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Abstract

In this paper. we demonstrate how PCA and ICA can be
used for embedding graphs in pattern-spaces. Graph spec-
tral feature vectors are calculated from the leading eigen-
values and eigenvectors of the unweighted graph adjacency
matrix. The vectors are then embedded in a lower dimen-
sional pattern space using both the PCA and ICA decom-
position methods. Svathetic and real sequences are rested
using the proposed graph clusiering algorithm, The prelim-
inary results show that generally speaking the ICA is better
than PCA for clustering graphs. The best choice of graph
speciral feature for clustering is the cluster shared perinme-
rers.

1 Introduction

Graph clustering is an important yet relatively underre-
searched topic in machine learning [7, 8. 2]. The impor-
tance of the topic stems from the fact that it is a key tool
for learning the class-structure of data abstracted in terms
of relational graphs. Problems of this sort are posed by a
multitude of unsupervised learning tasks in knowledge en-
gineering, pattern recognition and computer vision. The
process can be used to structure large data-bases of rela-
tional models[9] or to learn equivalence classes. One of
the reasons for limited progress in the area has been the
lack of algerithms suitable for clustering relational struc-
tures. In particular, the problem has proved elusive to con-
ventional ceniral clustering techniques. The reason for this
is that it has proved difficult to define what is meant by
the mean or representative graph for each cluster. How-
ever, Munger, Bunke and Jiang[ 1] have recently taken some
important steps in this direction by developing a genetic al-
gorithm for searching for median graphs.

Generally speaking, there are two different approaches to
graph clustering. The first of these is pairwise clustering[3].
This requires only that a set of pairwise distances between

.graphs be supplied. The clusters are located by identify-
ing sets of graphs that have strong mutual pairwise affini-
ties. There is therefore no need to explicitly identify an
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representative (mean, mode or median) graph for each clus-
ter. Unfortunately, the literature on pairwise clustering is
much less developed than that on central clustering. The
second approach is 1o embed graphs in a pattern space[4].
Although the pattern spaces generated in this way are well
organised, there are two obstacles to the practical imple-
mentation of the method. Firstly, it is difficult 10 deal with
graphs with different numbers of nodes. Secondly, the node
and edge correspondences must be known so that the nodes
and edges can be mapped in a consistent way to a vec-
tor of fixed length. Te overcome these two problems, we
have used graph spectral methods to extract feature vectors
from symbolic graphs[3]. Graph spectral features are used
to generate feature vectors. The length of the vectors are
determined by the number of leading eigenvalues, and the
order of the components of the vectors is the order of the
eigenveciors, The graph spectral features explored include
the cigenvalue spectrum, cluster volume, cluster perimeter,
cluster Cheeger constant. shared perimeter and cluster dis-
tances. The aim in this paper are two-fold. First, we aim
to investigate whether the independent or principal compo-
nents of the spectral feature vectors can be used to embed
graphs in a pattern space suitable for clustering. Second, we
investigate which of the spectral features results in the best
clusters,

2  Graph Spectra

In this paper we are concerned with the set of graphs
G, G, Gy, ...G . The kth graph is denoted by Gy =
(Vi. E¢). where Vy, is the set of nodes and By, C ¥, x V. is
the edge-set. Our approach in this paper is a graph-spectral
one. For each graph G, we compuie the adjacency matrix
Ag. Thisis a [Vi| % V| matrix whose element with row
index 7 and column index j is

sy f1 if(i,7) € Eg
() = {0 otherwise h

From the adjacency matrices 4y, k = 1...V al hand, we
can calculate the eigenvalues Xy by solving the equation
|4x — Acf] = 0 and the associated eigenvectors g% by



solving the system of equations Apd§ = A{dY. We order
the eigenvectors according to the decreasing magnitude of
the eigenvalues, i.e. [AL] > [A}| > ... I/\Ikv"l|. The eigen-
vectors are stacked in order to construct the modal matrix
@, = (103 .- loy *).

We use only the first n eigenmodes of the modal matrix
to define spectral clusters for each graph. The components
of the eigenvectors are used to compute the probabilities
that nodes belong to clusters. The probability that the node
indexed ¢ € V, in graph & belongs to the cluster with eigen-
value order w is

ko 1%e(iw)l

&

Tl e 2
@ S 0w @

3 Spectral Features

Our aim is to use spectral features for the modal clus-
ters of the graphs under study to construct feature-vectors.
To overcome the correspondence problem, we use the order
of the eigenvalues to establish the order of the components
of the feature-vectors. We study a number of features sug-
gested by spectral graph theory.

3.1 Unary Features

We commence by considering unary features for the ar-

rangement of modal clusters. The features studied are listed
below:
Leading Eigenvalues: Qur first vector of spectral fea-
tures is constructed from the ordered eigenvalues of the
adjacency matrix. For the graph indexed k, the vector is
B = (AL AL L AT,

Cluster Volume: The volume VaoI(S) of a subgraph
S of a graph G is defined w0 be the sum of the degrees
of the nodes belonging to the subgraph, i.e Vol(S) =
2 ies degl(i), where deg(i) is the degree of node i. By
analogy, for the modal clusters, we define the volume of
the cluster indexed w in the graph-indexed k to be

Zie Vi sk deg(i)
Z$=1 Zier wadcg(i)
The feature-vector for the graph-indexed k is B, =
(Voll,Vol2, ...... Vo).

Cluster Perimeter: For a subgraph S the set of perime-
ter nodes is A(S) = {{u,v}[{u,v) e EAu€ SAv ¢S}
The perimeter length of the subgraph is defined to be the
number of edges in the perimeter set, i.e. ['(S) = |A(S)].
Again, by analogy, the perimeter length of the modal cluster

indexed wis . . o
W Ziel/;c L (1 - Sjw)Ak(?'h?)

k= - —.

Z:=1 Ziev,, sfu(l - S;"w)‘le(lﬂ])

The perimeter values are ordered according to the modal
index of the relevant cluster to form the graph feature vector
By = (T},T%, .., THT.

Voly =

(3

]
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"The cluster analogue of the Chefqger constant is
k

Cheeger Constant: The Cheeger constant for the sub-
graph S is defined as follows. Suppose that § = V — S is
the complement of the subgraph S. Further let E(S, S) =
{(w,v)|u € S Av € §} be the set of edges that connect §
to 5. The Cheeger constant for the subgraph 5 is

His) - — B
min[vol (S), vol{5)]

&)

(&)

¢ = (6)

min[Voly, Vol¢]’

where ) n

Volf =3 %" sf deg(i) - Volf (7
w=lieVy

is the volume of the complement of the cluster indexed w.

Again, the cluster Cheeger numbers arc ordered to form a

spectral feature-vector By, = (H}, HE, ..., H’L‘)T.

3.2 Binary Features

In addition to the unary cluster features, we have studied
pairwise cluster attributes.
Shared Perimeter: The first pairwise cluster attribute stod-
ted is the shared perimeter of each pair of clusters. For the
pair subgraphs S and T the perimeter is the set of nodes be-
long 1o the set (S, T) = {(w,v)|n € S Av € T}. Hence,
our cluster-based measure of shared perimeter for the clus-
ters is

b ok Qd
Uplu,v) = z(i-j)EEk 83 uS7o Akt 7]

8
Z(il,jl)EEk S‘ik}.usj:f_v ( :
Each graph is represented by a shared perimeter ma-
trix Up. We convert these matrices into long vectors.
This is obtained by stacking the columns of the matrix
Uy in eigenvalue order. The resulting vector is By =
(Ue(1, 1), U (1, 2), . U (1, 1), U (2, 1) U (2,m,),
..U (n,n))T Each entry in the long-vector corresponds to
a different pair of spectral clusters.

Cluster distances: The between cluster distance is de-
fined as the path length, i.e. the minimum number of edges,
between the most significant nodes in a pair of clusters.
The most significant node in a cluster is the one having the
largest co-efficient in the eigenvector associated with the
cluster. For the cluster indexed u in the graph indexed k,
the most significant node is i¥ = argmax; sk .

To compute the distance, we note that if we multiply the
adjacency matrix 4y, by itself { times, then the matrix (Az)*
represents the distribution of paths of length [ in the graph
G.. In particular, the element (4, ){i, 5) is the number of
paths of length [ edges between the nodes i and 7. Hence
the minimum distance between the most significant nodes
of the clusters « and v is d, ,, = arg min;(A,,.)’(z‘ﬁ, nf;)

If we only use the first n leading eigenvectors to describe
the graphs, the between cluster distances for each graph can
be written as a n by n matrix which can be converted to a
n x n long-vector By = (dy.1,dy 2,815, d2.1tlnn) T



3.3 Pattern space embedding by PCA

Our first method makes use principal components anal-
ysis and follows the parametric eigenspace idea of Murase
and Nayar (4, 5, 6]. The relational data for each image is
vectorised in the way outlined in Section 3. The IV differ-
ent image vectors are arranged in view order as the colurnns
of the matrix § = [By|Ba).-.|Bi}...|Bn].

Next, we compute the covariance matrix for the elements
in the different rows of the matrix S. This is found by tak-
ing the matrix product € = $57 We extract the principal
components directions for the relational data by performing
an eigendecomposition on the covariance matrix €. The
eigenvalues ); are found by solving the eigenvalue equa-
tion }C' — AI| = 0 and the corresponding eigenvalues &; are
found by solving the eigenvector equation C'&; = A;6;.

We use the first 3 leading eigenvectors to represent the
graphs extracted from the images, The co-ordinate system
of the eigenspace is spanned by the three orthogonal vectors
by E = (€1, ¢4, €3). The individual graphs represented by
the long vectors By,i = 1,2,..., N can be projected onto
this eigenspace using the formula #; = &7 B; Hence each
graph G; is represented by a 3-component vector Z; in the
eigenspace.

3.4 Pattern space embedding by ICA

Our second approach uses Independent component anal-
ysis(ICA) to embed the graphs in a pattern space. We ex-
plore how to decompose a set of graphs into significantly
different independent components. These can then be used
for graph clustering by projecting the original graphs into
the pattern space spanned by the independent components.

The ICA algorithm used in this paper is Cardoso and
Soulourniac’s JADE algorithm[3]. JADE is a statistically
based algorithm. The main features of the algorithm are as
follows. As with other ICA algorithms, the first step is data
whitening or sphering. The aim is to eliminate correlations
from the data. This can be achieved by removing the mean
of the data and using PCA on the data covariance matrix. As
a result, the whitened vectorset is Z = W B, where W is
the estimated whitening matrix. The second step of JADE is
estimate the 4th-order cumulants Q. In the noiseless case,
Q) can be calculated as follows,

Qz(I) = E{1ZP2Z7} — (n+ 1)1, 9)

where I, is the n-order identity matrix and E(.) is the ex-
pectation operator. Next, a joint diagonalization is per-
formed 1o find a matrix V' to minimise the non-diagonal
entries of the cumulants matrices,

V = argmin Z;0f f(VTQzV). (10)

Again we use the first 3 most significant independent com-
ponents to represent the graphs extracted from the images.
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The co-ordinate system of the patternspace is spanned by
the three independent components by & = (V;, Va, V3). The
individual graphs represented by the long vectors Zy, k =
1,2, ..., N can be projected onto this pattern space using the
formula £, = &7 Z,. Hence each graph G is represented
by a 3-component vector £ in the pattern space.

4 Experiments

The aim in this paper is to compare the utility of PCA and
ICA for clustering graphs which are represented by vectors
of spectral features. To achieve this, we need several groups
of graphs which have similar within-group structures and
significantly different between-group structures. As shown
in Figure 1, sample images are taken from four different
sequences of images of houses taken from slowly varying
viewpoints. These include a synthetic model sequence, the
CMU house image sequence, the INRIA MOV 1 house se-
quence and a Swiss chalet sequence which were captured in
out laboratory. For each image, we extract corner features
and then generate Delaunay graphs on the ¢omner features.
From the Delaunay graphs in Figure 2, we can see that the
graphs of the synthetic and the CNW images are signifi-
cantly different from other groups of graphs and are sirnilar
with the ones in the same group. More diverse graph struc-
tures appear in the MOV1 graphs and in the Swiss chalet
graphs. We use the leading eigenvectors in the case of PCA
approach and leading independent components in the ICA
approach to define clusters of nodes. -

The first two columns of Figure 3 are obtained using
PCA analysis and the second two columns are obtained
using ICA decomposition. In both cases, the left column
shows the resulting pattern space and the second column
shows the Euclidean distance maps, The graphs are em-
bedded in the different pattern spaces. From the first row
to the fifth row, we show the experimental results obtained
when the spectral feature vectors are constructed from or-
dered eigenvalues, the clusier volumes, the cluster perime-
ters, the cluster Cheeger constants, the shared perimeters
and the cluster distances.

From Figure 3 we observe that although some cluster
structures present in the pattern spaces generated by PCA,
the clusters are far more clear when ICA is used. Since we
know there are four different classes of graphs, we expect
that our clustering method should return four distinct clus-
ters. From row | and column 4, we see that by using the vec-
tor of ordered eigenvalues, the 10 synthetic medel graphs
are separated from other graphs very well. The cluster of
CMU houses is obvious although there exists three subclus-
ters which can be observed from the sub-block structure of
the distance map along the diagonal. The clusters of the
MOV and the chalet graphs are barely distinguishable. The
best result comes from the ICA embedding of the shared
perimeter vectors. This can be seen from row 5 and column



4 of Figure 3. The first three clusters are fairly clear. Only
the chalet sequence is not well clustered. This approves
the observation made earlier that the graph structures of the
chalet sequence are not stable,

o o
i‘ﬂn j\\“é Wy

Figure 1. The synthetic, CMU, MOV1 and the
chalet sequences

Figure 2. Graph representation of the syn-
thetic, CMU, MOVI and the chalet sequences

5 Conclusions

In this paper, we explored that ICA and PCA can be used
for embedding graphs in a pattern space suitable for cluster-
ing. Generally speaking, the ICA embedding is better than
the PCA embedding in the sense of separating groups of
graphs. Of the spectral features used in our experiments, the
eigenvalues of the adjacency matrix and the shared perime-
ters result in the pattern spaces with the best cluster struc-
ture.

Our future plans involve studying in more detail the
structure of the patten-spaces resulting from our spectral
features. We intend to study how support vector machines
and the EM algorithm can be used to learn the structure of
the pattern spaces. Finally, we intend to investigate whether
the spectral attributes studied here can be used for the pur-
poses of organising large image data-bases.
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Figure 3. PCA and ICA clustering of the se-
quences
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