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Abstract

Although inexact graph-matching is a problem of potentially exponential complexity, the problem may be simplified by decomposing
the graphs to be matched into smaller subgraphs. If this is done, then the process may cast into a hierarchical framework and hence
rendered suitable for parallel computation. In this paper we describe a spectral method which can be used to partition graphs into non-
overlapping subgraphs. In particular, we demonstrate how the Fiedler-vector of the Laplacian matrix can be used to decompose graphs
into non-overlapping neighbourhoods that can be used for the purposes of both matching and clustering.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Graph partitioning is concerned with grouping the ver-
tices of a connected graph into subsets so as to minimize the
total cut weight[1]. The process is of central importance in
electronic circuit design, map colouring and scheduling[2].
However, in this paper we are interested in the process since
it provides a means by which the inexact graph-matching
problem may be decomposed into a series of simpler sub-
graph matching problems. As demonstrated by Messmer
and Bunke[3], error-tolerant graph matching can be simpli-
fied using decomposition methods and reduced to a problem
of subgraph indexing. Our aim in this paper is to explore
whether spectral methods can be used to partition graphs in
a stable manner for the purposes of matching by decompo-
sition.
Recently, there has been increased interest in the use of

spectral graph theory for characterizing the global structural
properties of graphs. Spectral graph theory aims to summa-
rize the structural properties of graphs using the eigenvectors
of the adjacency matrix or the Laplacian matrix[4]. There
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are several examples of the application of spectral matching
methods for grouping and matching in the computer vision
literature. For instance, Umeyama has shown how graphs of
the same size can be matched by performing singular value
decomposition on the adjacency matrices[5]. Here the per-
mutation matrix that brings the nodes of the graphs into cor-
respondence is found by taking the outer product of the ma-
trices of left eigenvectors for the two graphs. In related work
Shapiro and Brady[6] have shown how to locate feature
correspondences using the eigenvectors of a point-proximity
weight matrix. These two methods fail when the graphs be-
ing matched contain different numbers of nodes. However,
this problem can be overcome by using the apparatus of the
EM algorithm[7,8]. More recently, Shokoufandeh et al.[9]
have shown how graphs can be retrieved efficiently using an
indexing mechanism that maps the topological structure of
shock-trees into a low-dimensional vector space. Here the
topological structure is encoded by exploiting the interleav-
ing property of the eigenvalues.
One of the most important spectral attributes of a graph

is the Fiedler vector, i.e. the eigenvector associated with the
second smallest eigenvalue of the Laplacian matrix. In a
useful review, Mohar[10] has summarized some important
applications of Laplace eigenvalues such as the max-cut
problem, semidefinite programming and steady state random

http://www.elsevier.com/locate/patcog
mailto:jun@cs.york.ac.uk
mailto:erh@cs.york.ac.uk
http://www-users.cs.york.ac.uk/erh/


H. Qiu, E.R. Hancock / Pattern Recognition 39 (2006) 22 – 34 23

walks on Markov chains. More recently, Haemers[11] has
explored the use of interlacing properties for the eigenvalues
and has shown how these relate to the chromatic number,
the diameter and the bandwidth of graphs. In the computer
vision literature, Shi and Malik[12] have used the Fiedler
vector to develop a recursive partition scheme and have ap-
plied this to image grouping and segmentation. The Fiedler
vector may also be used for the minimum linear arrange-
ment problem(MinLA) which involves placing the nodes of
a graph in a serial order which is suitable for the purposes
of visualisation[13].
An extension of the minimum linear arrangement prob-

lem is the seriation problem which involves finding a serial
ordering of the nodes, which maximally preserves the edge
connectivity. This is clearly a problem of exponential com-
plexity. As a result approximate solution methods have been
employed. These involve casting the problem in an optimiza-
tion setting. Hence techniques such as simulated annealing
and mean field annealing have been applied to the problem.
It may also be formulated using semidefinite programming,
which is a technique closely akin to spectral graph theory
since it relies on eigenvector methods. However, recently
a graph-spectral solution has been found to the problem.
Atkins et al.[14] have shown how to use the Fiedler eigen-
vector of the Laplacian matrix to sequence relational data.
The method has been successfully applied to the consecu-
tive ones problem and a number of DNA sequencing tasks.
There is an obvious parallel between this method and steady
state random walks on graphs, which can be located using
the leading eigenvector of the Markov chain transition prob-
ability matrix. However, in the case of a random walk the
path is not guaranteed to encourage edge connectivity. The
spectral seriation method, on the other hand, does impose
edge connectivity constraints on the recovered path.
The aim in this paper is to consider whether the partitions

delivered by the Fiedler vector can be used to simplify the
graph-matching problem. We focus on two problems. The
first of these is to use the Fiedler vector to decompose graphs
by partitioning them into structural units. Our aim is to ex-
plore whether the partitions are stable under structural error,
and in particular whether they can be used for the purposes
of graph-matching. The second problem studied is whether
the partitions can be used to simplify the graphs in a hi-
erarchical manner. Here we construct a graph in which the
nodes are the partitions and the edges indicate whether the
partitions are connected by edges in the original graph. This
spectral construction can be applied recursively to provide a
hierarchy of simplified graphs. We show that the simplified
graphs can be used for efficient and reliable clustering.
The outline of the remainder of the paper is as follows.

Section 2 defines the graph Laplacian and explains themean-
ing of the Fiedler vector. In Section 3 we describe how the
Fiedler vector can be used to partition graphs into super-
cliques. Section 4 outlines how the supercliques can be used
for graph-matching using ideas drawn from string edit dis-
tance. In Section 5 we explain how the supercliques can be

used for the hierarchical simplification of graphs. Experi-
ments are presented in Section 6. Finally, Section 7 offers
some conclusions.

2. Laplacian matrix and Fiedler vector

Consider the unweighted graphG = (V ,E) whereV is
the set of nodes andE is the set of edges. The adjacency
matrix of the graph isA, and has elements

A(i, j) =
{
1 if (i, j) ∈ E,

0 otherwise.
(1)

The weighted adjacency matrix is denoted byW.
The degree matrix of the graph is the diagonal matrix

D = diag(deg(i); i ∈ V ) where the degree is the row-
sum of the adjacency matrixdeg(i) = ∑

j∈V A(i, j). With
these ingredients the Laplacian matrixL = D − A has
elements

L(i, j) =
{∑

〈i,k〉∈EA(i, k) if i = j,

−A(i, j) if i �= j and(i, j) ∈ E,

0 otherwise.
(2)

The Laplacian matrix has a number of important proper-
ties. It is symmetric and positive semidefinite. The eigen-
vector (1,1, . . . ,1)T corresponds to the trivial zero eigen-
value. If the graph is connected then all other eigenvalues
are positive and the smallest eigenvalue is a simple one,
which means that the number of connected components of
the graph is equal to the multiplicity of the smallest eigen-
value. If we arrange all the eigenvalues from the smallest to
the largest i.e. 0��1��2� · · · ��n, the most important are
the largest eigenvalue�maxand the second smallest eigen-
value�2, whose corresponding eigenvector is referred to as
theFiedler vector[15].
Our aim is to decompose the graph into non-overlapping

neighbourhoods using a path-based seriation method. The
aim is to find a path sequence for the nodes in the graph us-
ing a permutation�. The permutation gives the order of the
nodes in the sequence. The sequence is such that the ele-
ments of the edgeweight matrixWdecrease as the path is tra-
versed. Hence, if�(i)< �(j)< �(k), thenW(i, j)>W(i, k)

andW(j, k)>W(i, k). This behaviour can be captured us-
ing the penalty function

g(�) =
|V |∑
i=1

|V |∑
j=1

W(i, j)(�(i) − �(j))2.

By minimizing g(�) it is possible to find the permutation
that minimizes the difference in edge weight between adja-
cent nodes in the path, and this in turn sorts the edge weights
into magnitude order. Unfortunately, minimizingg(�) is po-
tentially NP complete due to the combinatorial nature of the
discrete permutation�. To overcome this problem, a relaxed
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solution is sought that approximates the structure ofg(�)
using a vector�x= (x1, x2, . . . , x|V |) of continuous variables
xi . Hence, the penalty function considered is

ĝ(�x) =
|V |∑
i=1

|V |∑
j=1

W(i, j)(xi − xj )
2.

The value ofĝ(�x) does not change if a constant amount is
added to each of the componentsxi . Hence, theminimization
problem must be subject to constraints on the components
of the vector�x. The constraints are that

|V |∑
i=1

x2i = 1 and
|V |∑
i=1

xi = 0. (3)

The solution to this relaxed problem may be obtained from
the Laplacian matrix. If�e = (1,1,1, . . . ,1)T is the all-ones
vector, then the solution to the minimization problem is the
vector

�x = arg min
�xT∗ .�e=0,�xT∗ �x∗=1

�xT∗L�x∗

= arg min
�xT∗ .�e=0,�xT∗ �x∗=1

∑
i>j

W(i, j)(x∗i − x∗j )2.

WhenW is positive definite, then the solution is the Fiedler
vector, i.e. the vector associated with the smallest non-zero
eigenvalue ofL. In fact, the associated eigenvalue minimizes
the Rayleigh quotient

� = arg min
x∗

�xT∗L�x∗
�xT∗ �x∗

.

3. Graph partition

The aim in this paper is to use the Fiedler vector to parti-
tion graphs into non-overlapping structural units and to use
the structural units generated by this decomposition for the
purposes of graph-matching and graph-simplification.

3.1. Decomposition

The neighbourhood of the nodei consists of its centre
node, together with its immediate neighbours connected by
edges in the graph, i.e.,̂Ni = {i} ∪ {u; (i, u) ∈ E}. An illus-
tration is provided inFig. 1, which shows a graph with two
of its neighbourhoods highlighted. Hence, each neighbour-
hood consists of acentre nodeandimmediate neighboursof
the centre node, i.e.Ni = N̂i\{i}.
The problem addressed here is how to partition the graph

into a set of non-overlapping neighbourhoods using the node
order defined by the Fiedler vector. Our idea is to assign
to each node a measure of significance as the centre of a
neighbourhood. We then traverse the path defined by the
Fielder vector selecting the centre-nodes on the basis of this
measure.

Fig. 1. Neighbourhoods.

We commence by assigning weights to the nodes on the
basis of the rank-order of their component in the Fiedler
vector. Let�=〈j1, j2, j3, . . . , j|V |〉 be the rank-order of the
nodes as defined by the Fiedler vector so that the permutation
satisfies the condition�(j1)< �(j2)< �(j3)< · · ·< �(j|V |
and the components of the Fiedler vector follow the condi-
tion xj1 >xj2 > · · ·>xj|V | . We assign weights to the nodes
based on their rank-order in the permutation. The weight
assigned to the nodei ∈ V is wi = Rank(�(i)). With this
weighted graph in hand, we can gauge the significance of
each node using the following score function:

Fi = �(deg(i) + |Ni ∩ P |) + �

wi

, (4)

whereP is the set of nodes on the perimeter of the graph,
and� and� are heuristically set thresholds. The first term
depends on the degree of the node and its proximity to the
perimeter. Hence, it will sort nodes according to their dis-
tance from the perimeter. This will allow us to partition
nodes from the outer layer first and then work inwards. The
second term ensures that the first ranked nodes in the Fielder
vector are visited first.
We use the score function to locate the non-overlapping

neighbourhoods of the graphG. We traverse this list un-
til we find a nodek1 which is neither in the perimeter, i.e.
k1 /∈P nor whose score exceeds those of its neighbours, i.e.
Fk1=arg maxi∈k1∪Nk1

Fi . When this condition is satisfied,
then the nodek1 together with its neighboursNk1 represent
the first neighbourhood. The set of nodesN̂k1 = k1 ∪ Nk1

are appended to a listT that tracks the set of nodes assigned
to the neighbourhoods. This process is repeated for all the
nodes which have not yet been assigned to a neighbourhood
i.e.R=�−T . The procedure terminates when all the nodes
of the graph have been assigned to non-overlapping neigh-
bourhood. An example is shown inFig. 2. Here the different
neighbourhoods are shown in different colours.
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Fig. 2. Graph partition.

4. Matching

Our aim here is to match the graphs using the non-
overlapping neighbourhoods detected using the Fiedler
vector. To perform the matching we use the edit-distance
method of Myers et al.[16]. In this section for complete-
ness, we review the elements of this method and explain
how it may be applied to the neighbourhoods delivered by
the Fiedler vector.
Consider a data graphGD = (VD,ED) which is to be

matched onto a model graphGM = (VM,EM). The state of
correspondence match can be represented by the function
f : VD �→ VM ∪ {�} from the node-set of the data graph
onto the node-set of the model graph, where the node-set
of the model graph is augmented by adding a NULL label,
�, to allow for unmatchable nodes in the data graph. Our
score function for the match is the average over the matching
probabilities for the set of neighbourhoods of the graph

QD,M(f ) = 1

|VD|
∑
i∈VD

P (Fi), (5)

whereFi = (f (u0), f (u1), . . . , f (u|ND
i |) denotes the rela-

tional image of the neighbourhoodND
i in GD under the

matching functionf.
We use the Bayes rule to compute the matching proba-

bility over a set of legal structure-preserving mappings be-
tween the data and model graphs. The set of mappings is
compiled by considering the cyclic permutations of the pe-
ripheral nodes about the centre node of the neighbourhood.
The set of feasible mappings generated in this way is de-
noted by�i = {S} which consists of structure-preserving
mapping of the formS = (s0, s1, . . . , su, . . . , s|ND

i |), where
su ∈ j ∪ {v; (j, v) ∈ NM

j } ∪ � is either one of the node-
labels drawn from the model graph neighbourhood or the
null-label �, andu ∈ ND

i is one of the node-labels drawn
from the data graph neighbourhoodND

i .
With the structure preservingmappings to hand we use the

Bayes formula to compute the matching probability,P(Fi).

This is done by expanding over the set of structure preserving
mappings�i in the following manner:

P(Fi) =
∑
S∈�i

P (Fi |S) · P(S). (6)

We assume a uniform distribution of probability over the
structure preserving mappings and writeP(S)=1/|�i | The
conditional matching probabilityP(Fi |S) is determined by
comparing every assigned matchf (u) in the configuration
Fi with the corresponding itemsu in the structure preserving
mappingS.

4.1. Edit distance

Tomodel the structural differences in the neighbourhoods,
we use the Levenshtein or string edit distance[16–18]. This
models structural error by considering insertions and dele-
tions, in addition to relabelling. In what follows, we work
with the set of structure preserving mappings�c

i which con-
tains only cyclic permutations and whose size is therefore
equal to|ND

i | − 1.
Let X andY be two strings of symbols drawn from an

alphabet�. We wish to convertX to Y via an ordered se-
quence of operations such that the cost associated with the
sequence is minimal. The original string to string correc-
tion algorithm definedelementary edit operations, (a, b) �=
(�, �) wherea and b are symbols from the two strings or
the NULL symbol,�. Thus, changing symbolx to y is de-
noted by(x, y), insertingy is denoted(�, y), and deleting
x is denoted(x, �). A sequence of such operations which
transformsX intoY is known as anedit transformationand
denoted	 = 〈
1, . . . , 
|	|〉. Elementary costs are assigned
by an elementary weighting function� : �∪{�}×�∪{�} �→
R; the cost of an edit transformation,C(	), is the sum of
its elementary costs. The edit distance betweenX andY is
defined as

d(X, Y ) =min{C(	)|	 transformsX to Y }. (7)

In Ref. [19], Marzal and Vidal introduced the notion of an
edit pathwhich is a sequence of ordered pairs of positions
in X andY such that the path monotonically traverses the
edit matrix ofx andy from (0,0) to (|X|, |Y |).
Essentially, the transition from one point in the path to the

next is equivalent to an elementary edit operation:(a, b) →
(a + 1, b) corresponds to deletion of the symbol inX at
position a. Similarly, (a, b) → (a, b + 1) corresponds to
insertion of the symbol at positionb in Y. The transition
(a, b) → (a+1, b+1) corresponds to a change fromX(a) to
Y (b). Thus, the cost of an edit path,C(P ), can be determined
by summing the elementary weights of the edit operations
implied by the path.

d(X, Y ) =min{C(P |P is an edit path fromX to Y )}. (8)
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4.2. Matching probabilities

If we replaceX andY by a structure preserving map-
ping, Si , and the image of a data graph neighbourhood un-
der the match,Fj , we can see thatFj could have arisen
from S through the action of a memoryless error process,
statistically independent of position (since the errors that
“transformed”StoFj could have occurred in any order). So
we can factorize (6) over the elementary operations implied
by the edit pathP ∗

P(Fj |Si) =
∏

(f (u),v)⇐ P ∗
Fj ,Si

P (f (u)|v), (9)

where(f (u), v) is an insertion, a deletion, a change or an
identity operation implied by the edit pathP ∗

Fj ,Si
between

the neighbourhoodFj and the unpadded structure preserving
mappingSi . For simplicity, we assume that different edit
operations have identical cost. This does not influence the
probability because it is the probabilities of the transitions
in the path which contribute to the matching prior not the
edit weights themselves, although they will determine the
magnitude of the minimum cost.

�(f (u), v) =
{
0 if (f (u), v) is an identity,
1 otherwise.

(10)

So, the probability for the edit operation given to each pair is

P(f (u)|v) =
{
(1− Pe) if (f (u), v) is an identity,
Pe otherwise.

(11)

If we define the number of non-identity transformations in
the edit path to be�(P ∗

Fj ,Si
), the matching probability of

Fj can be given as

P(Fj ) =
KND

j

|�|
∑
Si∈�

exp[−Kw�(P ∗
Fj ,Si

)], (12)

whereKND
j

= (1− Pe)
|ND

j | andKw = ln (1−Pe)
Pe

.

5. Hierarchical simplification

The neighbourhoods extracted using the Fiedler vector
may also be used to perform hierarchical graph simplifica-
tion.

5.1. Partition arrangements

Our simplification process proceeds as follows. We cre-
ate a new graph in which each neighbourhoodN̂i = {i} ∪
{u; (i, u) ∈ E} is represented by a node. In practice this is
done by eliminating those nodes, which are not the centre
nodes of the neighbourhoodsNi = N̂i\{i}. In other words,
we select the centre node of each neighbourhood to be the
node-set for the next level representation. The node set is

given byV̂ = {N̂1\N1, N̂2\N2, . . . , N̂n\Nn}. Our next step
is to construct the edge-set for the simplified graph. We con-
struct an edge between two nodes if there is a common edge
contained within their associated neighbourhoods. The con-
dition for the nodesi ∈ V̂ andj ∈ V̂ to form an edge in the
simplified graphĜ= (V̂ , Ê) is (i, j) ∈ Ê ⇒ |N̂i ∩ N̂j |�2.

5.2. Clustering

To provide an illustration of the usefulness of the sim-
plifications provided by the Fiedler vector, we focus on the
problem of graph clustering. The aim here is to investigate
whether the simplified graphs preserve the pattern space dis-
tribution of the original graphs. There are a number of ways
in which we could undertake this study. However, here we
use a simple graph-spectral clustering method, which is in
keeping with the overall philosophy of this paper.
Suppose that we aim to cluster the set of M graphs

{G1, . . . Gk, . . . GM}. We commence by performing the
spectral decompositionLk = k�T on the Laplacian ma-
trix Lk for the graph indexedk, where�k=diag(�1k, �

2
k, . . .)

is the diagonal matrix of eigenvalues andk is a matrix
with eigenvectors as columns. For the graphGk, we con-
struct a vectorBk = (�1k, �

2
k, . . . , �

m
k )

T from the leadingm
eigenvalues. We can visualize the distribution of graphs by
performing multidimensional scaling (MDS) on the matrix
of distancesdk1,k2 between graphs. This distribution can be
computed using either the edit distance technique used in the
previous section wheredk1,k2= − ln Qk1,k2 or by using the
spectral features wheredk1,k2 = (Bk1 − Bk2)

T(Bk1 − Bk2).
MDS is a procedure which allows data specified in terms

of a matrix of pairwise distances to be embedded in a Eu-
clidean space. Here we intend to use the method to embed
the graphs extracted from different viewpoints in a low-
dimensional space. The pairwise distancesdk1,k2 are used
as the elements of anN ×N dissimilarity matrixR, whose
elements are defined as follows:

Rk1,k2 =
{
dk1,k2 if k1 �= k2,

0 if k1 = k2.
(13)

In this paper, we use the classical multidimensional scaling
method to embed the graphs in a Euclidean space using
the matrix of pairwise dissimilaritiesR. The first step of
MDS is to calculate a matrixT whose element with row
r and columnc is given by Trc = −1

2[d2rc − d̂2r. − d̂2.c +
d̂2..], whered̂r. = 1/N

∑N
c=1 drc is the average dissimilarity

value over therth row, d̂.c is the dissimilarity average value
over thecth column andd̂.. = 1/N2∑N

r=1
∑N

c=1 dr,c is the
average dissimilarity value over all rows and columns of the
dissimilarity matrixR.
We subject the matrixT to an eigenvector analysis to

obtain a matrix of embedding coordinatesY. If the rank
of T is k, k�N , then we will havek non-zero eigenval-
ues. We arrange thesek non-zero eigenvalues in descending
order, i.e.l1� l2� · · · � lk >0. The corresponding ordered
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eigenvectors are denoted byui where li is the ith eigen-
value. The embedding coordinate system for the graphs is
Y = [√(l1)u1,

√
l2u2, . . . ,

√
lsus], For the graph indexedj,

the embedded vector of coordinates is a row of matrixY, so
yj = (Yj,1, Yj,2, . . . , Yj,s)

T.

Fig. 3. A sequence of synthetic graphs showing the effect of controlled node deletion on the stability of the supercliques.

6. Experiments

The aims in this section are threefold. First, we perform
a sensitivity study to illustrate that the neighbourhoods de-
livered by the Fiedler vector form stable structural units for
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computing edit distance. Second, we show that the neigh-
bourhood partition scheme leads to accurate matches on real
world data. Third, we aim to illustrate that the simplification
procedure results in a stable distribution of graphs in pattern-
space.
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Fig. 6. Graph partition on Delaunay triangulations.

6.1. Sensitivity study

The aim in this part of the experiments is to measure the
sensitivity of our new partition-based matching method to
structural error. The synthetic graphs we used here are

Fig. 5. An example in inexact graph matching.
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Table 1
Correspondence allocation results for three methods

Method House index 0 1 2 3 4 5 6 7 8 9
Corners 30 32 32 30 30 32 30 30 30 31

EM Correct — 29 26 24 17 13 11 5 3 0

False — 0 2 3 8 11 12 15 19 24
Missed — 1 2 3 5 6 7 10 8 6

Discrete relaxation Correct — 26 23 18 16 15 15 11 14 9

False — 4 6 9 12 14 13 17 16 20
Missed — 0 1 3 2 1 2 2 0 1

Edit distance Correct — 26 24 20 19 17 14 11 13 11

False — 3 5 8 11 12 16 15 17 19
Missed — 1 1 2 0 1 0 4 0 0

the Delaunay triangulations of randomly generated point-
sets. The effects of structural errors are simulated by ran-
domly deleting nodes and re-triangulating the remaining
nodes. We have commenced by generating a random graph
which has 40 nodes. We have randomly deleted nodes until
only 12 nodes remain, i.e. there is 70% corruption.Fig. 3
shows a sequence with one node deleted at a time. Coded
in different colours are the different supercliques which re-
sult from the partitioning of nodes. These remain relatively
stable as the nodes are deleted.
We have matched the corrupted graphs to the original

graph using the discrete relaxation and edit distance algo-
rithms. We also compare the results with four alternative al-
gorithms. These are the original discrete relaxation method
of Wilson and Hancock[8] which is applied to overlapping
supercliques, the quadratic assignment method of Gold and
Rangarajan[20], the non-quadratic graduated assignment
method of Finch et al.[21], and, the singular value decom-
position method of Luo and Hancock[7]. In Fig. 4we show
the fraction of correct correspondences as a function of the
fraction of nodes deleted.
From this comparison it is clear that our method is robust

to structural error. However, it does not perform as well as
the original Wilson and Hancock method. One reason for
this is that the supercliques delivered by our partitioning
method do become unstable under significant corruption.
When used in conjunction with the edit-distance method,

the partitions lead to better results than when used with the
dictionary-based discrete relaxation method. This is impor-
tant since the former method is more computationally ef-
ficient than the latter, since the overheads associated with
dictionary construction can grow exponentially if dummy
nodes need to be inserted.
An example of the set of matches used in this experiment

is shown inFig. 5. Here the different colours in the two
graphs again encode the supercliques. The thin black lines
between the two graphs show the correspondence matches.
Here the results were obtained using edit-distance method
described earlier. The graphs are of very different size. The
set of roughly parallel lines correspond to the correct corre-
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Fig. 8. Correspondences between the first and the third images.

Fig. 9. Correspondences between the first and the fifth images.
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spondences, and the remaining lines are the correspondence
errors.

6.2. Real-word data

The real-world data used is taken from the CMU model-
house sequence. This sequence is made up of a series of

Fig. 10. Correspondences between the first and the seventh images.

Fig. 11. Correspondences between the first and the tenth images.
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Fig. 12. Example images from the CMU, MOVI and chalet sequences and their corresponding graphs.

images which have been captured from different viewpoints.
In order to convert the images into abstract graphs for match-
ing, we extract point features using corner detector by Luo
et al.[22]. Our graphs are the Delaunay triangulations of the
corner-features. The supercliques obtained by graph parti-
tion are shown in different colours inFig. 6.
We have matched the first image to each of the subsequent

images in the sequence by using discrete relaxation and edit
distance. The results of those two methods are compared
with those obtained using the method of Luo et al.[22] in
Table 1. This table contains the number of detected corners
to be matched, the number of correct correspondence, the
number of missed corners and the number of miss-matched
corners.
Fig. 7shows us the correct correspondence rate as a func-

tion of view difference for the two methods based on the
data inTable 1. From the results, it is clear that our new
method degrades gradually and out performs the Luo and
Hancock’s EMmethod when the difference in viewing angle
is large.Figs. 8–11show the results of each pair of graph
matching. There are clearly significant structural differences
in the graphs including rotation, scaling and perspective dis-
tortion. But even in the worst case, our method has a correct
correspondence rate of 36%.

6.3. Graph clustering

We have collected sequences of views for three toy
houses. For each object the image sequences are obtained
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Fig. 13. Pairwise spectral graph distance; (left) original graph, (right) reduced graph.

Fig. 14. Scatter plot for the original graph and reduced graph pairwise distance.

Fig. 15. Graph edit distance; (left) original graph, (right) reduced graph.
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Fig. 16. Scatter plots for the original graph and reduced graph edit distance.

Fig. 17. MDS for the original graph (left) edit distance, (right) spectral feature vector.

under slowly varying changes in viewer direction. From each
image in each view sequence, we extract corner features.
We use the extracted corner points to construct Delaunay
graphs. In our experiments we use three different sequences.
Each sequence contains images with equally spaced view-
ing directions. InFig. 12 we show examples of the raw
image data and the associated graphs for the three toy
houses, which we refer to as CMU/VASC, MOVI and Swiss
Chalet.
In Fig. 13the two panels show the distancesd(k1, k2) =

(Bk1 −Bk2)
T(Bk1 −Bk2) between the vectors of eigenvalues

for the graphs indexedk1 andk2. The left panel is for the
original graph and the right panel is for the simplified graph.
It is clear that the simplification process has preserved much
of the structure in the distance plot. For instance, the three

sequences are clearly visible as blocks in the panels.Fig. 14
shows a scatter plot of the distance between the simplified
graphs (y-axis) as a function of the distance between the
original graphs. Although there is considerable dispersion,
there is an underlying linear trend.
Figs. 15and16 repeat the distance matrices and the scat-

ter plot using edit distance rather than the L2 norm for the
spectral feature vectors. Again, there is a clear block struc-
ture. However, the dispersion in the scatter plot is greater.
To take this study one step further, inFigs. 17and18 we
show the result of performing MDS on the distances for both
the edit distance and the spectral feature vector. Here the
images from which the graphs are extracted are shown as
thumbnails embedded in the space spanned by the leading
eigenvectors of the MDS analysis. In both cases the views
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Fig. 18. MDS for the reduced graph (left) edit distance, (right) spectral feature vector.

of the different houses fall into distinct regions of the plot.
Moreover, the hierarchical simplification of the graphs does
not destroy the cluster structure.

7. Conclusions

In this paper, we have used the Fiedler vector of the Lapla-
cian matrix to partition the nodes of a graph into struc-
tural units for the purposes of matching. This allows us to
decompose the problem of matching the graphs into that
of matching structural subunits. We investigate the match-
ing of the structural subunits using a edit distance method.
The partitioning method is sufficiently stable under struc-
tural error that accuracy of match is not sacrificed. Our mo-
tivation in undertaking this study is to use the partitions to
develop a hierarchical matching method. The aim is to con-
struct a graph that represents the arrangement of the par-
titions. By first matching the partition arrangement graphs,
we provide constraints on the matching of the individual
partitions.
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