇ f‖ provides us with an estimate of how far apart f
maps nearby points.

We therefore look for a map that best preserves locality on average by
trying to find

argmin
‖ f‖L2(M)

=1

∫
M

‖∇ f (x)‖2, (3.3)

where the integral is taken with respect to the standard measure on a Rie-
mannian manifold. Note that minimizing

∫
M ‖∇ f (x)‖2 corresponds to min-

imizing Lf = 1
2
∑

i,j( fi − fj)2Wij on a graph. Here, f is a function on vertices,
and fi is the value of f on the ith node of the graph.

It turns out that minimizing the objective function of equation 3.3 reduces
to finding eigenfunctions of the Laplace Beltrami operator L. Recall that

L f
def= − div ∇( f ),

where div is the divergence of the vector field. It follows from the Stokes’
theorem that − div and ∇ are formally adjoint operators, that is, if f is a
function and X is a vector field, then

∫
M〈X, ∇ f 〉 = − ∫M div(X) f . Thus,∫

M
‖∇ f‖2 =

∫
M

L( f ) f.

We see that L is positive semidefinite. f that minimizes
∫
M ‖∇ f‖2 has to

be an eigenfunction of L. The spectrum of L on a compact manifold M is
known to be discrete (Rosenberg, 1997). Let the eigenvalues (in increasing
order) be 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . , and let fi be the eigenfunction corre-
sponding to eigenvalue λi. It is easily seen that f0 is the constant function
that maps the entire manifold to a single point. To avoid this eventuality, we
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require (just as in the graph setting) that the embedding map f be orthog-
onal to f0. It immediately follows that f1 is the optimal embedding map.
Following the arguments of the previous section, we see that

x → ( f1(x), . . . , fm(x))

provides the optimal m-dimensional embedding.

3.3 Heat Kernels and the Choice of Weight Matrix. The Laplace Bel-
trami operator on differentiable functions on a manifold M is intimately
related to the heat flow. Let f : M → R be the initial heat distribution and
u(x, t) be the heat distribution at time t (u(x, 0) = f (x)). The heat equation
is the partial differential equation ( ∂

∂t + L)u = 0. The solution is given by
u(x, t) = ∫

M Ht(x, y) f (y), where Ht is the heat kernel, the Green’s function
for this partial differential equation. Therefore,

L f (x) = −Lu(x, 0) = −
(

∂

∂t

[∫
M

Ht(x, y) f (y)

])
t=0

. (3.4)

It turns out that in an appropriate coordinate system (exponential, which
to the first order coincides with the local coordinate system given by a
tangent plane in Rl), Ht is approximately the gaussian:

Ht(x, y) = (4π t)−
m
2 e− ‖x−y‖2

4t (φ(x, y) + O(t)),

where φ(x, y) is a smooth function with φ(x, x) = 1. Therefore, when x and
y are close and t is small,

Ht(x, y) ≈ (4π t)−
m
2 e− ‖x−y‖2

4t .

See Rosenberg (1997) for details.
Notice that as t tends to 0, the heat kernel Ht(x, y) becomes increasingly

localized and tends to Dirac’s δ-function, that is, limt→0
∫
M Ht(x, y) f (y) =

f (x). Therefore, for small t from the definition of the derivative, we have

L f (x) ≈ 1
t

[
f (x) − (4π t)−

m
2

∫
M

e− ‖x−y‖2

4t f (y) dy
]

.

If x1, . . . , xk are data points on M, the last expression can be approxi-
mated by

L f (xi) ≈ 1
t


 f (xi) − 1

k
(4π t)−

m
2

∑
xj

0<‖xj−xi‖<ε

e− ‖xi−xj‖2

4t f (xj)


 .

The coefficient 1
t is global and will not affect the eigenvectors of the discrete

Laplacian. Since the inherent dimensionality ofMmay be unknown, we put
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α = 1
k (4π t)−

m
2 . It is interesting to note that since the Laplacian of the constant

function is zero, it immediately follows that 1
α

= ∑
xj

0<‖xj−xi‖<ε

e− ‖xi−xj‖2

4t and

α =


 ∑

xj
0<‖xj−xi‖<ε

e− ‖xi−xj‖2

4t




−1

.

This observation leads to several possible approximation schemes for
the manifold Laplacian. In order to ensure that the approximation matrix is
positive semidefinite, we compute the graph Laplacian with the following
weights:

Wij =

e− ‖xi−xj‖2

4t if ‖xi − xj‖ < ε

0 otherwise
.

4 Connections to Spectral Clustering

The approach to dimensionality reduction considered in this letter uses
maps provided by the eigenvectors of the graph Laplacian and eigenfunc-
tions of Laplace Beltrami operator on the manifold. Interestingly, this solu-
tion may also be interpreted in the framework of clustering and has very
close ties to spectrally based clustering techniques such as those used for
image segmentation (Shi & Malik, 1997), load balancing (Hendrickson &
Leland, 1993), and circuit design (Hadley, Mark, & Vanelli, 1992). A closely
related algorithm for clustering has been recently proposed by Ng et al.
(2002). The approach considered there uses a graph that is globally con-
nected with exponentially decaying weights. The decay parameter then be-
comes very important. In many high-dimensional problems, the minimum
and the maximum distances between points are fairly close, in which case
the weight matrix will be essentially nonsparse for any rate of decay.

Here we briefly outline the ideas of spectral clustering. It is often of
interest to cluster a set of n objects into a finite number of clusters. Thus,
given a set of n objects (visual, perceptual, linguistic, or otherwise), one may
introduce a matrix of pairwise similarities between the n objects. It is then
possible to formulate a general graph-theoretic framework for clustering as
follows. Let G = (V, E) be a weighted graph, and W is the matrix of weights,
where the vertices are numbered arbitrarily. The weight Wij associated with
the edge eij is the similarity between vi and vj. We assume that the matrix of
pairwise similarities is symmetric and the corresponding undirected graph
is connected.2

2 If the graph is not connected, there are many algorithms for finding its connected
components.
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Let us consider clustering the objects into two classes. We wish to divide
V into two disjoint subsets A, B, A ∪ B = V, so that the “flow” between A
and B is minimized. The flow is a measure of similarity between the two
clusters, and the simplest definition of the flow or cut between A and B is the
total weight of the edges that have to be removed to make A and B disjoint:

cut(A, B) =
∑

u∈A,v∈B

W(u, v).

Trying to minimize the cut(A, B) will favor cutting off weakly connected
outliers, which tends to lead to poor partitioning quality. To avoid that
problem, a measure on the set of vertices is introduced. The weight of a
vertex is its “importance” relative to other vertices,

vol(A) =
∑

u∈A,v∈V

W(u, v)

where W(u, v) is the weight on the edge between u and v.
Shi and Malik (1997), define the normalized cut:

Ncut(A, B) = cut(A, B)

(
1

vol(A)
+ 1

vol(B)

)
.

The problem, as formulated by Shi and Malik (1997), is to minimize Ncut
over all partitions of the vertex set V.3

It turns out that the combinatorial optimization problem as stated is
NP-hard.4 However, if we allow relaxation of the indicator functions to
real values, the problem reduces to minimizing the Laplacian of the graph,
which can be easily computed in polynomial time with arbitrary precision.

Recall that

xTLx =
∑

i,j

(xi − xj)
2wij.

Let, as above, A, B be disjoint subsets of V, A ∪ B = V, and a = vol(A),
b = vol(B). Put

xi =




1
vol(A)

, if Vi ∈ A

− 1
vol(B)

, if Vi ∈ B
.

3 A similar and, perhaps, more geometrically motivated quantity is the Cheeger con-
stant,

hG = min
A⊂V

cut(A, Ā)

min(vol(A), vol((Ā)))
,

where Ā is the complement of A in V. See Chung (1997) for further reference.
4 A proof due to Papadimitrou can be found in Shi and Malik (1997).
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We have

xTLx =
∑

i,j

(xi − xj)
2wij =

∑
Vi∈A,Vj∈B

(
1
a

+ 1
b

)2

cut(A, B).

Also,

xTDx =
∑

i
x2

i dii =
∑
Vi∈A

1
a2 dii +

∑
Vi∈B

1
b2 dii

= 1
a2 vol(A) + 1

b2 vol(B) = 1
a

+ 1
b
.

Thus,

xTLx
xTDx

= cut(A, B)

(
1
a

+ 1
b

)
= Ncut(A, B).

Notice that xTD1 = 0, where 1 is a column vector of ones.
The relaxed problem is to minimize xTLx

xTDx under the condition that xTD1 =
0. Put y = D1/2x. D is invertible, assuming G has no isolated vertices. Then

xTLx
xTDx

= yTD−1/2LD−1/2y
yTy

,

where x⊥D1/21.
The matrix L̃ = D−1/2LD−1/2 is the so-called normalized graph Lapla-

cian. L̃ is symmetric positive semidefinite. Notice that D1/21 is an eigenvec-
tor for L̃ with eigenvalue 0, which is the smallest eigenvalue of L̃. Thus,

miny⊥D1/21
yTL̃y
yTy is achieved when y is an eigenvector corresponding to the

second smallest eigenvalue of L̃. Of course, zero can be a multiple eigen-
value, which happens if and only if G has more than one connected
component.

Remark. The central observation to be made here is that the process of di-
mensionality reduction that preserves locality yields the same solution as
clustering. It is worthwhile to compare the global algorithm presented in
Tenenbaum et al. (2000) with the local algorithms suggested here and in
Roweis and Saul (2000). One approach to nonlinear dimensionality reduc-
tion as exemplified by Tenenbaum et al. attempts to approximate all geodesic
distances on the manifold faithfully. This may be viewed as a global strat-
egy. In contrast, the local approach presented here (as well as that presented
in Roweis & Saul, 2000) attempts only to approximate or preserve neigh-
borhood information. This, as we see from the preceding discussion, may
also be interpreted as imposing a soft clustering of the data (which may
be converted to a hard clustering by a variety of heuristic techniques). In
this sense, the local approach to dimensionality reduction imposes a natural
clustering of the data.
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5 Analysis of Locally Linear Embedding Algorithm

We provide a brief analysis of the LLE algorithm recently proposed by
Roweis and Saul (2000) and show its connection to the Laplacian.

Here is a brief description of their algorithm. As before, one is given
a data set x1, . . . , xk in a high-dimensional space Rl. The goal is to find a
low-dimensional representation y1, . . . , yk ∈ Rm, m � k.

1. Step 1 (discovering the adjacency information). For each xi, find the n
nearest neighbors in the data set, xi1 , . . . , xin . Alternatively, xi1 , . . . , xin
could be data points contained in an ε-ball around xi.

2. Step 2 (constructing the approximation matrix). Let Wij be such that∑
j Wijxij equals the orthogonal projection of xi onto the affine linear

span of xij ’s. In other words, one chooses Wij by minimizing

l∑
i=1

∥∥∥∥∥∥xi −
n∑

j=1

Wijxij

∥∥∥∥∥∥
2

under the condition that
∑

j Wij = 1 for each i. Assume that Wij’s are
well determined. (Otherwise, as happens, for example, in the case
when n > k + 1, the authors propose a heuristic that we will not
analyze here.)

3. Step 3 (computing the embedding). Compute the embedding by tak-
ing eigenvectors corresponding to the k lowest eigenvalues of the ma-
trix,

E = (I − W)T(I − W).

Notice that E is a symmetric positive semidefinite matrix.

E can be thought of as an operator acting on functions defined on the data
points. We will now provide an argument that under certain conditions,

Ef ≈ 1
2
L2 f.

Eigenvectors of 1
2L2, of course, coincide with the eigenvectors of L. We

develop this argument over several steps:

Step 1: Let us fix a data point xi. We now show that

[(I − W) f ]i ≈ −1
2

∑
j

Wij(xi − xij)
TH(xi − xij),

where f is a function on the manifold (and therefore defined on the data
points) and H is the Hessian of f at xi. To simplify the analysis, the neighbor-
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ing points (xij ’s) are assumed to lie on a locally linear patch on the manifold
around xi.

Consider now a coordinate system in the tangent plane centered at o = xi.
Let vj = xij −xi. Since the difference of two points can be regarded as a vector
with the origin at the second point, we see that vj’s are vectors in the tangent
plane originating at o. Let αj = Wij. Since xi belongs to the affine span of its
neighbors and by construction of the matrix W, we have

o = xi =
∑

j

αjvj,

where∑
αj = 1.

If f is a smooth function, its second-order Taylor approximation can be
written as

f (v) = f (o) + vT∇ f + 1
2
(vTHv) + o(‖v‖2).

Here, ∇ f = (
∂ f
∂x1

, . . . ,
∂ f
∂xn

)T is the gradient, and H is the Hessian, Hij = ∂2 f
∂xi∂xj

(both evaluated at o). Therefore,

[(I − W) f ]i = f (o) −
∑

j

αj f (vj),

and using the Taylor approximation for f (vj), we have

f (o) −
∑

j

αj f (vj) ≈ f (o) −
∑

j

αj f (o) −
∑

j

αjvT
j ∇ f − 1

2

∑
j

αjvT
j Hvj.

Since
∑

αj = 1 and
∑

αjvj = o, we see that the first three terms disappear
and

f (o) −
∑

j

αj f (vj) ≈ −1
2

∑
αjvT

j Hvj.

Step 2: Now note that if
√

αivi form an orthonormal basis (which, of
course, is not usually the case), then∑

j

WijvT
j Hvj = tr(H) = L f.

More generally, we observe that if x is a random vector, such that its
distribution is uniform on every sphere centered at xi (which is true, for
example, for any locally uniform measure on the manifold), then the expec-
tation E(vTHv) is proportional to tr H.
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Indeed, if e1, . . . , en form an orthonormal basis for H corresponding to
the eigenvalues λ1, . . . , λn, then using the spectral theorem,

E(vTHv) = E
(∑

λi〈v, ei〉2
)

.

But since E〈v, ei〉2 is independent of i, put E〈v, ei〉2 = r, and the above
expression reduces to

E(vTHv) = r

(∑
i

λi

)
= r tr(H) = rL f.

Step 3: Putting steps 1 and 2 together, we see that

(I − W)T(I − W) f ≈ 1
2
L2 f.

LLE attempts to minimize f T(I − W)T(I − W) f , which reduces to finding
the eigenfunctions of (I−W)T(I−W), which can now be interpreted as trying
to find the eigenfunctions of the iterated Laplacian L2. Eigenfunctions of L2

coincide with those of L.

6 Examples

We now briefly consider several possible applications of the algorithmic
framework developed in this letter. We begin with a simple synthetic ex-
ample of a “swiss roll” considered in Tenenbaum et al. (2000) and Roweis
and Saul (2000). We then consider a toy example from vision with verti-
cal and horizontal bars in a “visual field.” We conclude with some low-
dimensional representations constructed from naturally occurring data sets
in the domains of speech and language.

We do not yet know of a principled way to choose the heat kernel pa-
rameter t. However, we conduct experiments on the “swiss roll” data set
to demonstrate the effect of t and number of nearest neighbors N on the
low-dimensional representation. It is clear that for very large values of N,
it is critical to choose t correctly. It seems that choosing a smaller t tends to
improve the quality of the representation for bigger but still relatively small
N. For small values of N, the results do not seem to depend significantly
on t.

In the rest of our experiments, we use the simplest version of the algo-
rithm, Wij ∈ {0, 1} or t = ∞, which seems to work well in practice and does
not involve a choice of a real-valued parameter.

6.1 A Synthetic Swiss Roll. The data set of 2000 points chosen at ran-
dom from the swiss roll is shown in Figure 1. The swiss roll is a flat two-
dimensional submanifold of R3. Two-dimensional representations of the
swiss roll for different values of parameters N and t are shown in Figure 2.
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Figure 1: 2000 Random data points on the swiss roll.

Note that t = ∞ corresponds to the case when the weights are set to 1. Unlike
Isomap, our algorithm does not attempt to isometrically embed the swiss
roll into R2. However, it manages to unroll the swiss roll, thereby preserving
the locality, although not the distances, on the manifold. We observe that for
small values of N, we obtain virtually identical representations for different
t’s. However, when N becomes bigger, smaller values of t seemingly lead to
better representations.

It is worthwhile to point out that an isometric embedding preserving
global distances such as that attempted by Isomap is theoretically possible
only when the surface is flat, that is, the curvature tensor is zero, which is the
case with the swiss roll. However, a classical result due to gauss shows that
even for a two-dimensional sphere (or any part of a sphere), no distance-
preserving map into the plane can exist.

6.2 A Toy Vision Example. Consider binary images of vertical and hori-
zontal bars located at arbitrary points in the visual field. Each image contains
exactly one horizontal or vertical bar at a random location in the image plane.
In principle, we may consider each image to be represented as a function

f : [0, 1] × [0, 1] → {0, 1},
where f (x) = 0 means the point x ∈ [0, 1] × [0, 1] is white and f (x) = 1
means the point is black. Let v(x, y) be the image of a vertical bar. Then
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N = 5     t = 5.0 N = 10     t = 5.0 N = 15     t = 5.0

N = 5     t = 25.0 N = 10     t = 25.0 N = 15     t = 25.0

N = 5     t = ∞ N = 10    t = ∞ N = 15     t = ∞

Figure 2: Two-dimensional representations of the swiss roll data, for different
values of the number of nearest neighbors N and the heat kernel parameter t.
t = ∞ corresponds to the discrete weights.

all images of vertical bars may be obtained from v(x, y) by the following
transformation:

vt(x, y) = v(x − t1, y − t2).

The space of all images of vertical bars is a two-dimensional manifold, as is
the space of all horizontal bars. Each of these manifolds is embedded in the
space of functions (L2([0, 1] × [0, 1])). Notice that although these manifolds
do not intersect, they come quite close to each other. In practice, it is usually
impossible to tell whether the intersection of two classes is empty.

To discretize the problem, we consider a 40 × 40 grid for each image.
Thus, each image may be represented as a 1600-dimensional binary vector.
We choose 1000 images (500 containing vertical bars and 500 containing
horizontal bars) at random. The parameter N is chosen to be 14 and t = ∞.

In Figure 3, the left panel shows a horizontal and vertical bar to provide
a sense of the scale of the image. The middle panel is a two-dimensional
representation of the set of all images using the Laplacian eigenmaps. Notice
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Figure 3: (Left) A horizontal and a vertical bar. (Middle) A two-dimensional
representation of the set of all images using the Laplacian eigenmaps. (Right)
The result of PCA using the first two principal directions to represent the data.
Blue dots correspond to images of vertical bars, and plus signs correspond to
images of horizontal bars.

that while the local graph is connected, the two-dimensional representation
shows two well-defined components. The right panel shows the result of
PCA using the first two principal directions to represent the data.

6.3 A Linguistic Example. An experiment was conducted with the 300
most frequent words in the Brown corpus—a collection of texts containing
about 1 million words (not distinct) available in electronic format. Each word
is represented as a vector in a 600-dimensional space using information
about the frequency of its left and right neighbors (computed from the
corpus). More precisely, let the 300 words be w1 through w300. Then the
representation of wi is a 600-dimensional vector vi (say) where the first
300 dimensions of vi characterize left neighbor relations and the next 300
characterize right neighbor relations. Thus, vi(j) – the jth component (j ≤
300) of vi is the number of times the sequence wjwi occurs in the corpus
(referred to as the bigram count). Similarly, vi(j + 300) is the the count of
the number of times the sequence wiwj occurs in the corpus.

Thus, there are 300 vectors in R600. Of course, we do not claim that there
is a natural low-dimensional manifold structure on these vectors. Neverthe-
less, it is useful for practical applications to construct low-dimensional rep-
resentations of this data. For example, the well-known LSI (latent semantic
indexing) approach uses PCA to represent the documents in a vector space
model for purposes of search and information retrieval. Applying the Lapla-
cian eigenmap with N = 14; t = ∞ to the data yields a low-dimensional
representation shown in Figures 4 and 5. Note that words belonging to
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Figure 4: The 300 most frequent words of the Brown corpus represented in the
spectral domain.
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Figure 5: Fragments labeled by arrows: (left) infinitives of verbs, (middle)
prepositions, and (right) mostly modal and auxiliary verbs. We see that syn-
tactic structure is well preserved.
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similar syntactic categories seem to cluster together, highlighting further
the connections between clustering and dimensionality reduction as dis-
cussed in this letter.

6.4 Speech. We turn finally to an example from human speech. It has
long been recognized that while the speech signal is high dimensional, the
distinctive phonetic dimensions are few. An important open question in the
field is to develop a low-dimensional representation of the speech signal
that is correlated with phonetic content.

In this example, we consider the low-dimensional representations that
arise by applying the Laplacian eigenmap algorithm to a sentence of speech
sampled at 16 kHz. A short-time Fourier transform (with a 30 ms window)
was computed from the speech signal at 5 ms intervals. This yielded a vec-
tor of Fourier coefficients for every 30 ms chunk of the speech signal. There
were 685 such vectors in all. As a standard practice in speech recognition,
the data were represented by the logarithm of these Fourier coefficients.
Each vector contained 256 logs of Fourier coefficients. As before, we choose
N = 14; t = ∞. Furthermore, each vector was labeled according to the
identity of the phonetic segment it belonged to. These labels are not uti-
lized by the Laplacian eigenmap algorithm, which finds a low-dimensional
representation for the data. Shown in Figure 6 are the speech data points

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.01
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0.005

0.01

0.015
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1 

Figure 6: The 685 speech data points plotted in the two-dimensional Laplacian
spectral representation.
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Figure 7: A blowup of the three selected regions corresponding to the arrows
in Figure 6. Notice the phonetic homogeneity of the chosen regions. The data
points corresponding to the same region have similar phonetic identity, though
they may (and do) arise from occurrences of the same phoneme at different
points in the utterance. The symbol sh stands for the fricative in the word she; aa
and ao stand for vowels in the words dark and all, respectively; kcl, dcl, and gcl
stand for closures preceding the stop consonants k, d, g, respectively. h# stands
for silence.

plotted in the two-dimensional Laplacian representation. The two “spokes”
correspond predominantly to fricatives and closures, respectively. The cen-
tral portion corresponds mostly to periodic sounds like vowels, nasals, and
semivowels. A natural clustering into the broad classes is obtained, and
Figure 7 shows three different regions of the representation space. Note the
phonetic homogeneity of the data points that lie in each of these regions.
Points mapped to the same region in the representation space share similar
phonetic features, though points with the same label may originate from
different occurrences of the same phoneme.

7 Conclusions

In this letter, we introduced a coherent framework for dimensionality re-
duction for the case where data reside on a low-dimensional manifold em-
bedded in a higher-dimensional space. A number of questions remain to be
answered:

• Our approach uses the properties of Laplace Beltrami operator to con-
struct invariant embedding maps for the manifold. Although such



1394 M. Belkin and P. Niyogi

maps have some demonstrable locality-preserving properties, they do
not in general provide an isometric embedding. The celebrated Nash’s
embedding theorem (Nash, 1954) guarantees that an n-dimensional
manifold admits an isometric C1 embedding into a 2n+1–dimensional
Euclidean space.5 However it remains unclear whether such an em-
bedding is easily computable by a discrete algorithm. Furthermore,
there are usually many possible isometric embeddings of a given man-
ifold. For example, any knot in R3 is an isometric embedding of a
circle. However, when the embedded manifold is isometric to a do-
main in Rk, the canonical embedding is given by the exponential map.
In that case, Isomap provides an embedding and guarantees conver-
gence (Bernstein, de Silva, Langford, & Tenenbaum, 2000). In general,
it is not clear how to discriminate between “good” and “bad” isometric
embeddings. It would therefore be interesting to formulate more pre-
cisely what properties of an embedding make it desirable for pattern
recognition and data representation problems.

• We have not given any consideration to other geometric invariants of
the manifold that may potentially be estimated from data. For example,
it is unclear how to estimate reliably even such a simple invariant as
the intrinsic dimensionality of the manifold.

• There are further issues pertaining to our framework that need to be
sorted out. First, we have implicitly assumed a uniform probability
distribution on the manifold according to which the data points have
been sampled. Second, it remains unclear how the algorithm behaves
when the manifold in question has a boundary. Third, appropriate
choices for N (or ε) and t and their effect on the behavior of the em-
beddings need to be better understood. Fourth, the convergence of the
finite sample estimates of the embedding maps needs to be addressed.

• Finally, and most intriguing, while the notion of manifold structure in
natural data is a very appealing one, we do not really know how often
and in which particular empirical contexts the manifold properties are
crucial to account for the phenomena at hand. Vastly more systematic
studies of the specific problems in different application domains need
to be conducted to shed light on this question.
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