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Abstract

We present a novel multiscale clustering algorithm inspired by algebraic multigrid techniques. Our
method begins with assembling data points according to local similarities. It uses an aggregation pro-
cess to obtain reliable scale-dependent global properties, which arise from the local similarities. As
the aggregation process proceeds, these global properties affect the formation of coherent clusters.
The global features that can be utilized are for example density, shape, intrinsic dimensionality and
orientation. The last three features are a part of the manifold identification process which is performed
in parallel to the clustering process. The algorithm detects clusters that are distinguished by their
multiscale nature, separates between clusters with different densities, and identifies and resolves in-
tersections between clusters. The algorithm is tested on synthetic and real datasets, its running time
complexity is linear in the size of the dataset.

Key words: algebraic multigrid (AMG), aggregation, graph partitioning, similarity-based clustering,
manifold, data analysis, astrophysical models

1 Introduction

Clustering algorithms are useful in many fields, from image analysis through astronomy to
biology. Generally, clustering is applied to a dataset, which is a collection ofN d-dimensional
vectors (data points) representing d measured features per sample. Given a dataset, clustering
algorithms seek a partition of the data to coherent groups, in a sense that data points in the
same group share similar properties. Many approaches try to solve the clustering problem by
optimizing a global cost function, expressed in terms of the local similarities between data
points.

Typical datasets contain clusters that differ from each other in density, and may also contain
elongated clusters that may intersect. Moreover, in many cases clusters of interest include
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points that represent noisy samples from some underlying manifold structures. Also, many
datasets are multiscale in nature, containing a nested structure of small clusters within larger
clusters. In the scope of this work, we attempt to separate between clusters with different
densities, to identify intersections between clusters, to support the creation of clusters that
preserve smooth continuation, and in particular to distinguish between the different clusters
that cross an intersection. To realize these objectives and to discriminate between the different
clusters at all scales in the presence of noise, scale-dependent global properties should affect
the formation of coherent clusters. The main global features that are utilized in our present
study are density, shape, intrinsic dimensionality and orientation. The last three features are
part of the manifold identification process, which is performed in parallel to the clustering
process.

The importance of integrating these global features into the clustering process is exemplified
in Fig. 1. It should be emphasized that a variety of additional global features, called also
multiscale similarity features or aggregative properties, can be integrated into the process.
See for example [14,27], where in the problem of image segmentation there enter aggregative
properties such as average color, color variations at all intermediate scales, boundary match,
shape properties of salient sub-aggregates, etc.
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Fig. 1. Nested clusters(left): the different distributions of the dense patches at large scale give rise
to separation of two different clusters.Intersection of elongated clusters(right): separation of inter-
secting shapes is possible by tracking their orientation at large scales.

In this paper, we present a novel clustering algorithm inspired by algebraic multigrid tech-
niques (AMG) [5]. At the basis of our methodology is the normalized-cut cost minimization
[30], in the sense that salient clusters in the dataset can be characterized by low normalized-
cut costs. The minimization problem can be formulated as a generalized eigenvector problem.

Many other approaches that attempt to solve clustering problems (including spectral clus-
tering methods e.g. [1]) formulate the problem as a generalized eigenvector problem, and
usually solve them by using an eigensolver with quadratic or cubic complexity. An efficient
way in most practical cases to compute eigenvectors at just a linear complexity is offered by
an AMG eigensolver [6]. It is important to realize, however, that the AMG solver contains
itself a hierarchical aggregation procedure which already yields a (hierarchical) clustering of
the dataset, and that it is much better to directly use this procedure for clustering than actually
computing the eigenvectors, or using other clustering procedures. This is because:
(1) If desired, this procedure can yield the same clustering as computed from the eigenvec-
tors, at a smaller cost.
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(2) This procedure will actually yield ahierarchical clustering, breaking the clusters into
sub-clusters, sub-sub-clusters, etc.
(3) The produced clusters can befuzzy, with some data points remaining undecided, belong-
ing with different probability weights to different clusters.
(4) Most important, the hierarchical aggregation procedure can be modified to account for
similarities in global properties of aggregates that emerge at various intermediate levels
(scales). To our best knowledge such use of multiscale similarity features cannot be consid-
ered by any uniscale procedure, or for that matter, by any formulation of the problem as a
functional minimization problem.
(5) Top-down procedures can easily be iteratively incorporated at all levels, to affect finer-
level aggregation criteria by properties found important at coarser levels.

Our AMG-like approach discovers the desired aggregation of the dataset by following the
similarities between the data points at different resolutions, using (similarly to [27]) a bottom-
up weighted aggregation coarsening procedure that preserves the low normalized-cut costs.
Moreover, to achieve coherent clusters at all scales, our approach allows combining multi-
scale similarity features, based on properties of aggregates that emerge at intermediate levels.
The combined approach of bottom-up weighted aggregation and multiscale similarity fea-
tures constructs a hierarchical pyramid of aggregates such that a salient cluster is guaranteed
to emerge at a certain appropriate level with low normalized-cut cost. The cost of the algo-
rithm is linear in the dataset size, and is independent of the number of clusters.

Clustering and manifold identification are known to be related. In manifold learning one is
interested in finding the intrinsic dimensionality and low dimensional structure of the data.
In this work, the clustering and manifold identification processes influence each other, so
that the cluster partition is used to approximate the manifolds, and the manifold structure is
used to improve the cluster partition. The identification of manifolds created by aggregates
is dealt within the bottom-up process by using a scale-dependent local principal component
analysis (PCA). An aggregate manifold is represented as a composition of spatially ordered
sub-manifolds, each of which is approximately convex and well approximated by a set of
principal axes. The aggregate manifold is identified even in the cases in which the manifold
is non-convex and noisy.

In addition to the bottom-up aggregation process, a top-down process is applied in the present
work to resolve intersections between clusters and to separate dense clusters from background
noise. Relying on the AMG strength, the algorithm can be applied to datasets of any dimen-
sionality, although the junction resolving, which relies on smooth continuation of orienta-
tions, is currently developed only for the cases of clusters with intrinsic dimensionality of 2D
and 3D. The complexity of the algorithm is not dependent on the data dimensionality.

The paper is divided as follows. In section 2 we describe work related to clustering algorithms
and manifold learning. In section 3 an overall description of the clustering algorithm is given.
In section 4 we demonstrate the use of aggregative properties. In section 5 the algorithm
complexity analysis is presented. In section 6 clustering results of real astrophysical data in
3D are demonstrated. Section 7 compares our 2D and 3D results with results obtained by
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other algorithms.

2 Related work

There are numerous approaches for data clustering and manifold learning. In this survey we
mostly refer to the algorithms that are related to our approach. For an extensive overview see
text books such as [9,21].

Spectral clustering methods for graph-based clustering and image segmentation [1,30] use the
eigenvectors of the Laplacian matrix to embed the data in a lower subspace where they are
expected to be well separated. Spectral clustering uses explicitly eigenvector solvers to find
clusters whose graph cut is minimal. The Nyström approximation [12] is used to decompose
the similarity matrixW efficiently by choosing a random sample of the data, so that the
complexity of decomposingW to its eigenvectors is ofO(nN) wheren is the size of the
sample, andN is the size of the dataset. Path-based methods [10,11] discover elongated
structures and overcome noise. Their complexity is at leastO(N3). In the super-paramagnetic
clustering (SPC) [4] method, also known as the granular magnet method, the data points are
modelled as a collection of magnets. The scale of the temperatures used in a Monte-Carlo
simulation of this collection determines the resolution at which the magnets align to form
clusters, creating hierarchical clustering similar to ours. A related work [15] approaches the
clustering problem as a minimal cut problem and produces a stochastic set of cuts by hard
contractions of the original graph. The complexity of [15] isO(Nlog2(N)). In tensor-voting
[17] additional properties of location and orientation of data points in 2D and 3D are used to
cluster data points and characterize their manifold. The method also detects cases of junctions
and copes well with noise. Moreover, a criterion to measure smooth continuation between
oriented structures, which is based on proximity and curvature, has some similarities with our
criterion of completion probability (section 4.2). Tensor voting divides the data into voxels,
each voxel aggregates some data points and geometric features but only on the scale induced
by the partition into voxels. The algorithm complexity isO(n3k) wheren is the number of
voxels at the side length of the dataset volume, andk is the number of the additional input
properties.

Some of the early manifold learning methods are the principal component analysis (PCA)
[22] and multi-dimensional scaling (MDS) [7]. In extensions of PCA such as the principal
curve method (and the principal surface method) [19,23,31] one estimates a manifold by
computing a smooth curve that passes through the ”middle” of ad-dimensional data cloud.
In projection pursuit [13] different optimization strategies are sought to find a basis for lo-
cal data projections that optimize certain criteria. Our use of scale-dependent local PCA in
different scales reveals the shape of the clusters with respect to their scatter. The local-linear
embedding (LLE) algorithm [26] learns the manifold structure by finding a global coordi-
nate system on the manifold. LLE attempts to compute a low dimensional embedding such
that nearby points in the high dimensional space remain nearby and similarly co-located in
the low dimensional space. A similar approach is the Laplacian eigenmaps (LEM) method
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[2], where the graph Laplacian matrix is used for dimensionality reduction that preserves lo-
cal proximity. In Isomap [33] the embedding is optimized with the constraint of preserving
geodesic distances. The complexity of LLE, LEM and Isomap is at leastO(N2).

3 The clustering algorithm

The clustering problem can first be formulated as seeking for a minimal normalized-cut in a
weighted graph. Given a dataset withN data points and a distance matrixD of the dissimilar-
ities between the data points, a weighted graphG = (V, W ) is constructed as follows. Each
data pointi is represented by a graph nodei ∈ V whereV = {1, 2, ..., N}. For every two
nodesi andj the following similarity weight is assigned

wij = exp(−cdist · dij), (1)

wherecdist is a pre-defined parameter that is determined with experience, anddij is usually the
Euclidean distance between data pointsi andj; wii is set to 0. This constructs the similarity
matrix W = {wij}. To evaluate clusters we define a saliency measure as follows. Every
clusterS ⊆ V is associated with a state vectoru = (u1, ..., uN) representing the assignments
of data points to a clusterS

ui =





1 i ∈ S

0 i /∈ S.
(2)

Thesaliencyassociated withS is defined by thenormalized-cut cost

Γ(S)
def
=

∑
i>j wij · (ui − uj)

2

∑
i>j wij · ui · uj

, (3)

which sums the weights along the boundaries ofS divided by the internal weights. Clusters
with small values ofΓ(S) are considered salient. In matrix notationΓ can be written as

Γ(S) =
uT Lu

1
2
uT Wu

, (4)

whereL is the Laplacian matrix [30,14] whose elements are

lij =





∑
k (k 6=i) wik i = j

−wij i 6= j.
(5)

If we allow arbitrary real assignments tou, then the minimum ofΓ can be obtained by the
minimal generalized eigenvectoru of Lu = λWu (λ > 0). Our objective is to find those
partitions characterized by a small value ofΓ.

Although an eigensolver, in particular an AMG eigensolver [6], can be applied to explicitly
solve the generalized eigenvalue problem, we solve the clustering problem by an AMG-like
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approach (see [5]) without explicit computation of the eigenvectors. Our AMG-like proce-
dure seeks salient clusters by following the similarity of the data points at different resolu-
tions, from fine scales to coarser ones. Moreover, to further separate clusters at all scales, our
AMG-like approach calculates and incorporates multiscale similarity features (e.g. density,
shape, intrinsic dimensionality and orientation), which are calledaggregative properties. As
a result a hierarchical pyramid of graphs is constructed. Each node, at a certain scale, repre-
sents anaggregate, which is a weighted collection of the original data points. Eachcluster
S, which is asalient aggregate(i.e.,Γ(S) is low) emerges as a single node at a certain scale.

3.1 Multiscale graph coarsening: weighted aggregation

Starting from the given graphG[0] = G, we recursively coarsen the minimization problem,
creating the sequence of graphsG[1], ..., G[k] of decreasing size. At each scale we seek for
nodes with lowΓ. The salient aggregates, or clusters, represented by low-Γ nodes, are consid-
ered as approximate solutions to the minimization problem. As in the general AMG setting,
the choice of the coarse variables (”C-points”), the design of the fine-to-coarse aggregation
(or coarse-to-fine interpolation), and the derivation of the coarse problem are determined au-
tomatically, as described below.

Although the AMG approach can handle the full graphG[0] = G as defined above, the com-
plexity of the algorithm is lowered by applying a dilution procedure which sets to 0 everywij

that is relatively small. We first apply toG[0] the k-nearest neighbors algorithm (KNN) [3]
(typically 10 ≤ k ≤ 50). In addition to KNN we apply the following edge dilution procedure
[16]: for each pair of neighboring nodesi andj we setwij to 0 in casewij/

∑
k:〈i,k〉 wik < γ

andwij/
∑

k:〈j,k〉 wjk < γ (or wij/ maxk:〈i,k〉{wik} < γ andwij/ maxk:〈j,k〉{wjk} < γ), in
our experimentsγ is set to 0.1. The edge dilution procedure can be applied at each pyramid
level.

The construction of a coarse graph from a given one is divided into three stages:
(1) A subset of the fine nodes is chosen to serve as theseedsof the aggregates (the later being
the nodes of the coarse graph).
(2) The rules for interpolation are determined, thereby establishing the fraction of each non-
seed node belonging to each aggregate.
(3) The weight of the edges between the coarse nodes is calculated.
Coarse nodes.The construction of the set of seedsC (”C-points”) and its complement de-
noted byF , is guided by the principle that eachF -node should be ”strongly coupled” toC.
To achieve this objective we start with an empty setC, henceF = V , and sequentially (ac-
cording to decreasing aggregate size defined in section 3.2) transfer nodes fromF to C until
all the remainingi ∈ F satisfy

∑
j∈C wij ≥ α

∑
j∈V wij, whereα is a parameter, in most

experimentsα = 0.2.
The coarse problem.Each node in the chosen setC becomes the seed of an aggregate that
will constitute one coarse scale node. We define for each nodei ∈ F a coarse neighborhood
Ni = {j ∈ C,wij > 0}. Let I(j) be the index in the coarse graph of the node that rep-
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• ProcedureCoarsenGraph(s,α):
· Initialize the set of seeds (C) and its complement (F ): C = ∅, F = V [s−1].
· for all nodesi ∈ F :

if (
∑

j∈C w
[s−1]
ij < α

∑
k∈V [s−1] w

[s−1]
ik ):

C ← {C ∪ {i}}; F ← {F \ {i}};
· CalculateP [s−1][s], the interpolation weights (6).
· CalculateW [s], the coupling weights (7).

Fig. 2.Graph coarsening pseudo-code procedure.

resents the aggregate around a seed whose index at the fine scale isj. The classical AMG
interpolation matrixP (of sizeN × n, wheren = |C|) is defined by

PiI(j) =





wij/
∑

k∈Ni
wik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i

0 otherwise.

(6)

It satisfiesu ≈ PU , whereU = (U1, U2, ..., Un) is the coarse level state vector.PiI repre-
sents the likelihood ofi to belong to theI−th aggregate. Following the weighted aggregation
scheme [27], the edge connecting two coarse aggregatesp andq is assigned with the weight

wcoarse
pq =

∑

k 6=l

PkpwklPlq. (7)

wcoarse
pq is also called thecoupling weight between aggregatesp andq. Intuitively, the cou-

pling weight between a pair of coarse aggregates (left hand side of (7)) is the weighted sum
of the coupling weights between their sub-aggregates (right hand side of (7)). Using the in-
terpolation matrixP , the saliency measure (4) can be written as

Γ =
uT Lu

1
2
uT Wu

≈ UT P T LPU
1
2
UT P T WPU

. (8)

The right hand side of (8) determines a coarser graph withn nodes whose similarity matrix is
W coarse = P T WP . Exploiting the sparseness ofP , the elements ofP T WP are inexpensive
to calculate.Lcoarse = P T LP is approximated by a relation toW as in (5) [14].

This coarsening procedure is performed recursively. We denote a coarse scale bys, and its
predecessor finer scale by(s−1). The scale index is attached to the graph notation, i.e. a graph
at scales is denoted byG[s] = (V [s],W [s]), the appropriate interpolation matrix between scale
s and(s − 1) is denoted byP [s−1][s] or P [s−1], and|V [s]| is denoted byN [s]. A summary of
the coarsening procedure is given in Fig. 2.
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3.2 Aggregative properties

Consider a specific clustering problem in which small clusters are nested within larger clus-
ters, as exemplified in Fig. 4. Multiscale use of the densities may reveal the nested structure
and eventually cluster the data appropriately. In Fig. 4 all the dense patches have similar av-
erage density, yet in regionA the patches are distributed sparsely, and in regionB they are
more tightly packed. Hence, at a small scale, the dense patches should be grouped together,
yet on a larger scale regionsA andB should be partitioned into different clusters as indeed
achieved by our algorithm and shown in Fig 4.

In the case of astrophysical flow simulations, where at a given moment each star has a defined
location as well as velocity, an important example of aggregative property is the average
velocity of an aggregate. While the velocities of individual stars may be quite chaotic, their
averages are significant and intermediate-level aggregates with similar averages (and other
matching moments) should be grouped together to give a coherent view of the flow.

Since our weighted aggregation framework allows to aggregate a variety of multiscale prop-
erties, we call these properties aggregative properties. In this framework, for each aggregate
i emerging at a certain scales, we calculate a set of aggregative properties. An aggregative
property can be expressed as a weighted average over the aggregatei of a property that has
first appeared at a scaler (r ≤ s). The scales is termed theaggregate scaleand the scale
r is called theproperty scale. At each scales the similarity matrixW [s], inherited from
finer aggregate scales (7), is modified by the similarities arising from the set of aggregative
properties obtained from multiple property scales. In the scope of this work aggregative prop-
erties of density, shape, dimensionality and orientation are computed and incorporated. The
aggregative properties are used to obtain partition into clusters that differ in density, to sepa-
rate background noise from clusters, and to resolve intersecting clusters. Moreover, they are
utilized to identify the manifold that approximately span each aggregate. As a straightfor-
ward aggregative property the reader may consider the center of mass of an aggregate. For
an original data point the center of mass is simply its spatial coordinates (in this caser = 0,
s = 0). For an aggregatei at scale1 the center of mass is the weighted average of the spatial
coordinates induced by the data points associated with aggregatei, the weights being the in-
terpolation weights (in this caser = 0, s = 1). Similarly, the center of mass of an aggregate
at scales is a weighted average of the center of mass of its sub-aggregates at scale(s − 1)
associated with it. This is exactly the center of mass as if explicitly calculated from the cloud
of data points that assembles this aggregate.

The following formulas are applied to compute the aggregative properties. Let a propertyQ

appear at the property scaler, where its set of values isQ[r][r] = q[r] = (q
[r]
1 , ..., q

[r]

N [r]). Then

the average ofQ over aggregatek at scales is given byQ̄
[r][s]
k =

∑
j p

[r][s]
jk q

[r]
j �

∑
j p

[r][s]
jk ,

wherep
[r][s]
jk is the (j, k) element in the product matrixP [r][s] = P [r] · · ·P [s−1], which is

the fraction of aggregatej at scaler in aggregatek at scales. A fast computation of an
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aggregative property can be achieved by utilizing the following recursive relation

Q[r][s] def
= Q[r][s−1]P [s−1], M [r][s] def

= M [r][s−1]P [s−1], (s > r) (9)

whereM [r][r] def
= ~1 = (1, . . . , 1) at lengthN [r]. Note thatM [r][s]

k is the number of sub-
aggregates at scaler that compose the aggregatek at scales. In particular,M [0][s]

k , which
is the number of data points which compose aggregatek at scales, is calledaggregate size.
From these recursive relations one can then calculate the required weighted average:

Q̄
[r][s]
k =

Q
[r][s]
k

M
[r][s]
k

. (10)

In this way the aggregative properties at each levels are calculated from information already
accumulated at the immediately preceding level (s− 1).

The geometrical volume. Let xi = (x
(1)
i , . . . , x

(d)
i ) be the coordinates of a data pointi. The

center of mass of aggregatek at scales is denoted bȳxk = (x̄
(1)
k , . . . , x̄

(d)
k ) and computed by

(10), wherer = 0 andQ[0][0] = (x1, ..., xN). Theweighted covarianceis thed × d matrix
Σk = (x− x̄k)T (x− x̄k), i.e., (Σk)µυ = (x(µ)x(υ))k − x̄

(µ)
k x̄

(υ)
k , where(x(µ)x(υ))k is Q̄

[0][s]
k

calculated by (10) withQ[0][0] = (x
(µ)
1 x

(υ)
1 , ..., x

(µ)
N x

(υ)
N ), (µ, υ = 1, ..., d). PCA is applied

to find an eigenvector basis{~v(1)
k , . . . , ~v

(d)
k } of Σk and its corresponding set of eigenvalues

{λ(1)
k , . . . , λ

(d)
k }. The eigenvalues are used to approximate the geometrical volume of a convex

aggregatek at a scaler as follows:

V
[r][r]
k =

d∏

i=1

√
λ

(i)
k . (11)

The geometrical volume of a non-convex aggregatek at scales is approximated by the
accumulated geometrical volume of its sub-aggregates, i.e., the k-th element ofV [r][s] =
V [r][r] · P [r][s]. The notions of convex and non-convex are explained in the next section.

The density. The densityh of an aggregatei at scales is defined by the ratio between the
number of data points that compose this aggregate and the accumulated geometrical volume:
h

[r][s]
i = M

[0][s]
i / V

[r][s]
i , wherer is the scale at which PCA is applied (typicallyr = 3).

The typical distanceof a data pointi is the average Euclidean distance from its neighbors:

bi =

∑
j:〈i,j〉 ‖x̄i−x̄j‖

ni
, whereni is the number of neighbors. The typical distanceb̄

[0][s]
i of an

aggregatei at scales is computed by using (10), forQ[0][0] = (b1, b2, ..., bN). The typical
distance is inversely related to the density.

3.3 Manifold identification

The aggregative properties are utilized to identify the manifold that span an aggregate and to
reveal the intrinsic dimensionality of the aggregate. The manifold identification significantly
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• ProcedureIdentifyManifold(s):
· for all nodesk ∈ V [s]:

compute the convexity measure.
if k is a convex aggregate

calculate the fractional variance (12).
define its manifold type by using Definitions 1,2.

else
if all sub-aggregates have the same manifold typel

define the manifold type ofk to bel.
else

the manifold type is heterogenous.
aggregatek is denoted as a junction.

Fig. 3.Manifold identification pseudo-code procedure.

affect the formation of clusters with similar intrinsic dimensionality.

From a certain scales (typically s = 3) we examine for each aggregatek a convexity mea-
sure: V

[r][s]
k �V

[s][s]
k . If the ratio is less thenc (in our experimentsc = 1

2
) then the aggregate

is considered asnon-convex, otherwise it isconvex. A type of a manifold is defined directly
for a convex aggregate and indirectly (recursively) for a non-convex one. To characterize the
manifold type for a convex aggregatek, the definitions below are used.

FVARk(i)
def
=

λ
(i)
k∑d

j=1 λ
(j)
k

i = 1, ..., d (12)

denotes the fraction of variance obtained in the direction of~v
(i)
k , relatively to the total variance

attained in all principal directions.

Definition 1 A convex aggregatek is defined aswide in direction~v
(i)
k if FV ARk(i) > δ

d
, for

a givenδ (typically δ = 0.5).

Definition 2 A convex aggregate is spanned by anlD-manifold if it is wide in l directions.

In case the examined aggregate is non-convex, the manifold type is determined by its sub-
aggregates (the finer level aggregates which form it). The sub-aggregates of aggregatek are
scanned and if all of them have the same dimensionalityl then the manifold type of aggregate
k is defined to bel. Otherwise, the manifold type of the aggregate is defined to beheteroge-
nousand identified as ajunction . A manifold identification pseudo-code is given in Fig. 3.
Manifold identification results are demonstrated in Fig. 5 for three different structures.

For scales at which aggregates become non-convex we define the notion of tips. Tips are those
convex sub-aggregates that form endpoints of the manifold that spans the aggregate (see Fig.
6). Tips are currently defined only for 1D-manifolds.
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Fig. 4.Nested clusters.Each cluster discovered by our algorithm has a different color.
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3.4 Algorithm outline

Aggregative properties of density and dimensionality are used to affect the aggregation so that
fine aggregates that have similar dimensionality and density will merge to an aggregate on
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a coarser scale. Each aggregative property, obtained at a certain scales, is formulated into a
similarity measure between aggregates, and used to modify the coupling weights (7) between
the aggregates at scales. Those similarity measures are usually an expression depending
on the difference between two aggregative properties (an absolute value of the difference
or the square of the difference). The utilization of the similarity measures and the coupling
modification formulas are elaborated in section 4. In addition to the bottom-up process, a
top-down processes is used to split and merge aggregates of fine scales to correct inaccurate
clustering which occurred during the bottom-up process. A more elaborated description of
the top-down process is given in section 4.4.

The clustering algorithm is summarized by an outline in Fig 7, with the following parameters.
The top-down procedure is performed at scalest (typically 6 ≤ st ≤ 9) down to a finer scale
(typically r = 2). The manifold identification is applied from scalermn and on (typically
rmn = 3). Aggregative properties reflect their similarity by modifying the coupling weights
from scalesc and on (typicallysc = 3).

• FMSC(α, r, rmn, sc,st)
(1) Given a data set calculateW [0] - the similarity matrix (1).
(2) Apply a dilution procedure.
(3) s = 1.
(4) while(N [s] 6= N [s−1])

· CoarsenGraph(s,α)
· compute aggregative properties (sec. 3.2).
· if (s ≥ rmn): IdentifyManifold(s).
· if (s ≥ sc): ModifyCoupling(s).
· if (s = st): TopDown(r); s ← r.
· s = s + 1.

Fig. 7.The clustering algorithm outline.

4 Determining coherent clusters

In this work we have focused on several specific objectives: to discriminate between clusters
with different densities, to remove background noise that may incorrectly merge with clusters,
to isolate junctions (intersections) between clusters, and to determine the different clusters
that cross the junction in terms of smooth continuation (i.e., the manifold which is formed by
each of the intersecting clusters has low curvature). So far we have described the aggregative
properties that are accumulated through the bottom-up weighted aggregation. The way that
we combine the aggregative properties to achieve those objectives is explained in this section.
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4.1 The Mahalanobis distance

Given two aggregatesk and l at scales, with respective centers of massx̄k, x̄l and respec-
tive covariance matricesΣk, Σl, the mutual Mahalanobis distance is computed as follows.
The Mahalanobis distancebetweenx̄l and the cloud of points in aggregatek is given by
Mahal(l, k) =

√
(x̄k − x̄l) · (Σk)−1 · (x̄k − x̄l)T . SimilarlyMahal(k, l) is defined. The Ma-

halanobis distance can be considered as a weighted Euclidean distance between a point and
a cloud of points, where the relevant axes are the principal directions of the cloud and the
weights reflect the spread of the data points on the principal directions. Themutual Maha-
lanobis distanceis Mut Mahal(k, l)

def
= Max{Mahal(k, l),Mahal(l, k)}. Starting from

a certain scales (typically s = 3) we bias the aggregation to preserve smooth continuation
by multiplying the coupling weights (7) between any two neighboring aggregatesk andl by
exp(−cM ·Mut Mahal(k, l)), where in our experimentscM is set to values between 1 and
10. Note that the use of the mutual Mahalanobis distance is restricted to cases where both
neighboring aggregates are considered convex.

4.2 Completion probability and manifolds

The biasing by the mutual Mahalanobis distance promotes continuation between two co-
linear clouds of data-points. To promote also smooth continuation upon constant curvature,
i.e. co-circularity, we rely on the Elastica criterion. The elastica criterion is used extensively
in perceptual grouping works (e.g. [28,29,34]). We exploit the elastica criterion to support
smooth continuation of aggregates and in particular to discriminate between clusters that
cross a junction.

For two neighboring aggregates, the elastica criterion provides an estimation, called comple-
tion probability, that the two aggregates form a smooth continuation. The completion proba-
bility described for the 2D case in images [28] is generalized for 2D and 3D cases of scattered
points.

The completion probability function in the 2D caseestimates the probability that two
neighboring aggregatesk andl, which are 1D-manifolds inR2, form a smooth 1D-manifold
(Fig. 8). The completion probability is based on an energy function which is composed of
two components. The first component is the ratio of the distancer′ between the tips of the

two aggregates and a radius of curvatureρ, defined byρ = (
L

(1)
k

+L
(1)
l

2
)2�(8 · L

(2)
k

+L
(2)
l

2
),

whereL
(1)
i and L

(2)
i are the length and width of aggregatei respectively (L(1)

i =
√

λ
(1)
i ,

L
(2)
i =

√
λ

(2)
i ), for i = k, l. The ratior′/ρ is denoted byEdist. The second component,

denoted asEφ
ang, is a function of the anglesφk andφl, whereφi ∈ (−π

2
, π

2
) (for i = k, l),

is the pitch angle of the1st principal direction of aggregatei with the line connecting the
two centers of mass of the two aggregates. The square difference between the two angles
(φk−φl)

2 reflects deviation from co-circularity, whereas their combined magnitude(φ2
k + φ2

l )
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φ l φ k

r

Fig. 8. Completion between two aggregates in 2D.Each aggregate (approximated by a dashed el-
lipse) creates an angleφi (i = k, l), between its1st principle axis and the line connecting the two
centers of mass. The completion curve is drawn between the two centers of mass.

Expr. φk φl L
(1)
k L

(2)
k L

(1)
l L

(2)
l r′ r G(k, l)

A 0 0 2 0.08 2 0.08 0 4 1
B 0 0 2 0.08 2 0.08 0.5 4.5 0.96
C 0 0 2 0.08 2 0.08 3 7 0.57
D 30 30 2 0.08 2 0.08 3.5 7 0.24
E 30 -30 2 0.08 2 0.08 4.5 7 0.05
F 30 30 1 0.08 1 0.08 5.5 7 0.02
G 30 30 1 0.08 1 0.08 1.5 3 0.51
H 60 60 1 0.08 1 0.08 2 3 0.16

Table 1
A set of eight examples in 2D completion probability(see their display in Fig 9). In all examples
cg = 0.8, cd = 0.3, pd = 1.5, pg = 2; k denotes the left aggregate andl denotes the right one.

reflects deviation from co-linearity. The energy of co-circularity and co-linearity is given by
Eφ

ang = ρ
r

√
φ2

k + φ2
l − φk · φl, wherer is the distance between the centers of mass of the

aggregates. The completion probability between aggregatesk andl at scales in the 2D case
is proportional to:G[s](k, l) = exp(−cd · (Edist(k, l))pd) · exp(−cg · (Eφ

ang(k, l))pg ), where
cd, cg, pd andpg, are pre-determined parameters (see Fig. 9 and Table 1). These parameters
are quite robust for different datasets, yet, an automatic procedure to learn them may be
developed in future work.

The completion curve. Given a pair of aggregatesk andl that have high completion prob-
ability, a smooth completion curve that connects them can be constructed. The cubic spline
approximates the elastica curve that minimizes the average curvature between a given pair of
pointsp1 andp2, and their respective gradient values. In our contextp1 = x̄k andp2 = x̄l

are the centers of mass ofk andl, and the gradient values are given bytan(φk) andtan(φl),
respectively (see also [28])).

To encourage smooth continuation aggregation, the coupling weight between aggregatesk
andl is replaced bymax{maxj{wkj},maxj{wlj}} whenG[s](k, l) > t for some predeter-
mined threshold0 ≤ t ≤ 1. The completion probability is measured between aggregates that
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Fig. 9.Completion of 1D-manifolds in 2D.The thick lines are the 1st principal axis of each aggregate,
the gray curve is the completion curve. The parameters for each example are given in Table 1.

are identified as convex 1D-manifolds. In case the aggregates are identified as 1D-manifolds
but one of them is non-convex, the completion probability is measured between their convex
tips (see section 3.3). The3D caseof completion probability is explained in appendix A.

4.3 Density

In many tasks the density of data points is a meaningful criterion for separating clusters (e.g.
[25,32]), and detecting sparse background noise. The aggregative properties of density and
typical distance (subsection 3.2) are related measures. The density measure is utilized at the
bottom-up process whereas the typical distance measure is used in the top-down refinement.

We have defined the density of aggregatei at scales: h
[r][s]
i =

M
[0][s]
i

V
[r][s]
i

, which is the ratio

between the number of elements that compose the aggregate and its accumulated geometrical
volume. The variation of the density of an aggregatei is also of interest and defined by:

σ2(hi)
[r][s] = ((h[r][s−2] − h

[r][s]
i )2), whereh[r][s−2] denotes the density of the sub-aggregates

of aggregatei at scales− 2. To support aggregation between aggregates with similar density
the coupling weight between any two aggregatesk andl at scales is multiplied by

exp
(
−cdens · |h[r][s]

k − h
[r][s]
l |�(σ(hk)

[r][s] + σ(hl)
[r][s])

)
, (13)

wherecdens is some non-negative constant; in our experimentscdens is set around 10. Some
examples are given in Fig. 10.
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4.4 Top-down

In addition to the bottom-up process, a top-down process is performed to cure incorrect cluster
partitions, according to global features which are detected only on coarse (top) scales. The
junction resolving top-down process is used to determine the different manifolds that cross
a junction, which has already been detected and isolated during the bottom-up process. The
top-down process is based on the information obtained from the manifold identification: the
junction and the orientation of manifolds. This high-level information obtained at a coarse
scales is used to modify the coupling weights at a finer scaler. Then the modification is
followed by a second bottom-up process starting at scaler. An incorrect clustering result
obtained from the initial bottom-up aggregation is demonstrated in Fig 11. The outline of the
junction top-down resolution is as follows (see Fig 12 for illustration):

• For all neighboring aggregates of a suspected junction aggregatei at scales:
(1) match a neighbor with high completion probability, and compute their completion curve

(section 4.2).
(2) strengthencoupling weights betweenr-scale sub-aggregates of aggregatei which reside

close to the completion curve.
• weakencoupling weights between junctionr-scale sub-aggregates which do not reside on

the same completion curve.
• detectthe exact intersection domain: strengthen coupling weights between sub-aggregates

that reside on more than one curve, weaken all their other coupling weights.
• Perform bottom-up aggregation starting at scaler.

A set of identified junction examples and their resolving is shown in Fig. 13.

The density refinement top-down process is used to detect and separate background noise
which may mistakenly merge with clusters. The density refinement reflects the density infor-
mation which is obtained at a coarse scales and modifies the coupling weights at a finer scale
r. Examples for inaccurate bottom-up clustering and cured top-down clustering are given in
Fig. 14. The outline of the density refinement top-down procedure is given below:

• For aggregatesi at scales:
(1) compute typical distancēb[0][s]

i and standard deviationσ(bi)
[0][s] (section 4.3).

(2) for all r-scale sub-aggregatesj of i:
for all k s.t.wjk > 0:
· if (b̄[0][r]

j < b̄
[0][s]
i − σ(bi)

[r][s] or b
[0][r]
j > b̄

[0][s]
i + σ(bi)

[r][s]):

weakenthe coupling weightw[r]
jk , according to the typical distance.

• Perform bottom-up aggregation from scaler.
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Fig. 10.Applying the density criterion. Dense regions are identified.
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Fig. 11.Bottom up aggregation.Left to right: scales 4-7. A bottom-up aggregation without use of
junction detection and resolution is demonstrated. The two intersecting clusters are not separated.
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Fig. 12.Top-down junction resolving. Left to right: scale 8, coarsest scale of the first bottom-up
process in which the junction aggregate has been identified; scale 5, sub-aggregates of the junction
neighbors are matched to each other by completion probability, and completion curves are drawn;
scale 2, fine aggregates are reclassified according to the completion curves; scale 6, coarsest scale
of the second bottom-up process where the junction is resolved and the two intersecting clusters are
separated.
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Fig. 13.Four types of resolved junctions.Junctions are resolved and the desired clustering is obtained
by using the top-down process.

5 Complexity

The high complexity of a clustering algorithm can be a significant barrier when the datasets
are large. Also, the preprocessing of calculating the local similarities between the data points
can be expensive if done naively. In the scope of this paper, we do not intend to solve ef-

17



ficiently the preprocessing. We use the k-nearest neighbor (KNN) procedure to obtain a
bounded number (5 ≤ k ≤ 40) of local similarities (neighbors) per a data point. In low
dimension KNN has complexity ofO(N log N ), whereas in high dimension the complexity
is O(N2), whereN is the number of data points.

The complexity of our multiscale clustering algorithm isO(N ). At each scales of the pyra-
mid four steps are applied: the computation of coupling weights, the computation of the ag-
gregative properties, the modification ofW [s] according to the aggregative properties, and the
choice of coarse representative for the next scale. Each of these steps hasO(N [s]) complex-
ity. Therefore,O(N [s]) operations are done at each scales. A single graph coarsening step
produces a coarse graph with about half the number of nodes of the finer graph. Thereby the
complexity of one bottom up process isO(N + N/2 + N/4 + ...) = O(N). The complexity
of a top-down process starting at a top (coarse) scales is influenced only by the number of
operations performed on the fine scaler (O(N [r])). Thus, the top-down process complexity
is at mostO(N). Therefore, the total complexity of the algorithm is linear in the size of the
dataset.

6 Clustering of astrophysical data

The fast growth of exploratory tools in astrophysics yielded massive data sets awaiting to
be explored. Some of the underlying tasks in this field are the exploration of the different
structures that galaxies and clusters of galaxies form both in real observations and in sim-
ulated models. This may serve as a key for determination of the underlying astrophysical
model parameters that explain observations. The cold and dark matter (CDM) is assumed to
be the major fraction of the universe mass. Cosmological simulations of the universe evo-
lution are based on applying a dynamical model on CDM particles. As time evolves, CDM
particles form peculiar structures such as filaments, sheets and spherical clusters, i.e. differ-
ent manifold types. We use our algorithm in this context to demonstrate its capabilities of
detecting structures in such datasets. We also use our algorithm to infer the fitting between an
astrophysical model and real observations by comparing the distribution of different manifold
types.

6.1 Cold and dark matter

The algorithm is applied on a sample of a 3D simulation which contains20000 CDM particles
(Fig. 15). The particles positions are the input data points for our algorithm. The advantages
of using the aggregative properties and the manifold identification for discovering interesting
structures are demonstrated in this example. In this dataset (Fig. 15) a dense plane, that is
composed of dense cores, is sought to be separated from the surrounding sparse noise. Below
the plane there is a sparser plane that is almost orthogonal to it. We have used KNN with
k = 40. The use of the density feature and the Mahalanobis distance successfully detected
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refinement the background noise is separated from the clusters; scale 9, after first bottom-up process;
scale 7, after applying top-down density refinement.

112 114 116 118 120 122 124 126 128

112

114

116

118

120

122

124

126

128

115
120

125
115

120
125

112

114

116

118

120

122

124

126

128

110 115 120 125 130
110

112

114

116

118

120

122

124

126

128

130

8

2

18

6

49

1

12

5

17
7

11

3

0

3 13

2115

110
115

120
125

130

110

115

120

125

130
110

112

114

116

118

120

122

124

126

128

130

8
6

18

1

2
17

0
495

12
73

11

3 

13

21

15

14

1 

Fig. 15.Clustering CDM simulation. Left to right: a sample sub-cube of 20000 CDM particles, top
and side views. Clustering of the data when utilizing the density and Mahalanobis features, top and
side views.

the structures in the data.Table 2 demonstrates a comparison between our visual detection of
structures and the manifold identification of our algorithm.

Cluster no. 1 3 13 14 15 21
Manifold Type 2D 2D 3D 2D 2D 3D
Visual detection Dense

Plane
Dense
Plane

Noise Lower
Plane

Dense
Plane

Noise

Table 2
Clustering a CDM simulation sample: identifying manifolds.The manifold type of selected aggre-
gates shown in Fig. 15 is determined and compared to the visual detection of the shape patterns.

6.2 Comparison of a CDM model with a real observation

The use of our algorithm to compare an astrophysical model with a real observation is demon-
strated. Specifically, we have checked a null hypothesis which claims that the multiscale
distribution of manifolds of different dimensionality in an observation dataset is similar to
the distribution in 22 model-based realization data. We have used as an observation the 2dF
galaxy red-shift survey (2dF) and 22ΛCDM model realizations (i.e. those are 22 datasets of
a CDM model simulations). The model and observation have been already found similar with
respect to density based criteria [20,24].
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The probability of an aggregate to be aniD-manifold;i = 0, 1, 2, 3 is computed at each scale
s (denoted byΨs

i (Ωj)) for each model realizationΩj, j = 1, ..., 22, and for the 2dF data
set. Sparse clusters whose manifold can not be identified, due to small number of galaxies
belonging to it, are also counted and considered as0D-manifolds. The average probability
for a manifold of typei over all model realizations is computed (denoted byE{Ψs

i}), i.e.
E{Ψs

i} =
∑22

j=1 Ψs
i (Ωj)/ 22 is the average fraction, over all 22 model realizations, of the

clusters found at scales, whose manifold is anid-manifold. The standard deviation of this
measure is also computed (denoted byσs

i ). The standardized variable matrix4×8 which mea-
sures the deviation of the 2dF manifolds distribution from the model manifolds distribution
at 8 different scales of our algorithm is computed asZ(i, s) = (E{Ψs

i} −Ψs
i (2dF ))/

σs
i√
22

.

For all i ands Z(i, s) values satisfy|Z(i, s)| < 1.59, which confirms with a95% confidence
interval that the observation is fitted by the model.

7 Comparison of algorithms

Several clustering algorithms and our fast multiscale clustering algorithm (FMSC) were ap-
plied to examples which are reported in relevant literature and to the CDM example. The
algorithms compared are single-linkage [9] (SL), k-means [18], SPC [4] (also known as the
granular magnet method), spectral clustering (SC) [1], connectivity-kernel clustering (CKC)
[10], an algorithm that uses the k-means algorithm with the expectation maximization (EM)
algorithm [8] (KEM), and our FMSC. In all examples the data points which belong to the
same cluster are displayed in the same color. In Figs. 16-17 we demonstrate our detection of
a junction, and the separation between the clusters that cross the junction. It may be required
that connected components will be clustered as one cluster. Such a task can be achieved by
our algorithm (as shown in Fig. 11) as well as by other algorithms. However, our intention is
to demonstrate how FMSC uses the manifold identification and the orientation of aggregates
to separate clusters even when ambiguity in cluster assignment exists, i.e a junction. In Figs
18-19 we compare the performance of different algorithms in separating dense clusters from
noise. Of particular interest is the comparison demonstrated in Fig. 19, where we detected
curved and elongated clusters and separated them from noise. In Fig. 20 we have found some
of the underlying structures, yet some improvement in the use of aggregative properties is re-
quired in order to separate the whole dense plane in this sample. The k-means results shown
in Fig. 20 have completely misclassified the dense clusters. Some of the other algorithms
run out of memory resources when tested on the CDM example. Indeed, the comparisons
manifest the need for aggregative properties in order to achieve desired clustering.

8 Conclusions

We presented a novel multiscale clustering algorithm, inspired by algebraic multigrid (AMG).
Our AMG-like approach discovers the desired aggregation of the dataset by following the
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Fig. 16.Clustering an ’X’ shape. Left to right: SL, SPC, KEM - a bad execution, FMSC.
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Fig. 17.Clustering two intersecting circles.Left to right: k-means, SC, KEM, FMSC.
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Fig. 18.Clustering two dense clusters with noise.Left to right: SL (two small clusters are indicated
by arrows), k-means (k=3), SPC, FMSC.
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similarities between the data points at different resolutions, using a bottom-up weighted ag-
gregation process. Moreover, to achieve coherent clusters at all scales, our approach uses mul-
tiscale similarity features and incorporates manifold identification processes. The algorithm
detects clusters that are distinguished by their multiscale nature, separates between clusters
with different densities and identifies and resolves intersections between clusters. The flex-
ibility of our algorithm which allows to combine other statistics, i.e. additional multiscale
similarity features, along with its low complexity, offer a powerful tool for exploring massive
datasets.
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APPENDIX A: Completion probability in 3D.

In the 3D caseof completion probability there are two situations: 1D-manifolds and 2D-
manifolds inR3 space. In the 1D-manifold case (Fig. 21) two angles are defined: the pitch
angleφ between theZ = 0 plane and the1st principle axis, and the yaw angleψ between
the Y = 0 plane and the1st principle axis. The completion probability function reflects
co-circularity and co-linearity for both angles:G[s](k, l) = exp( −cd · (Edist(k, l))pd − cg ·
((Eφ

ang(k, l))pg +(Eψ
ang(k, l))pg) ). In the 2D-manifold case (Fig. 21) the aggregates manifold

structure is approximated by a plane. Given aggregatesk and l, two angles are considered:
the aggregate’s roll angles difference (2δ), and their pitch angles (φ). The roll angles differ-
ence is measured as the angle formed between the directions of the intersection lines of the
aggregate’s manifolds with theX = 0 plane andX = r plane respectively, (the lines are
denoted byI(k) andI(l) whereI(l) is located atl center). We then fix theZ = 0 plane to
intersectX = 0 where the bisector of the directions ofI(k) andI(l) lays. The pitch angle of
an aggregatek (denoted byφ(k)) is measured as follows: the intersectionI(y, k) of Y = 0
with the planar manifold ofk, is computed.φ(k) is the angle betweenI(y, k) and theX-axis.
Similarly, I(y, l) andφ(l) are computed. The probability functionG reflects co-circularity
and co-linearity of the pitch angles, the difference in the roll angle2δ, and the distance be-
tween the two aggregates:G[s](k, l) = exp(−cd ·(Edist(k, l))pd−cp ·(Eφ

ang(k, l))pg−cr ·|δ|pδ),

wherecd, cp, andcr are predefined parameters.ρ is computed by usingρ with L
[1]
i equal to

the length ofI(p+, i), andL
[2]
i equal to

√
λ

(3)
i , for i = k, l. In 3D, the completion curve
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of 1D-manifolds considers two angles: the yow and pitch angles, whereas in 2D-manifolds
interpolation of the two planes via the cubic spline creates the completion surface (Fig. 21).
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Fig. 21.Completion of manifolds in 3D. 1D manifolds.(left): The completion curve is drawn between
the two average coordinates.2D manifolds. (right): Two aggregatesk andl are estimated as planes.
I(k) andI(l) are interpolated to each other through the completion curve, forming the completion
surface.2δ is the roll angle difference.
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