
AUTOMATIC DETERMINATION OF THE NUMBER OF CLUSTERS USING SPECTRAL
ALGORITHMS

Guido Sanguinetti, Jonathan Laidler and Neil D. Lawrence

Department of Computer Science
University of Sheffield
211 Portobello Street

Sheffield S1 4DP

ABSTRACT

We introduce a novel spectral clustering algorithm that al-
lows us to automatically determine the number of clusters in
a dataset. The algorithm is based on a theoretical analysis
of the spectral properties of block diagonal affinity matrices;
in contrast to established methods, we do not normalise the
rows of the matrix of eigenvectors, and argue that the non-
normalised data contains key information that allows the au-
tomatic determination of the number of clusters present. We
present several examples of datasets successfully clustered
by our algorithm, both artificial and real, obtaining good
results even without employing refined feature extraction
techniques.

The software used in our experiments is available for
download from

http://www.dcs.shef.ac.uk/˜guido/ .

1. INTRODUCTION

Spectral clustering has come to the fore in recent years as
a powerful approach to a range of clustering problems. Its
ability to identify non convex clusters makes it ideal for a
number of applications, including image segmentation and
speech recognition [1, 2, 3]. Typically spectral clustering
(for example see [4]) involves constructing an affinity ma-
trix from the data (which depends on a scale parameterσ),
and requires the prior knowledge of the number of clusters
present, as well as some system to choose the distance pa-
rameterσ.

In this paper we present a modified algorithm which
does not require the user to know the number of clusters
a priori. The algorithm is based on some simple geomet-
ric properties of the eigenvectors of the affinity matrix: in
particular, we show how the positivity of the affinity matrix
implies that the rows of the eigenvectors will cluster along
radial lines. This can be exploited, using a modification of
the K-means algorithm, to detect whether the number of
clusters selected is less than the true number, and allows

one to iteratively obtain the number of clusters.
The plan of the paper is as follows: in Section 2 we

review one of the standard approaches to spectral cluster-
ing, that proposed by [4]. In Section 3 we introduce our
algorithm, highlighting the crucial differences from [4]. In
Section 4 we demonstrate the proposed algorithm on some
illustrative data sets.

2. SPECTRAL CLUSTERING

Spectral clustering initially was inspired by the concept of
graph partitioning [1]. While it can be shown that discrete
graph partitioning is an NP hard problem, the continuous
relaxation is tractable and reduces the problem to a spectral
decomposition of the graph’s Laplacian. This approach is
elegant and has theoretically sound bases, however it needs
to be performed hierarchically to provide more than two
groupings, as it can be shown that the error made in the
relaxation may become unacceptably high on considering
more than one eigenvector.

An alternative point of view, bypassing the graph parti-
tioning altogether and generalising to arbitrary numbers of
clusters, was proposed in [4], building on work of [5]. This
algorithm will be our main reference in the following and
we will refer to it simply as Spectral Clustering.

In essence the Spectral Clustering algorithm is a way of
groupingN data points (taken to bed-dimensional vectors)
into a predefined number of clusters,K. The starting point
is to construct anaffinity matrixA from the data, which is
anN ×N matrix encoding the distances between the vari-
ous points. This is often done in practice by fitting an RBF
kernel to the data. The affinity matrix is then normalised
to form a matrixL1 by conjugating with the diagonal ma-
trix D− 1

2 which has as entries the square roots of the sum
of the rows ofA. This is to take into account the different

1There are several variations in the definition ofL: some authors prefer
to useI − L, some others set to zero the diagonal entries inA. These
differences do not significantly alter the algorithm.

Algorithm 1 The spectral clustering algorithm suggested by
Ng et al..

1. Given a dataset consisting ofN d-dimensional vec-
torsX ∈ <N×d to be partitioned inK clusters, con-
struct the affinity matrix

Aij = exp

[
−|X(i, :)−X(j, :)|2

σ2

]

and normalise it to obtain

L = D− 1
2 AD− 1

2 ,

whereD = diag
(∑d

j=1 Aij

)
is the diagonal matrix

whose entries are the sum of the rows ofA. σ is a
distance parameter which can be thought intuitively
as how closely we are looking at the point configura-
tion; it is usually set by the user, although automated
procedures such as discrete searches have been pro-
posed [4].

2. Compute the firstK eigenvectors ofL (the ones with
the largest eigenvalues), assemble them in anN ×K
matrix Ŷ and construct another matrixY by normal-
ising the rows of̂Y .

3. PerformK-means (or whatever other clustering algo-
rithm) on the matrixY (treating each row as a data
vector).

spread of the various clusters (points belonging to more rar-
ified clusters will have lower sums of the corresponding row
of A). It is straightforward to prove thatL is positive defi-
nite and has eigenvalues smaller or equal to 1, with equality
holding in at least one case.

The firstK eigenvectors are then computed and arranged
as columns in a matrix̂Y . The rows ofŶ are then nor-
malised and treated asK-dimensional vectors; performing
K-means on these vectors will return the desired clustering.
The algorithm is summarised in algorithm 1.

The reasoning behind this algorithm is very simple. Con-
sider the case when the clusters are widely separated. The
matrix L will then be (with the rows ordered by cluster)
block diagonal withK blocks. We noticed before thatL has
at least one eigenvector with eigenvalue 1; in this case, it is
clear that it will have exactly one eigenvector with eigen-
value 1 for each block. Therefore, each row in the matrixY
will have exactly one entry equal to 1, all the others being
zero, and the data in thisK-dimensional space will clus-
ter on the unit length vectors on the coordinate axis. We
will call theK eigenvectors with eigenvalue 1 theclustering
eigenvectorsand the space they span theclustering space.

In general, there will be a rotational ambiguity associ-
ated with the selection of the clustering eigenvectors: as
K eigenvectors correspond to the eigenvalue 1, any set of
mutually orthogonal vectors in theK dimensional cluster-
ing space will equally well qualify as an admissible basis of
clustering eigenvectors. Therefore, one can only conclude
that the rows of the eigenvectors will cluster upon mutually
orthogonal points on theK dimensional sphere, rather than
on the coordinate axes.

Ng et al. in [4] developed a matrix perturbation theory
argument to explain why this algorithm might work in more
general cases, when the clusters are not widely separated
and the matrixL is not block diagonal. Their argument re-
lates the validity of the algorithm with the existence of a
large “eigengap”, i.e. theK + 1th eigenvalue ofL needs
to be significantly less than 1 to guarantee stability of the
selected eigenspace under perturbations.

3. AUTOMATIC DETERMINATION OF THE
NUMBER OF CLUSTERS

Let us consider again the limiting case of tight, widely sepa-
rated clusters. We can obtain useful insight into the eigende-
composition of the affinity matrix by recalling that finding
the eigenvector corresponding to the largest eigenvalue of a
symmetric matrixA is equivalent to the following optimi-
sation problem

max
(
vT Av

)
subject tovT v = 1.

It is then apparent that, if the matrixA has all positive en-
tries, the entries of the eigenvectorv will all have the same
sign (the magnitude of the individual entries will depend on
the detailed structure of the cluster).

Therefore, in the case of a block diagonal affinity ma-
trix, the rows of the matrix that has as columns the cluster-
ing eigenvectors will cluster alongK mutually orthogonal
axes inK dimensional space.

This suggests that the normalisation in step 2 of algo-
rithm 1, which placed all the clusters on the unit sphere in
the clustering space, might not be necessary after all.

Furthermore, one might ask what happens if the number
of clusters selected,K, is smaller than the number of clus-
ters present in the dataset. Taking the firstq < K eigen-
vectors, we will be selecting aq dimensional subspace in
the clustering space, whose position will in general bear no
relation to the clusters.

As the rows of theK eigenvectors clustered along mu-
tually orthogonal vectors, their projections in a lower di-
mensional space will cluster along radial directions. The
general picture will therefore be ofK clusters elongated in
the radial direction, with possibly some clusters very near
the origin (when the subspace is orthogonal to some of the
discarded eigenvectors).

Algorithm 2 ElongatedK-means algorithm
1. InitialiseK centresc1..K in the data space.

2. For each centreci compute the distance of all points
x from it as follows:

• if cT
i ci > ε, i.e. if the centre is not very near the

origin (ε is a parameter to be fixed by the user),

e-dist(x, ci) = (x− ci)
T

M (x− ci)

whereM = 1
λ

(
Iq − cic

T
i

cT
i ci

)
+ λ

cic
T
i

cT
i ci

.

λ is the sharpnessparameter that controls the
elongation (the smaller, the more elongated the
clusters).

• If the centre is very near the origin,cT
i ci < ε,

the distances are measured using the Euclidean
distance.

3. Using this distance measure, assign each pointx to
the nearest centre. Update the location of each centre
by taking the mean of all the data assigned to it.

4. Return to step 2 and repeat until there is no change in
the location of the centres.

Given the elongated nature of the clusters, we modi-
fied theK-means algorithm in order to downweight dis-
tances along radial directions and penalise distances along
transversal directions. TheelongatedK-meansalgorithm
differs from a standardK-means method in that it computes
the distances of pointx from the centreci in a different way.
This difference is highlighted in algorithm 2

In this way, if a centre is within a cluster, all the points
in the cluster will be very near to it, while points in another
cluster (i.e. along another radial direction) will be judged to
be further from that centre than from the origin.

This clustering algorithm is illustrated on a toy dataset in
figure 1. Red plus signs and green diamonds give the clus-
ters found by elongatedK-means. The blue circles are the
means found by ordinaryK-means. Notice thatK-means
assigns no point to the mean initialised at the origin. The
solid ellipse is the curve at elongated distance 1 from the
centre of the first cluster; the dashed circle is Euclidean
distance 1 from the origin. Clearly the points in the dia-
mond cluster have smaller Euclidean distance from the ori-
gin than elongated distance from the mean of the red pluses.
Therefore, initialising one centre in the pluses cluster and
the other centre in the origin, elongatedK-means gets the
desired result.

Therefore, one can exploit this to construct an algorithm
that computes the number of clusters. Having computed

−1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. An illustration of elongatedK-means. Red plus
signs and green diamonds give the clusters found by elon-
gatedK-means. The blue circles are the means found by or-
dinaryK-means. The solid ellipse is the curve at elongated
distance 1 from the centre of the first cluster; the dashed
circle is Euclidean distance 1 from the origin.

Algorithm 3 Cluster detecting algorithm
1. Form matrixL as in step 1 of algorithm 3. Setq = 2.

2. Computeq eigenvectors with greatest eigenvalues.
Arrange them in a matrixY .

3. Perform elongatedK-means withq +1 centres onY ,
initialising theq + 1-th mean in the origin.

4. If the q + 1-th cluster contains any data points, then
there must be at least an extra cluster; setq = q +
1 and go back to step 2. Otherwise, end algorithm,
output clustered data and number of clusters.

theL matrix as in the Spectral Clustering algorithm 1, one
can start by considering only the first two eigenvectors2.
In this two dimensional space, one will expectK clusters
along radial directions. Initialise elongatedK-means with
two centres corresponding to data points in different clusters
and one centre in the origin. The algorithm then will drag
the centre in the origin towards one of the clusters not ac-
counted for. Compute another eigenvector (thus increasing
the dimension of the clustering space to three) and repeat
the procedure. Eventually, when you reach as many eigen-
vectors as the number of clusters present in the data3, no
points will be assigned to the centre at the origin, leaving
the last cluster empty. This is the signal to terminate the
algorithm. This algorithm is summed up in algorithm 3.

Notice that the rotational ambiguity does not affect the

2One might consider starting with only one dimension, but the num-
ber of radial directions available in one dimension is too limited for our
purposes.

3This clearly depends on the setting of the parametersσ andλ.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Fig. 2. The three circles data set

elongated nature of the clusters, except in the case in which
one cluster will end up in the origin (in which it will be
assigned to the spherical cluster in the origin).

4. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

One of the key characteristics of theK-means clustering al-
gorithm is its sensitivity to initialisation. We exploit this in
step 4 of algorithm 3: if there are no points nearer the origin
than the mean of any other cluster,K-means will simply
return an empty cluster. Therefore, our algorithm is also
sensitive to the initialisation ofK-means. We always ini-
tialise the firstq means to be points in a cluster identified at
the previous step, while theq + 1th mean is in the origin.

The value of the distance parameterσ is empirically
chosen somewhere between the intercluster average distance
and the intracluster average distance. The sharpness para-
meter has been fixed to 0.2 in all experiments.

To illustrate the novel features of the algorithm we will
work through a case study, clustering the three circles data
set. This data set, shown in figure 2, is a good example of
when spectral methods are appropriate for clustering, as it
consists of non-convex clusters which cannot be separated
directly usingK-means or similar clustering algorithms.

A value of 0.05 was used forσ in this example; this was
empirically found to produce tight clusters in the clustering
space. Initially we setq = 2, and thus take just the two
eigenvectors of L with largest eigenvalues. This gives us
a clustering space which is two-dimensional, visualised in
figure 3.

We can see that there are three clear clusters, each lying
approximately on a line that passes through the origin. It is
this observation that we exploit to find the number of clus-
ters. Recall that our initialisation of theK-means is crucial,
so we initialise the means as follows. The first meanc1 is
initialised at the data point that is furthest from the origin.
The second meanc2 is initialised at the data point that si-

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 3. The 2D clustering space: plot of the two dominant
eigenvectors for the three circles data set. Notice the pres-
ence of three elongated clusters on approximately radial di-
rections.

multaneously maximises its norm while minimising the dot
product withc1. As we know that there will be at least two
clusters in the plane, this guarantees that the second mean is
set at a point in a different cluster.

Then we add a third meanc3 at the origin. Because
we are going to do an elongatedK-means clustering, each
mean is considered closer to points that lie along the same
radial line than to points that lie off this line. For this reason
we find that the first two means will not easily be moved
away from the two clusters they started in.

However, asc3 is set in the origin, distances from it will
be measured using the standard Euclidean distance, and this
will mean that the points of the third cluster will be assigned
to it (as their Euclidean distance from the origin is smaller
than their elongated distance from another cluster).

The consequence of this is thatc3 gets dragged towards
the third cluster, and we achieve the clustering we desired,
as each of the clusters in the clustering space of figure 3
corresponds to one of the concentric circles in figure 2.

When iterating the algorithm further, all three clusters
will have a mean vector initialised at one of their points.
Therefore, the assignment rule ofK-means will force the
fourth meanc4 (initialised at the origin) to have no points
assigned to it. This will be taken as the termination signal.

The final result for this data set is shown in figure 4(a).
In order to demonstrate the advantages of applying elon-
gatedK-means rather then a standard implementation of
K-means, we draw attention to figure 4(b). In this caseσ2

has been set less optimally so that the clusters appear closer
together in the clustering space. ElongatedK-means is still
able to separate these by virtue of them being in different
radial lines, but a standardK-means clustering groups two
of the clusters together.

Figure 5 shows two more examples of non-convex clus-
tering tasks, taken from the implementation examples in [4].

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(b)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(c)

Fig. 4. Panel (a) shows the clustering output for the Three
Circles data set. Points belonging to different clusters are
shown using different symbols. (b) shows what would hap-
pen if we had attempted to cluster with standardK-means.
Two of the radial clusters are grouped together, resulting in
the wrong clustering, as illustrated in (c).

20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

(a)

20 30 40 50 60 70 80
20

30

40

50

60

70

80

(b)

Fig. 5. Two more examples of non-convex clusters success-
fully clustered by our algorithm. In (a) the parameterσ was
set to 1, while in (b) it was set to 0.5. The number of clusters
was determined automatically. The different clusters found
are indicated by using different symbols and colours.

In figure 6 an artificially constructed image is segmented.
The image was turned into greyscale and the intensity was
then scaled to have the same range as the spatial coordi-
nates. The input points were then treated as three dimen-
sional vectors, the third coordinate being given by the inten-
sity. The experiment shows how, forσ = 2, the algorithm
grouped the points by intensity only, while forσ = 1 more
detailed structure was picked up. This is not surprising, as
the number of clusters present in a data set depends onσ.

It should be pointed out that modern image segmenta-
tion techniques use very refined feature extraction tools as
preprocessing steps. These may involve texture informa-
tion filters for images [1]. It is interesting, though, that,
even without any feature extraction, such a simple algorithm
manages to produce somewhat sensible groupings.

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(a)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(b)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(c)

Fig. 6. Simple image segmentation example. The image
in (a) was turned to greyscale and then clustered with our
algorithm. In (b) the parameterσ was set to 1, while in
(c) it was set to 2. As it might be expected, the number of
clusters found in (b) was greater. The groupings found are
indicated by using different symbols and colours.

5. DISCUSSION

We analysed the standard Spectral Clustering algorithm, as
proposed in [4]. By considering the spectral properties of
the affinity matrix, we suggested a modification of the al-
gorithm that exploits some of these properties in order to
achieve an automatic selection of the number of clusters
present in a dataset.

While the algorithm is largely heuristic, it does seem
to perform very well on a range of examples, reliably pro-
ducing the expected number of clusters in the case of non-
convex clusters. It also gives reasonable results when ap-
plied to more difficult artificial examples of image segmen-
tation.
AcknowledgmentsGS and NDL acknowledge support from
a BBSRC award ‘Improved processing of microarray data
with probabilistic models’.

6. REFERENCES

[1] Jianbo Shi and Jitendra Malik, “Normalized cuts and
image segmentation,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 8, pp.
888–905, 2000.

[2] Guy J. Brown and Martin P. Cooke, “Computational
auditory scene analysis,”Computer Speech and Lan-
guage, vol. 8, pp. 297–333, 1994.

[3] Francis R. Bach and Michael I. Jordan, “Blind one-
microphone speech separation: A spectral learning ap-
proach,” inAdvances in Neural Information Processing
Systems, Cambridge, MA, 2005, vol. 17, MIT Press.

[4] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss, “On
spectral clustering: Analysis and an algorithm,” in
Advances in Neural Information Processing Systems,
Thomas G. Dietterich, Sue Becker, and Zoubin Ghahra-
mani, Eds., Cambridge, MA, 2002, vol. 14, MIT Press.

[5] Yair Weiss, “Segmentation using eigenvectors: A uni-
fying view,” in International Conference on Computer
Vision, 1999.

