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1 INTRODUCTION: THE ISOPERIMETRIC PROBLEM

GRAPH partitioning has been strongly influenced by properties of a
combinatorial formulation of the classic isoperimetric problem: For
a fixed area, find the region with minimum perimeter.

Define the isoperimetric constant h of a manifold as [1]

h ¼ inf
S

j@Sj
VolS

; ð1Þ

where S is a region in the manifold, VolS denotes the volume of
region S, j@Sj is the area of the boundary of region S, and h is
the infimum of the ratio over all possible S. For a compact
manifold, VolS � 1

2 VolTotal and, for a noncompact manifold,
VolS <1 (see [2], [3]).

We show in this paper that the set (and its complement) for
which h takes a minimum value defines a good heuristic for image
segmentation. In other words, finding a region of an image that is
both large (i.e., high volume) and that shares a small perimeter
with its surroundings (i.e., small boundary) is intuitively appealing
as a “good” image segment.

Previous applications of graph partitioning to image segmenta-
tion have yielded successful algorithms. In general, previous
approaches have been based on spectral graph theory [4], [5] and
on max-flow/min cut [6], [7] methods. Although the isoperimetric
criterion is intuitively similar to the partitioning criterion used in the
spectral graph theory, the seemingly slight difference in formulation
allows solution by a system of linear equations rather than an
eigenvector problem. A system of linear equations is desirable
because it improves both speed and stability. Furthermore, there are
situations for which spectral approaches have degenerate solutions.
The minimum-cut approaches to segmentation [6], [7] tend to
produce small partitions or to require a large number of (generally
user-specified) sinks/sources. The isoperimetric algorithm favors
larger partitions and, thus, avoids this problem.

2 THE ISOPERIMETRIC PARTITIONING ALGORITHM

A graph is a pair G ¼ ðV ;EÞ with vertices (nodes) v 2 V and
edges e 2 E � V � V . An edge, e, spanning two vertices, vi and

vj, is denoted by eij. Let n ¼ jV j and m ¼ jEj, where j � j denotes
cardinality. A weighted graph has a value (typically nonnegative
and real) assigned to each edge called a weight. The weight of
edge eij is denoted by wðeijÞ or wij. Since weighted graphs are
more general than unweighted graphs (i.e., wðeijÞ ¼ 1 for all eij 2
E in the unweighted case), we will develop all our results for
weighted graphs. The degree of a vertex vi, denoted di, is
di ¼

P
eij
wðeijÞ 8 eij 2 E.

For a graph, G, the isoperimetric constant [2], hG, is

hG ¼ inf
S

j@Sj
VolS

; ð2Þ

where S � V and VolS � 1
2 VolV . In graphs with a finite node set,

the infimum in (2) is a minimum. Since the present context is that
of finite graphs, we will henceforth use the minimum in place of
the infimum. The boundary of a set, S, is defined as
@S ¼ feijjvi 2 S; vj 2 Sg, where S denotes the set complement and

j@Sj ¼
X
eij2@S

wðeijÞ: ð3Þ

In order to determine a notion of volume for a graph, a metric
must be defined. Different choices of a metric lead to different
definitions of volume and even different definitions of a combina-
torial Laplacian operator (see [3], [8]). Dodziuk and Kendall
suggested [9], [10] two different notions of combinatorial volume,

VolS ¼ jSj; ð4Þ

and

VolS ¼
X
i

di 8 vi 2 S: ð5Þ

One may view the difference between the definition of volume in
(4) and that in (5) as the difference between what Shi and Malik term
the “Average Cut” versus their “Normalized Cut” [4], although the
isoperimetric ratio (with either definition of volume) corresponds to
neither criterion. Traditional spectral partitioning [11] employs the
same algorithm as Ncuts, except that it uses the combinatorial
Laplacian defined by the metric associated with (4). In agreement
with [4], we find that the second metric (and, hence, volume
definition) is more suited to image segmentation since regions of
uniform intensity are given preference over regions that simply
possess a large number of pixels. Therefore, we will use Dodziuk’s
second metric definition and employ volume as defined in (5).

For a given set, S, we term the ratio of its boundary to its volume
the isoperimetric ratio, denoted by hðSÞ (i.e., the argument of inf in
(2)). The isoperimetric sets for a graph, G, are any sets S and S for
which hðSÞ ¼ hG (note that the isoperimetric sets may not be unique
for a given graph). The specification of a set satisfying the volume
constraint, together with its complement, may be considered as a
partition and, therefore, the term is used interchangeably with the
specification of a set satisfying the volume constraint. Throughout
this paper, a good partition is considered to be one with a low
isoperimetric ratio (i.e., the optimal partition is represented by the
isoperimetric sets themselves). Therefore, the goal is to maximize
VolS while minimizing j@Sj. Unfortunately, finding isoperimetric
sets is an NP-hard problem [2]. The algorithm of this paper may be
considered to be a heuristic for finding a set with a low isoperimetric
ratio that runs in low-order polynomial time.

2.1 Derivation of Isoperimetric Algorithm

Define an indicator vector, x, that takes a binary value at each node

xi ¼ 0 if vi 2 S;
1 if vi 2 S:

�
ð6Þ

Note that a specification of x may be considered a partition.
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Define the n� n matrix, L, of a graph as

Lvivj ¼
di if i ¼ j;
�wðeijÞ if eij 2 E;
0 otherwise:

8<
: ð7Þ

The notation Lvivj is used to indicate that the matrix L is being
indexed by vertices vi and vj. This matrix is also known as the
admittance matrix in the context of circuit theory or the Laplacian
matrix in the context of finite difference methods (and in the
context of [9]).

By definition of L,

j@Sj ¼ xTLx ð8Þ

and VolS ¼ xTd, where d is the vector of node degrees. If r
indicates the vector of all ones, minimizing (8) subject to the
constraint that the set, S, has fixed volume may be accomplished
by asserting

VolS ¼ xTd ¼ k; ð9Þ

where 0 < k < 1
2 r

T d is an arbitrary constant and r represents the
vector of all ones. We shall see that the choice of k becomes irrelevant
to the final formulation. Thus, the isoperimetric constant (2) of a
graph, G, may be rewritten in terms of the indicator vector as

hG ¼ min
x

xTLx

xTd
; ð10Þ

subject to the constraint of (9). Given an indicator vector, x, hðxÞ
represents the isoperimetric ratio associated with the partition

specified by x. Note that the ratio given by (10) is different from both

the “ratio cut” of [12], [13] and the “average cut” of [4]. Although the

criterion in (10) rewards qualitatively similar partitions to the

normalized cut, average cut, and ratio cut (i.e., large segments with

small boundaries), what appears as a minor difference in the

formulation allows us to use a solution to a system of linear

equations instead of solving an eigenvector problem. Note that the

ratio cut technique of [12], [13] is distinct (in algorithm and pertinent

ratio) from the ratio cut of [14], which applies only to planar graphs.

The advantages of solving a system of linear equations, rather than

an eigenvector problem, will be discussed below.

The constrained optimization of the isoperimetric ratio is made

into a free variation via the introduction of a Lagrange multiplier �

and relaxation of the binary definition of x to take nonnegative real

values by minimizing the cost function

QðxÞ ¼ xTLx� �ðxTd� kÞ: ð11Þ

Since L is positive semidefinite (see [15], [16]) and xTd is
nonnegative, QðxÞ will be at a minimum for any critical point.
Differentiating QðxÞ with respect to x and setting to a minimum
yields

2Lx ¼ �d: ð12Þ

Thus, the problem of finding the x that minimizes QðxÞ (minimal

partition) reduces to solving a linear system. Henceforth, the scalar
multiplier 2 and the scalar � are dropped since only the relative

values of the solution are significant.
Unfortunately, the matrix L is singular: All rows and columns

sum to zero (i.e., the vector r spans its nullspace), so finding a
unique solution to (12) requires an additional constraint.

We assume that the graph is connected since the optimal
partitions are clearly each connected component if the graph is
disconnected (i.e., hðxÞ ¼ hG ¼ 0). Note that, in general, a graph
with c connected components will correspond to a matrix L with
rank ðn� cÞ [15]. If we arbitrarily designate a node, vg, to include in
S (i.e., fix xg ¼ 0), this is reflected in (12) by removing the gth row

and column of L, denoted by L0, and the gth row of x and d,
denoted by x0 and d0, such that

L0x0 ¼ d0; ð13Þ

which is a nonsingular system of equations.
Solving (13) for x0 yields a real-valued solution that may be

converted into a partition by setting a threshold (see below for a
discussion of different methods). In order to generate a segmenta-
tion with more than two parts, the algorithm may be recursively
applied to each partition separately, generating subpartitions and
stopping the recursion if the isoperimetric ratio of the cut fails to
meet a predetermined threshold. We term this predetermined
threshold the stop parameter and note that, since 0 � hðxÞ � 1, the
stop parameter should be in the interval ð0; 1Þ. Since lower values
of hðxÞ correspond to more desirable partitions, a stringent value for
the stop parameter is small, while a large value permits lower
quality partitions (as measured by the isoperimetric ratio). It was
proven in [17] that the partition containing the node corresponding
to the removed row and column of L must be connected, for any
chosen threshold, i.e., the nodes corresponding to x0 values less than
the chosen threshold form a connected component.

2.2 Physical Analogy

Equation (12) occurs in circuit theory when solving for the electrical
potentials of an ungrounded circuit in the presence of current sources
[18]. After grounding a node in the circuit (i.e., fixing its potential to
zero), determination of the remaining potentials requires a solution
of (13). Therefore, we refer to the node, vg, for which we set xg ¼ 0 as
the ground node. Likewise, the solution, xi, obtained from (13) at
node vi, will be referred to as the potential for node vi. The need for
fixing an xg ¼ 0 to constrain (12) may be seen not only from the
necessity of grounding a circuit powered only by current sources in
order to find unique potentials, but also from the need to provide a
boundary condition in order to find a solution to Poisson’s equation,
of which (12) is a combinatorial analog. In the present case, the
“boundary condition” is that the grounded node is fixed to zero.

With this interpretation of the notation used above, the three
fundamental equations of circuit theory (Kirchhoff’s current and
voltage law and Ohm’s law) may be written for a grounded circuit as

AT
0 y ¼ f ðKirchhoff 0s Current LawÞ; ð14Þ
Cp ¼ y ðOhm0s LawÞ; ð15Þ
p ¼ A0x ðKirchhoff 0s Voltage LawÞ; ð16Þ

for a vector of branch currents, y, current sources, f , and potential
drops (voltages), p. Note that there are no voltage sources present
in this formulation. These three equations may be combined into
the linear system

AT
0CA0x ¼ L0x ¼ f ð17Þ

since ATCA ¼ L [15].
There is a deep connection between electric circuits and random

walks on graphs [19], [20], which suggests the analysis of this
algorithm in terms of a random walk on a graph. The electric
potential calculated above for each node admits interpretation as
the expected number of steps a random walker starting from that
node would take in order to reach the ground, if his probability of
walking from node vi to vj is equal to

wij
di

. In this interpretation, the
threshold is in units of expected steps of a random walker to
ground, chosen to partition the graph into subsets possessing the
smallest isoperimetric ratio (see [21] for justification of this
interpretation).

2.3 Algorithmic Details

2.3.1 Summary of the Algorithm

Applying the isoperimetric algorithm to image segmentation may
be described in the following steps:
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1. Find weights for all edges using (18) and build the
L matrix (7).

2. Choose the node of largest degree as the ground node, vg,
and determine L0 and d0 by eliminating the row/column
corresponding to vg.

3. Solve (13) for x0.
4. Threshold the potentials x at the value that gives partitions

corresponding to the lowest isoperimetric ratio.
5. Continue recursion on each segment until the isoperimetric

ratio of the subpartitions is larger than the stop parameter.

2.3.2 Choosing Edge Weights

In order to apply the isoperimetric algorithm to partition a graph,
the image values must be encoded on the graph via edge weights.
We employ the standard [4], [7] weighting function

wij ¼ exp ��ðIi � IjÞ2
� �

; ð18Þ

where � represents a free parameter and Ii indicates the intensity
value at node vi. Note that ðIi � IjÞ2 may be replaced by the
squared norm of a Euclidean distance in the case of vector valued
data. In order to make one choice of � applicable to a wide range of
data sets, we have found it helpful to normalize the intensity
differences for an image before applying (18).

2.3.3 Choosing Partitions from the Solution

The binary definition of x was extended to real numbers in order
to solve (13). Therefore, in order to convert the solution, x, to a
partition, a subsequent step must be applied (as with spectral

partitioning). Conversion of a potential vector to a partition may be
accomplished using a threshold. A cut value is a value, �, such
that S ¼ fvijxi � �g and S ¼ fvijxi > �g. The partitioning of S and
S in this way may be referred to as a cut. This thresholding
operation creates a partition from the potential vector, x. Note that,
since a connected graph corresponds to an L0 that is an M-matrix
[16], and is therefore monotone, L�1

0 � 0. This result then implies
that x0 ¼ L�1

0 d0 � 0.
Employing the terminology of [22], the standard approaches to

cutting the indicator vector in spectral partitioning are to cut based
on the median value (the median cut) or to choose a threshold such
that the resulting partitions have the lowest available isoperimetric
ratio (the ratio cut). Note that, in the remainder of this paper, the
“ratio cut” is used in the sense of [22] (which describes a method for
binarizing a real-valued solution) and not in the sense of [12], [13], or
[14] (which describe complete partitioning/segmentation algo-
rithms). The ratio cut method will clearly produce partitions with
a lower isoperimetric ratio than the median cut. Unfortunately,
because of the required sorting of x, the ratio cut method requires
Oðn logðnÞÞ operations (assuming a bounded degree). The median
cut method runs in OðnÞ time, but forces the algorithm to produce
equal sized partitions, even if a better segmentation exists. Despite
the required sorting operation for the ratio cut, the operation is still
very inexpensive relative to the solution of (13) for the range of nwe
focus on (typically, 128� 128 to 512� 512 images). Therefore, we
have chosen to employ the ratio cut method.

2.3.4 Ground Node

It will be demonstrated below that, in the image processing
context, the ground node may be viewed from an attentional
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Fig. 1. An example of the effects on the solution with different choices of ground node for a problem with a known optimal partition. The top row shows the potential
function (brightest point is ground) for several choices of ground while the bottom row shows the thresholded partitions. Different ground choices within an object (e.g., a
ball in the dumbbell) have little effect on the partitioning/segmentation. Only a pathological choice (grounding on the optimal boundary) produces a significantly different
partition. Uniform weights were employed in this example.

Fig. 2. The Kaniza triangle illusion with the single bipartition outlined in black and the ground node marked with an “x.” The ground location behaves like an attentional
point in determining the segmentation. Additionally, this example demonstrates that the algorithm is capable of finding low-contrast (or zero-contrast) boundaries based
on the global structure of the image without any explicit modeling of Gestalt properties. (a) Ground in corner. (b) Ground in triangle.



standpoint. However, in the more general graph partitioning
context, it remains unclear how to choose the ground. Anderson
and Morley [23] have proven that the spectral radius of L, �ðLÞ,
satisfies �ðLÞ � 2dmax, suggesting that grounding the node of
highest degree may have the most beneficial effect on the
conditioning of (13). Empirically, we have found that, as long as
the ground is not along the ideal cut, a partition with low
isoperimetric ratio is produced.

Fig. 1 illustrates this principle using the dumbbell shape of
Cheeger’s seminal paper [1] on the relationship of the isoperimetric
constant and the eigenvalues of the Laplacian on continuous
manifolds. The top row shows the potentials, x, solved for using
(13). The brightest node on the graph represents the ground node. For
the rest of the nodes, bright nodes are closer to ground (i.e., have
lower potentials) and dark nodes are further from ground. The
bottom row shows the postthreshold function, i.e., after the ratio cut
has been employed. The two left columns indicate a random
selection of ground nodes and the two right columns represent
pathological choices of ground nodes. Of the two pathological cases,
the third column uses a ground in the exact center of the neck, while
the last column uses a ground displaced by one node from the center.
Although the grounding in the exact center produces a partition that
does not resemble the known ideal partition, grounding a node
displaced by one from the center (fourth column) produces a
partition that is nearly the same as the ideal. This experiment
illustrates that the solution is largely independent of the choice of
ground node, except in the pathological case where the ground lies
on the optimal cut. Moreover, it is clear that choosing a ground node
in the interior of the balls is better than choosing a point on the neck,
which corresponds in some sense to the above rule of choosing the
point with maximum degree since a node of high degree will be in the
“interior” of a region, or in an area of uniform intensity in the context
of image processing.

2.3.5 Solving the System of Equations

Solving (13) is the computational core of the algorithm. It requires
the solution to a large, sparse system of symmetric equations
where the number of nonzero entries in L will equal 2m.

Of the many methods for solving systems of linear equations
[24], the method of conjugate gradients appears favored in this
application because it is memory efficient, parallelizable, and
allows a flexible trade-off of speed for accuracy. The numerical
basis of the present work is the sparse matrix package provided by
MATLAB [25].

2.3.6 Time Complexity

Running time mainly depends on the solution to (13). A sparse
matrix-vector operation depends on the number of nonzero values,
which is, in this case, OðmÞ. Assuming that a constant number of
iterations is required for the convergence of the conjugate gradients
method, the time complexity of solving (13) is OðmÞ. The ratio cut
requires an Oðn logðnÞÞ sort. Combined, the time complexity is
Oðmþ n lognÞ. In cases of graphs with bounded degree, then m �
ndmax and the time complexity reduces to Oðn logðnÞÞ. If a constant
recursion depth may be assumed (i.e., a consistent number of
“objects” in the scene), the time complexity is unchanged.

2.4 Relationship to Spectral Partitioning

Building on the early work of Fiedler [26], Alon and Milman [27],
and Cheeger [1], who demonstrated the relationship between the
second smallest eigenvalue of the Laplacian matrix (the Fiedler
value) for a graph and its isoperimetric constant, spectral partition-
ing was one of the first successful graph partitioning algorithms [11].
The algorithm partitions a graph by finding the eigenvector
corresponding to the Fiedler value, termed the Fiedler vector, and
cutting the graph based on the value in the Fiedler vector associated
with each node. Like isoperimetric partitioning, the output of the
spectral partitioning algorithm is a set of values assigned to each
node, which require cutting in order to generate partitions.

Spectral partitioning may be used [11] to minimize the
isoperimetric ratio of a partition by solving

Lz ¼ �z; ð19Þ

with L defined as above and � representing the Fiedler value. Since
the vector of all ones, r, is an eigenvector corresponding to the
smallest eigenvalue (zero) of L, the goal is to find the eigenvector
associated with the second smallest eigenvalue of L. Requiring
zT r ¼ 0 and zT z ¼ n may be viewed as additional constraints
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Fig. 3. Comparison of segmentation stability between the isoperimetric algorithm
and Ncuts. Progressive amounts of additive, multiplicative, and shot noise were
applied to an artificial image of a white circle on a black background, for which the
correct number of segments is exactly one. The x-axis represents an increasing
noise variance for the additive and multiplicative noise and an increasing number of
“shots” for the shot noise. The y-axis indicates the number of segments found by
each algorithm. The solid line represents the number of segments found by the
isoperimetric algorithm and the dashed line represents the number of segments
found by the Ncuts algorithm. The underlying graph topology was the 4-connected
lattice with � ¼ 95 for the isoperimetric algorithm and � ¼ 35 for the Ncuts algorithm.
Ncuts stop criterion = 10�2 (relative to the Ncuts criterion) and isoperimetric stop
criterion = 10�5. In all cases, the isoperimetric algorithm outperforms Ncuts, most
dramatically in response to shot noise due to the instability of the eigenvector for
multiple, nearly disconnected, regions—see text. The � and stop values for each
algorithm were chosen empirically to produce the best results for that algorithm in
response to noise. (a) Additive noise. (b) Multiplicative noise. (c) Shot noise.



employed in the derivation of spectral partitioning to circumvent
the singularity of L (see [28] for an explicit formulation of spectral
partitioning from this viewpoint). Therefore, one way of viewing
the difference between the isoperimetric and the spectral methods
is in terms of the choice of an additional constraint that allows one
to circumvent the singular nature of the Laplacian L.

A second difference is that the isoperimetric method requires the
solution to a sparse linear system rather than the solution to the
eigenvector problem required by spectral methods of image
segmentation [4], [5]. The Lanczos algorithm provides an excellent
method for approximating the eigenvectors corresponding to the
smallest or largest eigenvalues of a matrix with a time complexity
comparable to the conjugate gradient method of solving a sparse
system of linear equations [24]. However, the solution to the
eigenvector problem is less stable to minor perturbations of the
matrix than the solution to a system of linear equations if the desired
eigenvector corresponds to an eigenvalue that is very close to other
eigenvalues (see [24]). In fact, the eigenvector problem is degenerate
for graphs in which the Fiedler value has algebraic multiplicity
greater than one, allowing the Lanczos algorithm to converge to any
vector in the subspace spanned by the Fiedler vectors (if it converges
at all). A square lattice with uniform weights is an example of a
graph for which the Fiedler value has algebraic multiplicity greater
than unity. More problematic is that even a single pixel that is nearly
disconnected from its neighbors (e.g., due to high contrast) will
drive another eigenvalue toward zero. Therefore, even a few nearly
disconnected pixels (e.g., a black pixel surrounded by white pixels)
can result in the numerical instabilities described above. This
problem will be demonstrated empirically in Section 3.2 for noisy
images. In contrast, the isoperimetric algorithm requires the

solution of a linear system and is therefore robust to the previous
criticism. A formal comparison of the sensitivities of the isoperi-
metric, spectral, and Ncuts algorithms is performed in [17].

3 APPLICATIONS

3.1 Methods of Image Segmentation

It is not clear, a priori, how to impose a graph structure on an
image. Since pixels define the discrete input, a simple choice for
nodes is the pixels themselves. Traditional neighborhood con-
nectivity employs a 4-connected or 8-connected topology. Another
approach, taken by Shi and Malik [4] is to use a fully connected
neighborhood within a parameterized radius of each node. We
chose to use a minimal 4-connected topology since the matrix L
becomes less sparse as more edges are added to the graph and a
graph with more edges requires more time to solve (13). In other
work, we show that that the use of more exotic neighborhoods may
enhance the algorithm performance [29]. Edge weights were
generated from intensity values in the case of a gray scale image
or from RGB color values in the case of a color image using (18).

The isoperimetric algorithm is controlled by only two para-
meters: the parameter � of (18) and the stop parameter used to
end the recursion. The � parameter affects how sensitive the
algorithm is to changes in feature space (e.g., RGB, intensity), while
the stop parameter determines the maximum acceptable isoperi-
metric ratio a partition must generate in order to accept it and
continue the recursion.

Study of the classic Kaniza illusion [30] suggests that humans
segment objects based on something beyond perfectly connected
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Fig. 4. Stability analysis relative to additive, multiplicative, and shot noise. Each row represents an increasing amount of noise of the appropriate type. The top row in each
subfigure is the segmentation found for the blood1.tif image packaged with MATLAB (i.e., zero noise). Each figure is divided into three columns representing the
image with noise, isoperimetric segmentation and Ncuts segmentation from left to right, respectively. The underlying graph topology was the 4-connected lattice for
isoperimetric segmentation and an 8-connected lattice for Ncuts segmentation (due to failure to obtain quality results with a 4-connected lattice) with � ¼ 95 for the
isoperimetric algorithm and � ¼ 35 for the Ncuts algorithm. Ncuts stop criterion = 5� 10�2 (relative to the Ncuts criterion) and isoperimetric stop criterion = 10�5.
Results were slightly better for additive noise and markedly better for multiplicative and shot noise. Note that the � and stop values for each algorithm were chosen
empirically to produce the best results for that algorithm in response to noise. (a) Additive noise. (b) Multiplicative noise. (c) Shot noise.



edge elements. The isoperimetric algorithm was used to segment
the image in Fig. 2, using only one level of recursion with all nodes
corresponding to the black “inducers” removed. In this case, choice
of the ground node is important for determining the single
bipartition. If the ground node is chosen inside the illusory
triangle, the resulting partition is the illusory triangle. However, if
the ground is chosen outside, the triangle partition is not
produced, but, instead, a partition that hugs the corner in which
the ground is located. In this way, the ground node may be
considered as representing something like an “attentional” point
since it induces a partition that favors the region of the ground
node. However, note that these partitions are compatible with each
other, suggesting that the choice of ground may affect only the
order in which partitions are found. We believe that the ability to
“complete” an object boundary is an important quality for a
segmentation algorithm since natural images frequently contain
weak object boundaries.

3.2 Stability

The stability of the solutions obtained for the isoperimetric and the
spectral algorithms differs considerably. This difference is expected
from perturbation analysis applied to the solutions of a linear system
versus the solution to the eigenvector problem [24]. In a formal
analysis of this issue [17], differentiating the Ncuts equation with
respect to an edge weight reveals that the derivative of the solution to
the Ncuts equation is highly dependent on the current Fiedler value,
even taking degenerate solutions for some values. By contrast, the
derivative of the isoperimetric solution has no poles. Instability in
spectral methods due to the algebraic multiplicity of the Fiedler value
is a common problem in implementation of these algorithms. This
analysis suggests that the Ncuts algorithm may be more unstable to
minor changes in an image than the isoperimetric algorithm.

The relative sensitivity of Ncuts (our implementation) and the
isoperimetric algorithm to noise was compared using a quantitative
and a qualitative measure. Each algorithm was applied to an
artificial image of a white circle on a black background, using a
4-connected lattice topology. Increasing amounts of additive,
multiplicative, and shot noise were applied, and the number of
segments output by each algorithm was recorded. Results of this
experiment are recorded in Fig. 3.

In each comparison, additive, multiplicative, and shot noise
were used to test the sensitivity of the two algorithms to noise. The
additive noise was zero-mean Gaussian noise with variance
ranging from 1-20 percent of the brightest luminance. Multi-
plicative noise was introduced by multiplying each pixel by a unit-
mean Gaussian variable with the same variance range as above.
Shot noise was added to the image by randomly selecting pixels
that were fixed to white. The number of “shots” ranged from 10 to
1,000. Although additive and multiplicative noise heavily degrades
the solution found the Ncuts algorithms, the isoperimetric
algorithm degrades more gracefully. Even the presence of a
significant amount of shot noise does not seriously disrupt the
isoperimetric algorithm, but it significantly impacts the conver-
gence of Ncuts to any solution. An additional, qualitative,
comparison is shown in Fig. 4, yielding similar results.

3.3 Segmentation of Natural Images

Examples of the segmentation found by the isoperimetric algorithm
for some natural images are displayed in Fig. 5. All results in the
example segmentations were obtained using the same two
parameters. It should be emphasized in comparisons of segmenta-
tions produced by the Ncuts algorithm that the authors of Ncuts
make use of a more fully connected neighborhood, as well as fairly
sophisticated spatial filtering (e.g., oriented Gabor filters at multiple
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Fig. 5. Examples of unsupervised segmentations produced by the isoperimetric algorithm using the same parameters (� ¼ 95, stop= 10�5). Note that only intensity
information was used by the algorithm (i.e., no texture or multiscale information was used). Our MATLAB implementation required approximately 10-15 seconds to
segment each image. More segmentation results from the same database may be found at http://eslab.bu.edu/publications/grady2003isoperimetric/. Original images
may be obtained from http://eslab.bu.edu/resources/imageDB/imageDB.php/.



scales) in order to aid in textural segmentation. The demonstrations
with the isoperimetric algorithm used a basic 4-connected topology
and no spatial filtering at all. Consequently, the segmentations
produced by the isoperimetric algorithm should be expected to
perform less well on textural cues. However, for general gray scale
images, it appears to perform well, with increased numerical
stability and a speed advantage of more than an order of magnitude
over Ncuts (based on our MATLAB implementation of both
algorithms). Furthermore, because of the implementation (e.g.,
4-connected lattice, no spatial filtering), the isoperimetric algorithm
makes use of only two parameters, compared to the four basic
parameters (i.e., radius, two weighting parameters, and the
recursion stop criterion) required by the Ncuts algorithm [4].

The asymptotic (formal) time complexity of Ncuts is roughly the
same as the isoperimetric algorithm. Both algorithms have an initial
stage in which nodal values are computed that requires approxi-
mately OðnÞ operations (i.e., via Lanczos or conjugate gradient).
Generation of the nodal values is followed in both algorithms by an
identical cutting operation. Using the MATLAB sparse matrix solver
for the linear system required by the isoperimetric algorithm and the
Lanczos method MATLAB employs ARPACK [31] for this calcula-
tion) to solve the eigenvalue problem required by Ncuts, the time
was compared for a 10; 000� 10; 000 Lmatrix (i.e., a 100� 100 pixel
image) representing a 4-connected graph (for both algorithms).
Since other aspects of the algorithms are the same (e.g., generating
weights from the image, cutting the indicator vector, etc.) and
because solving for the indicator vector is the main computational
hurdle, we only compare the time required to solve for the indicator
vector. On a 1.4GHz AMD Athlon with 512K RAM, the time required
to approximate the Fiedler vector for NCuts was 7.1922 seconds,
while application of the direct solver to the isoperimetric partition-
ing (13) required 0.5863 seconds. In terms of actual computation time
(using MATLAB), this result demonstrates that solving the central
computation for the isoperimetric algorithm is more than an order of
magnitude faster than solving the central computation required by
the Ncuts algorithm.

4 CONCLUSION

We have recently described a new algorithm for graph partitioning
that attempts to find sets with a low isoperimetric ratio [32]. Here,
this algorithm is applied to the problem of image segmentation and
application of it for data clustering was additionally explored in
[17]. The algorithm was compared with Ncuts to demonstrate that
it is faster and more stable, while providing visually comparable
results with less preprocessing. The isoperimetric algorithm
additionally admits interpretation in terms of circuit theory,
random walks, and combinatorial PDEs, lending the depth of
these well-researched literatures to analysis of the algorithm’s
behavior. The (MATLAB) code used to generate all the figures in
this paper will be available upon publication at http://
eslab.bu.edu/publications/ using the Graph Analysis Toolbox
available at http://eslab.bu.edu/software/graphanalysis/.

Developing algorithms to process a distribution of data on
graphs is an exciting area. Many biological sensory units are
nonuniformly distributed in space (e.g., vision, somatic sense), with
spatial distribution often differing radically between species [33].
The ability to develop algorithms that allow an arbitrary choice for
the distribution of sensors (or data of any sort) represents a large
step over existing algorithms that require a regular, shift-invariant
lattice. For modeling image processing on biological space-variant
systems, we have found this property to be a necessity.

Since the graph representation of an image is not tied to any
notion of dimension, the algorithm applies equally to graph-based
problems in N-dimensions as it does to problems in two
dimensions. Suggestions for future work are applications to
segmentation in space-variant architectures, supervised or un-
supervised learning, three-dimensional segmentation, and the
segmentation/clustering of other areas that can be naturally
modeled with graphs.
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