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ABSTRACT
The dendritic structures of retinal ganglion cells in the mouse retina were visualized by

particle-mediated transfer of DiI, microinjection of Lucifer yellow, or visualization of green
fluorescent protein expressed in a transgenic strain. The cells were imaged in three dimen-
sions and the morphologies of a series of 219 cells were analyzed quantitatively. A total of 26
parameters were studied and automated cluster analysis was carried out using the k-means
methods. An effective clustering, judged by silhouette analysis, was achieved using three
parameters: level of stratification, extent of the dendritic field, and density of branching. An
11-cluster solution is illustrated. The cells within each cluster are visibly similar along
morphological dimensions other than those used statistically to form the clusters. They could
often be matched to ganglion cell types defined by previous studies. For reasons that are
discussed, however, this classification must remain provisional. Some steps toward more
definitive methods of unsupervised classification are pointed out. J. Comp. Neurol. 489:
293–310, 2005. © 2005 Wiley-Liss, Inc.
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As was recognized by Cajal, the central issue for a
bottom-up understanding of complex neural systems is to
identify the functional types of neuron. These are the
essential building blocks upon which all neural computa-
tions are based. Ultimately, this identification will proba-
bly be made on the basis of molecular markers of neuronal
types. However, markers specific to individual neuronal
cell types in most CNS circuits have not been forthcoming.
Although specialized cells (viz., rod and cone photorecep-
tors) have unique proteins, and large classes of neurons
(viz., amacrine cells) share certain molecules, at the level
of functional cell types only a few cell-type-specific pro-
teins are known and these typically turn out to be only
partially specific, i.e., to be shared among several neuro-
nal types (Gustincich et al., 1997, 1999; review, Masland
and Raviola, 2000). Developmental specificity instead ap-
pears to be combinatorial, with developmental time as one
of the parameters.

Until it is learned how to use this specificity to generate
markers that can be expressed in adult animals, the most
general method remains neuronal morphology. Morphol-
ogy serves as a neuronal signature, allowing one type to be
distinguished from another. It also has the advantage that
it is a powerful step toward knowledge of connectivity. The

shapes of neurons are caused by the trajectories of axons
and dendrites as they make their connections with other
cells. Thus, shape is both an identifier and an initial
blueprint to the cell’s wiring.

Historically, cell shape has been distinguished by a com-
bination of various features, sometimes explicitly stated
but more often only partly so. In more formal terms,
anatomists since Cajal have made classifications of cells in
multiparameter spaces. As will be discussed in more de-
tail below, the problem resembles some aspects of face
recognition—how one can distinguish among the thou-
sands of individual humans that one easily recognizes
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(Sinha, 2002). As for face recognition, the availability of
computing power and imaging technology raises the pos-
sibility that the informal criteria traditionally used can be
replaced by a more rigorous method of classification. One
of our goals here was to explore such a classification.

We studied the mouse retina because of its many ad-
vantages for genetic manipulation. We used a variety of
cell-filling methods, which now can quite readily generate
large samples of well-stained neurons (Tauchi and Mas-
land, 1984; Gan et al., 2000; Feng et al., 2000; Dacey et al.,
2003). Every neuron was imaged in three dimensions by
digital microscopy. The ganglion cells of the mouse turn
out to be a particular challenge, as they are much less
distinctive, one from the other, than are the ganglion cells
of the monkey, cat, or rabbit (Roska and Werblin, 2001;
O’Brien et al., 2002; Rockhill et al., 2002; Dacey et al.,
2003). However, from our measurements we gain much
useful information, and a preliminary classification will be
presented and compared with earlier ones (Doi et al.,
1995; Sun et al., 2002; Badea and Nathans, 2004). We also
learned some of the limitations of this methodology and
these will be described.

MATERIALS AND METHODS

Individual ganglion cells were labeled in C57/Bl6 with
either DiI or DiO using standard biolistic technique (Gan
et al., 2000) or Lucifer yellow injections (Rockhill et al.,
2002). Labeled ganglion cells were also observed in
GFP-M transgenic mice, generously donated by Dr. J.
Sanes. In these mice a small number of retinal ganglion
cells strongly express GFP (Feng et al., 2000).

All mice were anesthetized with ketamine (30–40 mg/
kg) and xylazine (3–6 mg/kg) in accordance with institu-
tional guidelines. The animals were then euthanized by
an overdose of the same agents. All procedures were in
accord with protocol number 2002N0003 3/2 of the animal
care committee of the Massachusetts General Hospital.

Both eyes were removed and immersed in carboxygen-
ated Ames’ Medium (A1420, Sigma, St. Louis, MO). The
retinas were teased free of the vitreous and sclera and an
orienting mark and four curvature relieving cuts were
made in the retina. The retinas from transgenic mice and
the retinas for intracellular injections were counter-
stained immediately with 4�,6-Diamidino-2-phenylindole

TABLE 1. Correlations among 26 Morphological Parameters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 1.00 0.16 0.03 0.07 �0.17 �0.16 �0.74 �0.75 �0.73 �0.65 0.75 0.79 0.79 0.74 0.50 0.79 0.27 0.27 �0.09 �0.09 �0.23 �0.16 �0.46 �0.30 �0.45 �0.40
2 0.16 1.00 �0.27 0.48 0.01 �0.22 �0.22 �0.33 �0.33 �0.28 �0.10 0.16 �0.08 0.16 �0.10 0.15 0.07 0.07 0.08 0.02 �0.19 �0.17 �0.01 �0.02 �0.08 �0.04
3 0.03 �0.27 1.00 �0.25 �0.03 0.33 0.14 0.25 0.20 0.29 0.30 �0.09 0.22 �0.11 0.33 �0.01 �0.19 �0.19 0.06 0.03 0.21 0.10 0.15 0.06 0.23 0.01
4 0.07 0.48 �0.25 1.00 0.03 �0.18 �0.12 �0.20 �0.15 �0.22 �0.11 0.09 �0.06 0.10 �0.15 0.04 0.12 0.14 0.04 0.06 �0.06 0.04 �0.05 0.06 �0.19 0.02
5 �0.17 0.01 �0.03 0.03 1.00 0.16 0.22 0.17 0.07 0.29 �0.07 �0.16 �0.18 �0.20 0.11 0.00 �0.28 �0.26 0.00 �0.03 0.05 0.02 0.11 0.15 0.05 0.10
6 �0.16 �0.22 0.33 �0.18 0.16 1.00 0.59 0.53 0.36 0.68 0.35 �0.59 0.12 �0.60 0.63 �0.43 �0.58 �0.53 �0.14 �0.02 0.45 0.30 0.49 0.31 0.47 0.20
7 �0.74 �0.22 0.14 �0.12 0.22 0.59 1.00 0.89 0.77 0.90 �0.39 �0.77 �0.51 �0.74 �0.10 �0.73 �0.45 �0.43 �0.03 0.02 0.37 0.25 0.53 0.34 0.53 0.40
8 �0.75 �0.33 0.25 �0.20 0.17 0.53 0.89 1.00 0.95 0.89 �0.25 �0.70 �0.33 �0.66 �0.06 �0.69 �0.32 �0.30 0.07 0.08 0.38 0.29 0.41 0.28 0.42 0.34
9 �0.73 �0.33 0.20 �0.15 0.07 0.36 0.77 0.95 1.00 0.71 �0.27 �0.59 �0.25 �0.52 �0.22 �0.70 �0.06 �0.03 0.09 0.09 0.28 0.25 0.27 0.19 0.28 0.29
10 �0.65 �0.28 0.29 �0.22 0.29 0.68 0.90 0.89 0.71 1.00 �0.18 �0.74 �0.39 �0.76 0.19 �0.55 �0.64 �0.63 0.03 0.04 0.44 0.30 0.54 0.36 0.54 0.35
11 0.75 �0.10 0.30 �0.11 �0.07 0.35 �0.39 �0.25 �0.27 �0.18 1.00 0.43 0.94 0.39 0.83 0.49 0.03 0.06 �0.08 �0.05 0.05 0.06 �0.24 �0.15 �0.23 �0.30
12 0.79 0.16 �0.09 0.09 �0.16 �0.59 �0.77 �0.70 �0.59 �0.74 0.43 1.00 0.60 0.99 0.04 0.84 0.63 0.60 0.03 �0.05 �0.37 �0.25 �0.65 �0.41 �0.61 �0.42
13 0.79 �0.08 0.22 �0.06 �0.18 0.12 �0.51 �0.33 �0.25 �0.39 0.94 0.60 1.00 0.60 0.59 0.50 0.34 0.37 �0.08 �0.05 �0.08 �0.01 �0.42 �0.27 �0.39 �0.36
14 0.74 0.16 �0.11 0.10 �0.20 �0.60 �0.74 �0.66 �0.52 �0.76 0.39 0.99 0.60 1.00 �0.06 0.74 0.73 0.71 0.03 �0.05 �0.38 �0.24 �0.66 �0.42 �0.61 �0.42
15 0.50 �0.10 0.33 �0.15 0.11 0.63 �0.10 �0.06 �0.22 0.19 0.83 0.04 0.59 �0.06 1.00 0.35 �0.47 �0.44 �0.07 �0.03 0.24 0.16 0.10 0.08 0.08 �0.13
16 0.79 0.15 �0.01 0.04 0.00 �0.43 �0.73 �0.69 �0.70 �0.55 0.49 0.84 0.50 0.74 0.35 1.00 0.15 0.11 0.04 �0.04 �0.27 �0.19 �0.48 �0.26 �0.50 �0.37
17 0.27 0.07 �0.19 0.12 �0.28 �0.58 �0.45 �0.32 �0.06 �0.64 0.03 0.63 0.34 0.73 �0.47 0.15 1.00 0.98 0.03 �0.03 �0.37 �0.22 �0.57 �0.40 �0.49 �0.26
18 0.27 0.07 �0.19 0.14 �0.26 �0.53 �0.43 �0.30 �0.03 �0.63 0.06 0.60 0.37 0.71 �0.44 0.11 0.98 1.00 0.05 0.00 �0.31 �0.16 �0.53 �0.37 �0.48 �0.26
19 �0.09 0.08 0.06 0.04 0.00 �0.14 �0.03 0.07 0.09 0.03 �0.08 0.03 �0.08 0.03 �0.07 0.04 0.03 0.05 1.00 0.80 0.33 0.30 0.28 0.30 0.21 0.10
20 �0.09 0.02 0.03 0.06 �0.03 �0.02 0.02 0.08 0.09 0.04 �0.05 �0.05 �0.05 �0.05 �0.03 �0.04 �0.03 0.00 0.80 1.00 0.27 0.29 0.24 0.21 0.10 0.00
21 �0.23 �0.19 0.21 �0.06 0.05 0.45 0.37 0.38 0.28 0.44 0.05 �0.37 �0.08 �0.38 0.24 �0.27 �0.37 �0.31 0.33 0.27 1.00 0.90 0.51 0.38 0.43 0.10
22 �0.16 �0.17 0.10 0.04 0.02 0.30 0.25 0.29 0.25 0.30 0.06 �0.25 �0.01 �0.24 0.16 �0.19 �0.22 �0.16 0.30 0.29 0.90 1.00 0.33 0.32 0.20 0.02
23 �0.46 �0.01 0.15 �0.05 0.11 0.49 0.53 0.41 0.27 0.54 �0.24 �0.65 �0.42 �0.66 0.10 �0.48 �0.57 �0.53 0.28 0.24 0.51 0.33 1.00 0.76 0.78 0.53
24 �0.30 �0.02 0.06 0.06 0.15 0.31 0.34 0.28 0.19 0.36 �0.15 �0.41 �0.27 �0.42 0.08 �0.26 �0.40 �0.37 0.30 0.21 0.38 0.32 0.76 1.00 0.52 0.55
25 �0.45 �0.08 0.23 �0.19 0.05 0.47 0.53 0.42 0.28 0.54 �0.23 �0.61 �0.39 �0.61 0.08 �0.50 �0.49 �0.48 0.21 0.10 0.43 0.20 0.78 0.52 1.00 0.49
26 �0.40 �0.04 0.01 0.02 0.10 0.20 0.40 0.34 0.29 0.35 �0.30 �0.42 �0.36 �0.42 �0.13 �0.37 �0.26 �0.26 0.10 0.00 0.10 0.02 0.53 0.55 0.49 1.00

Three parameters were chosen as the basis of clustering. The remaining ones were used to quantify other features of the cells, once the clusters had been created.
1) XY dendritic field area, as measured by tightest fitting convex polygon around z-collapsed cell.
2) Mean stratification depth of dendritic arbor in IPL, measured as % depth from the inner nuclear layer to the ganglion cell layer
3) Standard deviation of dendritic arbor stratification depth in the IPL, measured as a % of the depth from the INL to the GCL.
4) Distance in microns from cell body to mean dendritic arbor stratification along z-axis.
5) Asymmetry value; distance between cell body and dendritic arbor centers of mass/dendritic arbor average radius.
6) Number of branch points within dendritic arbor.
7) Number of branch points/XY dendritic field area.
8) Total dendritic length/XY dendritic field area.
9) Total terminal dendritic segment length (see 13)/XY dendritic field area.
10) Total nodal dendritic segment length (see 15)/XY dendritic field area.
11) Total dendritic length.
12) Mean dendritic segment length.
13) Total terminal dendritic segment length; terminal segments begin at a branch point and terminate without branching.
14) Mean terminal dendritic segment length; terminal segments begin at a branch point and terminate without branching.
15) Total nodal dendritic segment length; nodal segments begin at a branch point and end at another branch point.
16) Mean nodal dendritic segment length; nodal segments begin at a branch point and end at another branch point.
17) Total terminal dendritic segment length/total nodal dendritic segment length.
18) Mean terminal dendritic segment length/mean nodal dendritic segment length.
19) Segment tortuosity mean–actual dendritic length from branch point to next branch point or end/straight line distance.
20) Segment tortuosity standard deviation–actual dendritic length from branch point to next branch point or end/straight line distance.
21) Nodal tortuosity mean–actual dendritic length from start of proximal dendrite to any branch point/straight line distance.
22) Nodal tortuosity standard deviation–actual dendritic length from start of proximal dendrite to any branch point/straight line distance.
23) Planar angle mean–3D angle at branch point between straight lines extending directly to successive branch points.
24) Planar angle standard deviation–3D angle at branch point between straight lines extending directly to successive branch points.
25) Local spline angle mean–3D angle formed at branch point between nearest recorded points of daughter branches.
26) Local spline angle standard deviation–3D angle formed at branch point between nearest recorded points of daughter branches.
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(DAPI) (D-0542, Sigma). For Lucifer yellow injections 160
�l of a 1% stock solution of DAPI was diluted in 10 ml of
carboxygenated Ames’ Medium and for GFP-M labeled-
retinas 300 �l of a 1% stock solution of DAPI was diluted
in 10 ml of carboxygenated Ames’ Medium. All incuba-
tions were done in the dark on a rocker at room temper-
ature. Retinas for Lucifer yellow injections were incubated
for 10 minutes and GFP-M-labeled retinas were incubated
for 1 hour. Following DAPI labeling all retinas were
washed 3 � 10 minutes in carboxygenated Ames’ Medium.
GFP-M retinas were fixed in 4% paraformaldehyde
(18505, Ted Pella, Redding, CA) for 1 hour and then
washed in 0.1 M phosphate buffer (pH 7.4) (3 � 10 min-
utes). Following fixation all retinas were mounted in
Vectashield (H1000, Vector Laboratories, Burlingame,
CA) and observed immediately.

The biolistics technique has been described by Gan et al.
(2001) and Wang et al. (1996). Briefly, 100 �l of methylene
chloride was added to 30 mg of 0.4 �g tungsten beads
(1652265, Bio-Rad Laboratories). The mixture was soni-

cated and then poured onto a glass slide. After the beads
had dried onto the slide, 3 mg of 1,1�-dioctadecyl-3,3,3�,3�-
tetramethylindocarbocyanine perchlorate (DiI) (D282, Molecu-
lar Probes, Eugene, OR) or 3,3�-dioctadecyloxacarbocyanine
perchlorate (DiO) (D275, Molecular Probes) or a mixture
of DiI and DiO dissolved in 100 �l of methylene chloride
was evenly applied to the beads. The DiI- or DiO-coated
tungsten beads were then scraped off the slide and placed
in 3 ml of distilled water. The beads were sonicated for 5
minutes. The tubing prep station (165-2418, Bio-Rad) was
used to coat the inside of the tubing with the DiI- or
DiO-coated tungsten beads. The coated tubing was loaded
into the Helios Gene Gun (165-2431, Bio-Rad) and the
retinas were shot, ganglion cell side up, at 60–70 psi. The
retinas were then rocked in 5.8 � 10-5M DAPI in carboxy-
genated Ames’ Medium at room temperature for 20 min-
utes and washed 3 � 10 minutes in carboxygenated Ames’
Medium, fixed, and mounted as previously described.

Intracellular injections were performed following the
methods previously described (Tauchi and Masland, 1985;

Fig. 1. Distributions of values for each of the three major param-
eters: A: Dendritic XY coverage area. B: Mean dendritic stratification
depth. C: Average dendritic density (length of dendrite per unit area).
For each parameter all values have been rescaled to the number of
standard deviations from the mean. D: Silhouette values for the

11-cluster solution. The silhouette plot shows the individual silhou-
ette values for the entire cell population grouped by cluster and
ordered from highest to lowest within each cluster. The silhouette
value of a cell compares that cell’s distance to cells in its own cluster
against that cell’s distance to cells in the closest cluster.

Fig. 2. A: Coverage area plotted against mean cell depth for the entire cell population, depicted as
groups by cluster. B: Coverage area plotted against dendritic density.
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Lin et al., 2004). The retinas were labeled with DAPI as
previously described and then placed on Millipore filter
paper (AABPO4700, Millipore, Billerica, MA). The retinas
were then placed in a superfusion chamber on a fixed
stage Leitz microscope. Using a 40� water immersion
objective (Achroplan, NA 0.75, Zeiss) DAPI-labeled gan-
glion cells were injected with 4% Lucifer yellow (L0144,
Sigma) in 0.1 M phosphate buffer, pH 7.6. Retinas were
then fixed and mounted as previously described and im-
mediately observed.

All retinas were observed by epifluorescence on a Zeiss
Axioplan equipped with a Princeton Instruments Micro-
Max cooled CCD camera. Z-stacks (1-�m steps) were
taken using Metamorph (v. 3.0, Universal Imaging, Down-
ingtown, PA) to drive a focus motor (Ludl Electronic Prod-
ucts, Hawthorne, NY). Corresponding z-stacks were taken

for GFP, DiI, DiO, or Lucifer yellow-labeled cells and
DAPI. The morphology of the cells was shown by the GFP,
DiI, DiO, or Lucifer yellow; their stratification was deter-
mined relative to the DAPI-labeled nuclei of the inner
nuclear layer or ganglion cell layer (MacNeil and Mas-
land, 1998; MacNeil et al., 1999).

All of the cells included in this study came from the
central three-quarters of the retinal surface. The gradient
of density for ganglion cells (and other retinal neurons) in
the mouse is much less steep than in the rabbit, cat, or
monkey (Jeon et al., 1998) and the slight variation in
ganglion cell size seemed to outweigh the loss of the cells
that would be discarded were location more tightly con-
trolled. (It would be interesting to know if there are dis-
tinct types of ganglion cells associated with the region of
retina to which short wavelength cones are restricted, but

Fig. 3. Pairwise 3D visualizations of cluster spatial separation for pairs difficult to separate in two
dimensions alone. The existence of these separations verifies the individual identities of these groups.
Note that 2D clustering satisfactorily resolves some, but not all of the clusters.
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we did not track location precisely enough to answer the
question.)

The contrast and brightness of the micrographs shown
here were adjusted using Adobe PhotoShop (San Jose,
CA).

Digital representations

Cells were manually traced using the Neurolucida anal-
ysis software (Neurolucida v. 4.36, Microbrightfield, Wil-
liston, VT). To maintain an unbiased cell population, we
traced all available cell stacks, so long as the images were
robust enough that an accurate depiction of the dendritic
morphology could be obtained. Metamorph stacks were
converted to TIF files, opened in Neurolucida, and a ref-
erence point was established at the z-plane where the cell
body was in focus. The cell body was outlined and then the
dendrites and axon were traced by toggling up and down
through the cell stack while tracing the dendrites and
axon. The end result was a 3D “stick-figure” of the cell.

Some imaged cells were unusable because of incomplete
filling, excessive overlaps among cells, lack of a detectable
axon, or tissue deformation. In total, 219 3D cell tracings
were used for analysis. Images of GFP-expressing cells
proved to be clearer and more accurate than other stain-
ing methods, as their cell bodies and processes were fully
intact and filled with dye to the utmost dendritic tips.
Thus, GFP-expressing cells comprised 191 of the tracings
analyzed. Images of cells microinjected with Lucifer yel-
low dye were more prone to be underfilled, and often dye
leaked from the cell body, obscuring the cell’s proximal
dendrites; 19 tracings of Lucifer yellow-injected cells were
used in analysis. DiOlistically labeled cells, while less
likely to have underfilled dendrites than Lucifer yellow
microinjected cells, characteristically had bright flare
around the cell body, obscuring the cell’s proximal den-
dritic arbors; only nine tracings of DiOlistically labeled
cells were used in the final analysis.

Selecting and measuring morphological
parameters

We calculated some 42 parameters (see Supplementary
Data). Some of them were found to be uninformative,
usually because they were redundant in one way or the
other. Twenty-six of the most useful are shown in Table 1.

When classifying cells, selection of an appropriate pa-
rameter space is an influential decision. Cells are grouped
by their distribution of morphologic parameters; each ad-
ditional parameter adds a new dimension by which cells
can be separated, but decreases all other individual pa-
rameters’ importance in distinguishing between cell types.
A correlation matrix is shown in Table 1. It is notable that
there are high correlations among many of the parame-
ters. Sometimes these are obvious: the length between
nodes (parameter 16) is negatively correlated with the
number of nodes (parameter 7) because a cell with many
branch points has a shorter average distance between the
branch points than a sparsely branched cell. Sometimes
they are less so, as is the high correlation between branch
angle (parameter 23) and density of branch points (param-
eter 7). The selection of parameters thus becomes a com-
plex, and ultimately somewhat empirical issue. Weighting
of parameters was avoided to reduce human bias in the
classification. After substantial preliminary work (Fish,
2003) a set of three parameters was chosen as the basis of
clustering. They were chosen in part empirically, from
experiments in which various parameter sets were evalu-
ated by silhouette analysis, and in part from the principle
that cellular features of known physiological significance
were most likely to be effective ways to discriminate
among the cells. A set of only three parameters was chosen
in order to minimize the experimental noise that accumu-
lates with each added measurement (see Discussion).

The first parameter is the retinal coverage area of the
ganglion cell (Fig. 1A). The size of a ganglion cell’s recep-
tive field determines the size of the visual space upon
which that ganglion cell reports. This parameter is mea-

Fig. 4. The stability of the clus-
ters. Here the algorithm was forced
to create 10 clusters or 11 clusters.
The size of the symbols shows how
many cells were contained in a clus-
ter. Constraining the number of
clusters caused “movement” of a few
of the cells, but the fundamental
clustering is little changed; the ba-
sic identification of cells as belong-
ing to a group remained the same.
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sured as the area of the smallest 2D convex polygon pos-
sible around a projection of the cell’s dendritic arbor when
collapsed along the z-axis. The second parameter is the
mean stratification depth of the ganglion cell’s dendritic
arbor within the inner plexiform layer (Fig. 1B). The
depth of bipolar and amacrine axon terminals in the
inner-plexiform layer varies by type (MacNeil and Mas-
land, 1998; Ghosh et al., 2004; Pignatelli and Strettoi,
2004; Badea and Nathans, 2004), so the depth at which a
ganglion cell’s dendritic arbor lies determines the types of
axons that synapse on the cell.

This parameter is measured using data from the corre-
sponding DAPI stack to define the limits of the IPL. To
calculate the stratification distribution, we employed a
broadly useful analysis tool in the Neurolucida package—a
3D, cylindrical binning operation known as 3D Wedge anal-
ysis. (This function was also used for many of the other
measurements shown in Table 1.) To calculate stratification,
we binned dendritic arbors into stacked 1-�-thick discs,
making a discrete (noncontinuous) stratification distribu-
tion. This distribution was then mapped onto the inner plex-
iform layer, using the z-stack of the same region viewed by
DAPI staining as a way to visualize the margins of the inner
plexiform layer. The depth of stratification of a particular
cell was directly measured as the mean depth of the den-
drites within the layer.

The third parameter is the density of processes of the
dendritic arbor (Fig. 1C). The density of dendritic pro-

cesses is indicative of the number of bipolar and amacrine
axonal inputs the cell receives within its given area of
influence. This parameter is measured as the total length
of the dendrites divided by the coverage area of the den-
dritic arbor.

Because these three parameters differ in both their
units and in their ranges of values, each parameter was
individually normalized for the whole cell population to a
mean of zero and a standard deviation (SD) of one. With
this normalization, the distance between any two points in
the parameter space is simply the distance between them
in a Cartesian 3D space, given as the Euclidean distance
between the points, dij

2 � (xi – xj)(xi – xj)�.

Grouping cells by parameters

Cells (or any items that can be represented by paramet-
ric measurements of properties of interest) can be grouped
by the variance in their parameters. We experimented
with diverse methods for clustering cells (Fish, 2003), but
settled on the k-means partitioning technique (Kaufman
and Rousseeuw, 1990). This method optimizes the set of
clusters with respect to the distance between each point
and the centroid of its cluster, summed for all points. The
algorithm proceeds as follows. A set of k random points to
be used as initial cluster centroids is generated. Each
point is assigned to the cluster with the closest centroid.
The cluster centroids are then recalculated based on the
points assigned to each cluster. The points are then reas-

Fig. 5. Cells included in cluster 1. In this figure and Figures 6–15
cells from each of the clusters identified by the k-means classification
are shown. The name of the cluster and its three defining
parameters—dendritic field spread, level of stratification, and spatial
density of dendrites within the field—are indicated in A. The “diam-

eter” expressed is the calculated mean diameter assuming a circular
dendritic field of the same area as the area measured for the cells.
Micrographs of one or more cells are shown in B. C: Line drawings of
the dendritic structure; these are the computerized representations
on which the clustering was carried out. Scale bars � 100 �m.
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signed to clusters based on their proximity to the new
centroids, and then the centroids are again recalculated.
This process continues until all points cease changing
their cluster designations. Finally, each point is individu-
ally tested to see if changing its cluster designation will
decrease the sum of all point-to-own-cluster-centroid dis-
tances. Any time moving a point decreases this sum, cen-
troids are recalculated and the testing of points begins
anew.

Two main issues exist regarding the use of this method.
Like most optimization methods, k-means is a hill-
climbing algorithm, where an arbitrary starting point is
iteratively improved until it cannot be improved further.
Therefore, the algorithm will always find the best solution
for a given starting point, but might not find the best
overall solution. To avoid this problem, we performed the
k-means partitioning on the dataset 10,000 times and took
the best answer. This was then repeated twice more (for a
total of 30,000 repetitions) and the final answer was only
accepted as best if reached all three times.

The second issue is that an initial number of clusters
k must be supplied. This is more problematic, as the
correct value for k is unknown. To address this problem,
we performed the k-means analysis for every number of
clusters from 3 to 20. This range was chosen by man-
dating that, for n cells in our dataset, the n/k ratio, or
the average number of cells per group, must fall within
the range of 10 to 100. The upper limit of n/k � 100
ensures that we will find at least three different cell

types, which is widely expected due to recordings taken
from the ganglion cells. The lower limit of n/k � 10
discards solutions with large numbers of clusters, as
classification systems with less than 5% of the total
population in each class on average tend to produce
several classes so small that they comprise 1% or less of
the total population. Although low-density cell types
certainly exist, they can only achieve a complete retinal
coverage when their dendritic arbors are very broad
(Wässle et al., 1981; Rockhill et al., 2000).

We then had to choose the best overall clustering from
the best clustering for each possible number of clusters. To
choose between clusterings with different numbers of
groups, our strategy was to optimize the average silhou-
ette value for all points, as described by Kaufman and
Rousseeuw (1990) The silhouette value, s, for a single
point i in cluster c is defined as:

s�i� � �b�i�–a�i��/maximum�a�i�,b�i��

where a(i) is the average distance from point i to all other
points in cluster c and b(i) is the average distance between
i and all other points in the cluster for which b(i) is
smallest, excluding cluster c. This is a ratio of the close-
ness of a point to the other points in its own cluster versus
the points in the nearest cluster, and approaches theoret-
ical limits of 1 for a perfectly clustered point, 0 for a
completely ambiguously clustered point, and –1 for a com-
pletely inappropriately clustered point (Fig. 1D).

Fig. 6. Cells included in cluster 2. Conventions as in Figure 5.
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Fig. 7. Cells included in cluster 3. Conventions as in Figure 5.

Fig. 8. Cells included in cluster
4. Conventions as in Figure 5.
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RESULTS

By optimizing the average silhouette value for all points,
we found our best k-means solution for 11 groups to be the
best overall solution. The silhouette value is a ratio compar-
ing the average parametric similarity of a cell to the mem-
bers of its own cluster versus that cell’s average similarity to
the cells in the nearest cluster. A plot of the silhouette values
for all cells, arranged into the 11 clusters, is given in Figure
1D, and qualitatively demonstrates the cohesiveness of each
cluster. This plot suggests that group four is the least cohe-
sive, as it has few archetypal cells with high silhouette val-
ues located at the center and more than one cell with a
negative silhouette value, which signifies better correspon-
dence to another group. Group five, alternatively, appears
most cohesive with many cells with high silhouette values
densely crowded at the core of the cluster and the remainder
spanning out with slowly and evenly decreasing silhouette
values.

The clusters are illustrated in 2D views in Figure 2.
Here the parametric groupings of the cell classes are spa-
tially apparent. To resolve ambiguity between pairs of
cells whose separation appears uncertain in the 2D view,
a subset of clusters are shown in three dimensions in
Figure 3. These were chosen to resolve the most ambigu-
ous of the pairs; the others are readily separated using
only two dimensions, as shown in Figure 2.

To verify the consistency of this solution, we compared it
to the best k-means solutions for 10, 12, and 13 clusters. If
a relationship between two cells is defined as being
whether they are in the same class or in two different
classes, then changing the number of clusters does not
significantly change the total relationships between cells.
We measured this by computing the number of times that
a pair of cells moved from sharing a cluster to occupying
two different clusters. Only 4.34%, 2.14%, and 2.17% of
relationships between all possible pairs of cells changed
when 11 clusters were compared against the best cluster-
ings for 10, 12, and 13 classes, respectively. The insignif-
icance of these changes is further emphasized by the fact
that changing the number of clusters inflexibly requires
that some changes in assignment of cells to clusters are
forced to occur. The relationship between 10 and 11 clus-
ter classifications is shown in Figure 4.

Cluster descriptions

The cells were clustered solely on the basis of three
parameters: dendritic field area, mean dendritic stratifi-
cation depth, and dendritic length per unit field area. The
clusters formed by these parameters alone often appeared
to contain cells similar along other dimensions, not used
in our basic clustering process (Table 1), frequently those
traditionally used to describe the morphological character

Fig. 9. Cells included in cluster 5. Conventions as in Figure 5.
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of dendritic arbors. Below, we will comment on those other
aspects and compare the cells to those identified in earlier
surveys. For each cluster the values within that cluster of
42 measured or derived morphological parameters are
available as Supplementary Data on this journal’s website
(see first-page footnote). For comparability, the values of
parameters other than the three main ones (depth, area,
process density) are expressed as the number of SDs above
or below the mean for the whole population of cells. For
example, a value of �1.3 would mean that the cells within
that cluster had values for that parameter that averaged
1.3 SDs above the mean for all cells.

Cluster 1 is the smallest and densest group of cells (Fig.
5). They stratify at 45% of the IPL, with a density of 0.14
�m/�m2 and a dendritic field diameter of 174 �m. Cluster
1 cells typically have 5–6 primary dendrites and the prox-
imal portion of 1–2 of those primary dendrites are thick
and taper quickly. These are the most broadly stratified of
all the cells, 0.89 SD above the population mean on our
measure of stratification thickness. Other characteristics
typical of this cluster are that the dendrites often end in
hooks. The cells are slightly asymmetric. Cluster 1 cells
appear similar to Sun et al.’s (2002) RGB2 cells which
stratify at 33 	 16%, have a field diameter of 135 	 37 �m,
and have a dense dendritic field; and to cluster 1 of Badea
and Nathans (2004).

Cluster 2 cells, similar to Badea and Nathans’ cluster 2,
stratify at 57% of the IPL, have a density of 0.11 �m/�m2,
and a dendritic field diameter of 191 �m (Fig. 6). These
cells have 4–6 primary dendrites. The dendrites of cluster
2 make large, sweeping turns and branch at broad angles.
The mean branch angle was 0.94 SD above the population
mean. Short terminal branches often come off perpendic-
ular to the main branch. These branches were short: the
mean length of terminal dendrites was 0.86 SD below the
population mean. Cluster 2 cells look very similar to Sun
et al.’s (2002) RGB1 cells, which stratify at 38 	 16% and
have a dendritic field diameter of 223 	 41 �m.

Cluster 3 cells stratify at 27%, have a density of 0.11�m/
�m2 and a dendritic field diameter of 196 �m (Fig. 7).
Cluster 3 cells have 4–7 primary dendrites and look very
similar to cluster 2 cells, but the dendrites do not branch
as broadly (mean branch angle �0.05 SD). This is re-
flected in many, short perpendicular secondary and ter-
tiary branches. Cluster 3 cells resemble to Sun et al.’s
(2002) RGC5 cells and Badea and Nathans’ (2004) cluster
3. RGC5 cells stratify at 39 	 12% and have a dendritic
field diameter of 212 	 37 �m.

Cluster 4 cells stratify at 92%, have a density of
0.11 �m/�m2, and a dendritic field diameter of 196 �m
(Fig. 8). The cells in cluster 4 have 4 – 6 primary den-
drites. The dendrites are straighter than dendrites of

Fig. 10. Cells included in cluster 6. Conventions as in Figure 5.
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the cells in clusters 2 and 3: the mean tortuosity was
positive for clusters 1–3 and – 0.39 SD for cluster 4.
Cluster 4 cells look somewhat similar to Sun et al.’s
(2002) RGB3 (outer) cells, which stratify at 67 	 10%
and have a dendritic field diameter of 199 	 47 �m.
There was no similarly small cell that stratified low
in the IPL in the clustering of Badea and Nathans
(2004).

Cluster 5 cells stratify at 74%, with a density of 0.08
�m/�m2—noticeably less dense than the cells in clusters
1–4. They have a dendritic field diameter of 212 �m (Fig.
9). The cells in this group have 5–7 primary dendrites. We
nicknamed this group the “octopus” cells because the wavy
dendrites radiating from the cell body looked like the
tentacles on an octopus. Cluster 5 had the lowest variance
on the main parameters of any of our groups and was thus
the most cohesive. Cluster 5 cells look similar to Sun et
al.’s (2003) RGC2 (outer) cells, which stratify at 75 	 7%
and have a dendritic field diameter of 283 	 63 �m. They
resemble cluster 5 of Badea and Nathans (2004).

Cluster 6 was an amorphous group. The k-means algo-
rithm defined them as a cluster, distinct from the other
cells, because they are relatively homogeneous in size (115
�m in diameter), density (0.08) �m/�m2, and mean level of
stratification (17% of the IPL). Within those bounds, how-
ever, there was much heterogeneity in the detailed den-
dritic morphology and we strongly suspect that this clus-
ter includes cells that would traditionally be classified as
more than a single cell type. Five of our total sample of 26
cells are shown in Figure 10. Four of these look quite
similar, but the fifth, though meeting the numerical cri-

teria of this cluster, has a less dense and less symmetric
dendritic arbor. These cells are so different in morpholog-
ical detail that their status as an independent functional
group is doubtful. Badea and Nathans’ (2004) cluster 6
will be discussed below.

Cluster 7 cells stratify at 46%, have a density of 0.08,
and a dendritic field diameter of 246 �m (Fig. 11). This
group has 5–8 primary dendrites. The dendrites in this
group radiate out and branch at regular intervals, giving
the arbor a somewhat ladder-like appearance. The den-
drites are not as wavy as the dendrites of cells in clusters
1–5, with an average tortuosity near the population mean
(–0.01 SD). Cluster 7 cells look very similar to Sun et al.’s
RGA2 (inner) cells, which stratify at 38 	 12% and have a
dendritic field diameter of 282 	 65 �m.

Cluster 8 cells stratify at 80%; have a density of 0.06
�m/�m2 and a dendritic field diameter of 300 �m (Fig. 12).
These cells have 4–6 primary dendrites that radiate out,
branch at fairly narrow angles (–0.39 SD), and rarely
overlap. The dendrites in this group are also fairly
straight. Cluster 8 cells look similar to Sun et al.’s RGA2
(outer) cells, which stratify at 71 	 7% and have a den-
dritic field diameter of 282 	 65 �m. These cells resemble
cluster 9 of Badea and Nathans, but the cells shown by
them vary in dendritic density.

Cluster 9 cells stratify at 45%; have a density of 0.05
�m/�m2 and a dendritic field diameter of 326 �m (Fig. 13).
Besides stratifying at a different level and being a little
larger, these cells look very similar to the cells in cluster 8.
Cluster 9 cells are similar to Sun et al.’s RGC3 cells. RGC3

Fig. 11. Cells included in cluster 7. Conventions as in Figure 5.
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cells stratify at 68	16% and have dendritic field diameter
of 296 	107 �m.

Cluster 10 cells stratify at 20%; have a density of 0.06
and a dendritic field diameter of 354 �m (Fig. 14). These
large cells have 5–6 primary dendrites. To the eye, these
cells look similar to the cells in clusters 8 and 9. In addi-
tion to stratifying at a different level and being much
larger, the dendrites in this group typically have much
longer terminal segments (�1.75 SD) than clusters 8 and
9. Cluster 10 cells look similar to Sun et al.’s RGC2 (inner)
cells, which stratify at 32 	 18% and have a dendritic field
diameter of 283 	 63 �m.

Cluster 11 cells stratify at 76%, have a density of 0.05,
and a dendritic field diameter of 380 �m (Fig. 15). These
are the largest cells we saw. They have 5–6 primary
dendrites that radiate out from the cell body, branching at
regular intervals and at fairly similar angles, resulting in
an even dendritic field. Cluster 11 cells are similar to Sun
et al.’s RGA1 cells. RGA1 cells stratify at 73 	 9% and have
a dendritic field diameter of 318 	 74 �m. Cluster 10 and
cluster 11 appear to be a paramorphic pair, evidently the
On and Off alpha cells (Peichl et al., 1987).

Known cell types not included in this
clustering

Bistratified cells were observed. The bistratified cells
that we saw were clearly identical to those illustrated by
Sun et al. (2002), and by Badea and Nathans (2004), and
identified as probable directionally selective neurons.
However, they were not included in the formal analysis.
The reason was that the digital determination of the depth
and thickness of stratification was unable to resolve two
closely spaced dendritic arbors. This is not due to inade-
quate optical resolution in the z-dimension, but instead to
tissue variability. If, for example, the tissue was less than
perfectly flat, the two levels of arborization were mea-
sured as a single broad one. Such irregularities can effort-
lessly be compensated by a human observer, but judging
depth “by eye” (Badea and Nathans, 2004) seemed to
violate a fundamental premise of the exercise.

Another known type of ganglion cell is the sparse, wide-
field type that expresses the light-sensitive protein, mela-
nopsin (Hattar et al., 2002; Lin et al., 2004). These cells
can be stained as a population by antibodies against mela-

Fig. 12. Cells included in cluster 8. Conventions as in Figure 5.
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nopsin; they make up about 1% of all ganglion cells in the
mouse and thus would have been too sparse to form a
cluster under our constraints. Indeed, two cells with the
distinctive dendritic pattern of the melanopsin cells were
observed in our sample of 219 cells. Our automated meth-
ods were unable to correctly describe their dendritic strat-
ification; they were sorted by k means into clusters 8 and
11, with their wide dendritic fields as a primary influence.

DISCUSSION

Here we have described 11 morphological clusters of
mouse ganglion cell, representing what would usually be
termed cell types. The addition of a bistratified cell, which
for trivial reasons we could not analyze, and the rare
melanopsin cell makes a total of 13 putative ganglion cell
types in the mouse retina. How complete a listing is this?
The original sample from which the quantitatively ana-
lyzed cells were drawn was fairly large, and the cells were
filled by three mechanistically independent techniques:
microinjection, gene-gunning of DiI, or expression of GFP.
The three methods have different biases and the group of

cells seems statistically large enough to have included
examples of most of the mouse retina’s major cell types

How clearly could the cells be distinguished? From the
outset it was clear that classifying the ganglion cells of the
mouse retina was a difficult task: it is immediately evident
that ganglion cells of the mouse are not as distinctive, one
from the other, as are ganglion cells in the monkey, cat, or
rabbit (Roska and Werblin, 2001; O’Brien et al., 2002;
Rockhill et al., 2002; Dacey et al., 2003). However, there is
some reason to think that the separation of the cells into
groups did succeed. Many are readily mapped onto group-
ings identified by others (Fig. 16) (Sun et al., 2002; Badea
and Nathans, 2004). Most meet Rodieck and Brening’s
(1983) criterion of coherent clusters (Fig. 3). It is worth
noting that this coherence would not have been true in a
two-parameter sort (Fig. 2). It is only with the addition of
a third dimension that spaces between all the clusters
become evident.

It is less certain that these are the definitive, terminal
classifications of the cells. Within the clusters there is still
variation in morphology and the fact that reliable separa-
tion of clusters has been achieved does not mean that a

Fig. 13. Cells included in cluster 9. Conventions as in Figure 5.
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finer separation utilizing additional morphological vari-
ables is not possible. One rare but clearly defined cell type,
the melanopsin cell (Hattar et al., 2002; Lin et al., 2004),
is known to have been excluded from the clustering (see
Results).

A second kind of problem is represented by clusters 8
and 11, both of which are made up of large ganglion cells
stratifying in the On sublayer. Which cells in these groups
should be considered the homolog of On alpha cells (Peichl
and Boycott, 1987)? Presumably the larger of the two, but
without more information—notably, recording followed by
microinjection—this cannot be concluded with certainty,
and it is unwise to assume that any large ganglion cell
encountered in the mouse (or any species other than the
rabbit or cat) is by definition an alpha cell. Indeed, the
ganglion cells of the mouse offer few obvious homologs
with those of other mammals. Although tentative compar-
isons are possible in a few cases, as for alpha cells, most
ganglion cell types have such weak correspondences that
it is not clear how much value the exercise would have.
When detailed correlation of physiology and morphology is
available (Roska and Werblin, 2001), it will be possible to
more precisely compare the ganglion cells of the mouse

with those of other mammals; before then, such compari-
sons are likely to be futile.

What is learned about neuronal
classification?

Given software that will measure many parameters, we
were able to attempt different ways of sorting the cells.
Our naı̈ve initial assumption was that more information
would automatically define the cells better—that a sorting
based on many parameters would be better than one
based on few parameters. This turned out not to be true
(Fish, 2003). First, many of the parameters beloved of
anatomists (branch angle, segment length, etc.) turn out
to be highly correlated with each other (Table 1). For
obvious reasons, this redundancy reduces the power of
additional parameters. Less obvious is the fact that add-
ing parameters actively degrades the classification; al-
though the true parameters are correlated, the experi-
mental noise sometimes is not. This means that excess
parameters add little power but much variability and
potential error to the analysis.

A vivid lesson was the extent to which selection of
parameters can bias the final clustering. The important

Fig. 14. Cells included in cluster 10. Conventions as in Figure 5.
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point here is that an automated classification is not nec-
essarily unbiased. In our view, asymmetry of the dendritic
arbor is such a variable. We encountered retinal ganglion
cells with asymmetric dendritic arbors, which are imme-
diately striking and tempt one to classify them as a sep-
arate neuronal type, as has been done by others (Sun et
al., 2002; Badea and Nathans, 2004). If one adds a param-
eter of dendritic symmetry with respect to the cell body,
all of our clustering algorithms immediately create an
asymmetric ganglion cell “type,” because this parameter
dominates. A series of such cells is shown in Figure 17.
However, we believe that these are developmental acci-
dents. First, their dendritic morphology is strikingly vari-
able, some of the asymmetric cells having long, straight
dendrites, others having recurving ones. Second, the
asymmetric cells have widely divergent dendritic field
size, some being small and some being large. Dendritic
coverage area is a parameter of known physiological sig-
nificance, as it directly controls the size of the ganglion
cell’s receptive field: it should trump asymmetry, which
has unknown significance. Third, the asymmetric cells
stratify at several different depths within the inner plex-
iform layer. Since depth controls the set of presynaptic

inputs onto a ganglion cell, this necessarily means that
the cells have differing connectivities. Given these differ-
ences, one would have to assume that each of the cells
forms a distinct physiological class and therefore should at
least tile the retinal surface. However, the frequency with
which the cells were encountered was far too low to create
the required series of four or five separate tilings, one for
each size and level of stratification of the putative
asymmetric-type ganglion cell. This undersampling is a
cardinal feature of developmental variants, which seem to
occur for all cell types (Wässle and Boycott, 1991; Masland
et al., 1993).

Badea and Nathans (2004) included some asymmetric
cells in conventional monostratified clusters, as we have
done here (their figs. 13 and 14), but one group of asym-
metric cells was defined by them as a type (their cluster 6).
However, the clustering depended primarily on defining
the inner arbor of the asymmetric cells as lying at 0% of
the inner plexiform layer, a measurement that identifies
the most proximal dendrites, at their exit from the soma,
as part of the “arbor.” By this definition all ganglion cells
would have inner arbors at 0%. A larger sample of cells
filled by their method would help resolve the issue, as

Fig. 15. Cells included in cluster 11. Conventions as in Figure 5.
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Fig. 16. Comparison of the unsupervised clusters with cell types
distinguished by Sun et al. (2002), shown to the right of the clustered
cells together with the group name assigned by them. Cells similar to
those clustered by our methods were observed by Sun et al. Note,

however, that the cells shown here include all of our clusters but do
not include all of the cell types created by Sun et al. Scale bars � 100
�m.
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would a better way to measure depth of stratification (see
below).

How can formal classification be improved?

Two of the three parameters that we found useful are
measures with a clearly known physiological consequence:
depth within the IPL and dendritic field size, which di-
rectly reflect synaptic inputs and receptive field size, re-
spectively. Dendritic field size is not difficult to measure
precisely, but depth is much harder. Part of the reason is
optical, as the z-axis is less well resolved by microscopy
than x and y. Another problem is lack of flatness of the
tissue, which is effortlessly compensated by a human ob-
server, but which adds variability to an automated mea-
surement. Most important, though, is a lack of basis of
reference, as the edges of the inner plexiform layer have a
variable structure and the cell soma is variably placed
within the ganglion cell layer. This would be much im-
proved by the use of fiducial marks, such as the bands of
labeling created by the starburst cells (Tauchi and Mas-
land, 1984; Keyser et al., 2000). (A convenient approach
would be to use a transgenic animal in which the starburst
cells express GFP.) The usefulness of improved depth
measurement should not be underestimated. It now ap-
pears that the inner plexiform layer contains 10–15 sub-
strata, each rigidly defined by the cells that participate in
it (Vaney, 1991; Brown and Masland, 1999; Massey et al.,
1999). With fiducial marks, it would be possible to improve
the resolution of the measurement along this critical axis.

A second advance would be fully automated entry of the
cell morphology into a digital representation. Aside from

limiting the size of the sample that can be studied, manual
entry introduces inevitable errors and simplifications. For
example, we chose not to represent dendritic taper be-
cause the labor would have been prohibitive when a large
sample of cells is also required. A second feature that was
neglected is the presence of swellings or varicosities on the
dendrites, which are known to distinguish certain cell
types (i.e., melanopsin cells) from others. Fully automated
entry, however, requires that the original morphological
material be of very high contrast and exceptionally uni-
form strength of labeling. Also, the cells must appear on
an exceptionally clean background (because of the seg-
mentation problem). Even cells filled to a high current
standard rarely meet all of these requirements.

Finally, more sophisticated clustering algorithms are
almost certainly required. Techniques for unsupervised
clustering are still in a developmental stage, particularly
on the crucial issue of the assessing the proper number of
clusters. It is now clear that a human observer uses very
sophisticated means of visual pattern recognition, tech-
niques that are not yet well understood and that auto-
mated routines struggle to reproduce (Sinha, 2002). For
example, humans can with ease recognize thousands of
human faces—a task not yet well accomplished by any
unsupervised system. The power of human pattern recog-
nition is quite evident when recognizing the shapes of
neurons. Among other things, it is clear that the human
observer carries out a highly nonlinear weighting of pa-
rameters. Dendritic taper, for example, may be important
for distinguishing one type of neuron and unimportant in
distinguishing another, may be weighted heavily if the cell
also has varicosities, and weighted lightly if the cell does
not. Sometimes these weightings are conscious; they have
been the basis of anatomical descriptions for nearly a
century. Often they are unconscious, and making them
explicit should be a future goal.
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