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Abstract—Graphstructures haveproven computationally cumbersome for pattern analysis. The reason for this is that, before graphscan

be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different

size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacianmatrix.We showhow the elements of

the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of

these polynomials can be used as graph featureswhich can be encoded in a vectorial manner.We extend this representation to graphs in

which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian

property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether

the vectors of invariants can be embedded in a low-dimensional space using a number of alternative strategies, including principal

components analysis (PCA), multidimensional scaling (MDS), and locality preserving projection (LPP). Experimentally, we demonstrate

that the embeddings result in well-defined graph clusters. Our experiments with the spectral representation involve both synthetic and

real-world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to

discriminate between graphs on the basis of their structure. The real-world experiments show that the method can be used to locate

clusters of graphs.

Index Terms—Graph matching, graph features, spectral methods.

�

1 INTRODUCTION

THE analysis of relational patterns or graphs has proven to
beconsiderablymoreelusive thantheanalysisofvectorial

patterns. Relational patterns arise naturally in the representa-
tion of data inwhich there is a structural arrangement and are
encountered in computer vision, genomics, and network
analysis. One of the challenges that arise in these domains is
that of knowledge discovery from large graph data sets. The
tools that are required in this endeavor are robust algorithms
that can be used to organize, query, and navigate large sets of
graphs. In particular, the graphs need to be embedded in a
pattern space so that similar structures are close together and
dissimilar ones are far apart. Moreover, if the graphs can be
embeddedonamanifold in apattern space, then themodes of
shape variation can be explored by traversing themanifold in
a systematic way. The process of constructing low-dimen-
sionalspacesormanifolds isaroutineprocedurewithpattern-
vectors. A variety of well-established techniques, such as
principal componentsanalysis [12],multidimensional scaling
[7], and independent components analysis, together with
more recently developed ones, such as locally linear embed-
ding [28], isomap [36], and the Laplacian eigenmap [2], exist
for solving the problem. In addition to providing generic data
analysis tools, thesemethodshavebeen extensively exploited
in computer vision to construct shape—spaces for 2D or
3D objects and, in particular, faces represented using
coordinate and intensity data. Collectively, these methods

are sometimes referred to as manifold learning theory.
However, there are few analogous methods which can be
used to construct low-dimensional pattern spaces or mani-
folds for sets of graphs.

There are two reasonswhypattern-vectors aremore easily
manipulated than graphs. First, there is no natural ordering
for the nodes in a graph, unlike the components of a vector.
Hence, correspondences to a reference structure must be
established as a prerequisite. The second problem is that the
variation in thegraphsof aparticular classmaymanifest itself
as subtle changes in structure, which may involve different
numbers of nodes or different edge structure. Even if the
nodes or the edges of a graph could be encoded in a vectorial
manner, then the vectors would be of variable length. One
way of circumventing these problems is to develop graph-
clustering methods in which an explicit class archetype and
correspondences with it are maintained [25], [31]. Graph
clustering is an important process since it can be used to
structure large databases of graphs [32] in a manner that
renders retrieval efficient. One of the problems that hinders
graph clustering is the need to define a class archetype that
can capture both the salient structure of the class and the
modes of variation contained within it. For instance, Munger
et al. [22] have recently taken some important steps in this
direction by developing a genetic algorithm for searching for
median graphs. Variations in class structure can be captured
and learned provided a suitable probability distribution can
be defined over the nodes and edges of the archetype. For
instance, the random graphs of Wong et al. [40] capture this
distribution using a discretely defined probability distribu-
tion and Bagdanov and Worring [1] have overcome some of
the computational difficulties associatedwith thismethod by
using continuousGaussian distributions. There is a consider-
able body of related literature in the graphical models
community concerned with learning the structure of Baye-
sian networks from data [11]. Moreover, in recent work, we
have shown that, if reliable correspondence information is to
hand, then the edge structure of the graph canbe encoded as a
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long-vector and embedded in a low-dimensional space using
principal components analysis [20]. An alternative to using a
probability distribution over a class archetype is to use
pairwise clustering methods. Here, the starting point is a
matrix of pairwise affinities between graphs. There are a
variety of algorithms available for performing pairwise
clustering, but one of the most popular approaches is to use
spectral methods, which use the eigenvectors of an affinity
matrix to define clusters [33], [13]. There are a number of
examples of applying pairwise clustering methods to graph
edit distances and similarity measures [19], [23].

However, one of the criticisms that can be aimed at these
methods for learning the distribution of graphs is that they
are, in a sense, brute force because of their need for
correspondences either to establish an archetype or to
compute graph similarity. For noisy graphs (those which
are subject to structural differences), this problem is thought
to be NP-hard. Although relatively robust approximate
methods exist for computing correspondence [5], these can
prove time consuming. In this paper, we are interested in the
problem of constructing pattern vectors for graphs. These
vectors represent the graph without the need to compute
correspondences. These vectors are necessarily large, since
they must represent the entire set of graphs of a particular
size. For this reason, we are also interested in pattern spaces
for families of graphs. In particular, we are interested in the
problem of whether it is possible to construct a low-
dimensional pattern space from our pattern vectors.

The adopted approach is based on spectral graph theory
[6], [21], [3]. Although existing graph-spectral methods have
proven effective for graph-matching and indexing [38], they
have not made full use of the available spectral representa-
tion and are restricted to the use of either the spectrum of
eigenvalues or a single eigenvector.

1.1 Related Literature

Spectral graph theory is concerned with understanding how
the structural properties of graphs can be characterized using
the eigenvectors of the adjacencymatrix or the closely related
Laplacian matrix (the degree matrix minus the adjacency
matrix). There are good introductory texts on the subject by
Biggs [3] and Cvetkovic et al. [8]. Comprehensive reviews of
recent progress in the field can be found in the research
monographofChung [6] and the surveypapers of Lovasc [17]
and Mohar [21]. The subject has acquired considerable
topicality in the computer science literature since spectral
methods can be used to develop efficient methods for path
planning and data clustering. In fact, the Googlebot search
engine uses ideas derived from spectral graph theory.
Techniques from spectral graph theory have been applied
in a number of areas in computer vision, too, and have led to
the development of algorithms for grouping and segmenta-
tion [33], correspondence matching [38], [18], and shape
indexing [34]. Among the first to apply spectral ideas to the
grouping problemwere Scott andLonguet-Higgins [30],who
showed how to extract groups of points by relocating the
eigenvectors of a point-proximitymatrix.However, probably
the best knownwork in this area is that of Shi andMalik [33],
who showedhow the Fiedler (second smallest) eigenvector of
the Laplacian matrix could be used to locate groupings that
optimize a normalized cut measure. In related work, both
Perona and Freeman [24], and Sarkar and Boyer [29] have
shown how the thresholded leading eigenvector of the
weighted adjacency matrix can be used for grouping points

and line-segments. Robles-Kelly and Hancock [26] have
developed a statistical variant of the method which avoids
thresholding the leading eigenvector and instead employs
the EM algorithm to iteratively locate clusters of objects.

The use of graph-spectral methods for correspondence
matching has proven to be an altogether more elusive task.
The idea underpinning spectral methods for correspondence
analysis is to locatematches betweennodes by comparing the
eigenvectors of the adjacencymatrix.However, although this
methodworkswell forgraphswith the samenumberofnodes
and small differences in edge structure, it does not workwell
when graphs of different size are being matched. The reason
for this is that the eigenvectors of the adjacency matrix are
unstable under changes in the size of the adjacency matrix.
Turning to the literature, the algorithm of Umeyama [38]
illustrates this point very clearly. Themethod commences by
performing singular value decomposition on the adjacency
matrices of the graphs under study. The permutation matrix
which brings nodes of the graphs into correspondence is
found by taking the sum of the outer products of the sets of
corresponding singular vectors. The method cannot be
operated when the adjacency matrices are of different size,
i.e., the singular vectors are of different length. To overcome
this problem, Luo and Hancock [18], have drawn on the
apparatus of the EMalgorithmand treat the correspondences
as missing or hidden data. By introducing a correspondence
probability matrix, they overcome problems associated with
the different sizes of the adjacency matrices. An alternative
solution to the problem of size difference is adopted by
Kosinov and Caelli [16] who project the graph onto the
eigenspace spanned by its leading eigenvectors. Provided
that the eigenvectors are normalized, then the relative angles
of the nodes are robust to size difference under the projection.
In related work, Kesselman et al. have used a minimum
distortion procedure to embed graphs in a low-dimensional
spacewhere correspondences can be located between groups
of nodes [14]. Recent work by Robles-Kelly andHancock [27]
has shownhowan eigenvectormethod can beused to sort the
nodes of a graph into string order and how string matching
methodscanbeused toovercome thesizedifferenceproblem.
Finally, Shokoufandeh et al. [34] have shown how to use the
interleaving property of the eigenvalues to index shock trees.

1.2 Contribution

As noted earlier, one of the problems which hinders the
pattern analysis of graphs is that they are neither vectorial in
nature nor easily transformed into vectors. Although the
spectral methods described above provide ameans bywhich
the structure of graphs can be characterized and the required
correspondences canbe located, theymakeonly limiteduseof
the available spectral information. Moreover, although
graph-matching may provide a fine measure of distance
between structures and this, in turn, may be used to cluster
similar graphs, it does not result in an ordering of the graphs
that hasmetrical significance under structural variations due
to graded structural changes. Hence, we aim to use spectral
methods to vectorize graphs and, hence, embed them in low-
dimensionalpatternspacesusingmanifoldlearningmethods.
Wedescribeamethodforconstructingspectral featureswhich
are permutation invariants and which make use of the full
spectral matrix. To construct these invariants, we use
symmetric polynomials. The arguments of the polynomials
are theelementsof thespectralmatrix.Weusethevaluesof the
symmetric polynomials to construct graph pattern-vectors.
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Size differences between graphs can be accommodated by
padding the spectral matrix with trailing vectors of zeros.

The representation can be extended to attributed graphs
using graph property matrices with complex entries instead
of the real valued Laplacian. We show how weighted and
attributed edges can be encoded by complex numbers with
the weight as the magnitude or modulus and the attribute as
the phase. If the property matrices are required to be
Hermitian, then the eigenvalues are real and the eigenvectors
are complex. The real and imaginary components of the
eigenvectors can again be used to compute symmetric
polynomials.

We explore how the spectral feature vectors may be used
to construct pattern spaces for sets of graphs [14]. We
investigate a number of different approaches. The first of
these is to apply principal components analysis to the
covariance matrix for the vectors. This locates a variance
preserving embedding for the pattern vectors. The second
approach is multidimensional scaling and this preserves the
distance between vectors. The third approach is locally
linear projection which aims to preserve both the variance
of the data and the pattern of distances [10]. We demon-
strate that this latter method gives the best graph-clusters.

The outline of this paper is as follows: Section 2 details
our construction of the spectral matrix. In Section 3, we
show how symmetric polynomials can be used to construct
permutation invariants from the elements of the spectral
matrix. Section 4 provides details of how the symmetric
polynomials can be used to construct useful pattern vectors
and how problems of variable node-set size can be
accommodated. To accommodate attributes, in Section 5,
we show how to extend the representation using complex
numbers to construct a Hermitian property matrix. Section 6
briefly reviews how PCA, MDS, and locality preserving
projection can be performed on the resulting pattern
vectors. In Section 7, we present results on both synthetic
and real-world data. Finally, Section 8 offers some conclu-
sions and suggests directions for further investigation.

2 SPECTRAL GRAPH REPRESENTATION

Consider the undirected graph G ¼ ðV; E;WÞ with node-set
V ¼ f�1; �2; . . . ; �ng, edge-set E ¼ fe1; e2; . . . ; emg � V � V,
and weight function W : E ! ð0; 1�. The adjacency matrix A
for the graph G is the n� nmatrix with elements

Aab ¼
1 if ð�a; �bÞ 2 E
0 otherwise:

�

In otherwords, thematrix represents the edge structure of the
graph. Clearly since the graph is undirected, the matrix A is
symmetric. If the graph edges are weighted, the adjacency
matrix is defined to be

Aab ¼
Wð�a; �bÞ if ð�a; �bÞ 2 E
0 otherwise:

�

The Laplacian of the graph is given by L ¼ D�A, whereD
is the diagonal node degree matrix whose elements Daa ¼Pn

b¼1 Aab are the number of edges which exit the individual
nodes. The Laplacian is more suitable for spectral analysis
than the adjacency matrix since it is positive semidefinite.

In general, the task of comparing two such graphs,
G1 and G2, involves finding a correspondence mapping
between the nodes of the two graphs, f : V1 [ � $ V2 [ �.

The recovery of the correspondence map f can be posed as
that of minimizing an error criterion. The minimum value
of the criterion can be taken as a measure of the similarity
of the two graphs. The additional node “�” represents a
null match or dummy node. Extraneous or additional
nodes are matched to the dummy node. A number of
search and optimization methods have been developed to
solve this problem [5], [9]. We may also consider the
correspondence mapping problem as one of finding the
permutation of nodes in the second graph which places
them in the same order as that of the first graph. This
permutation can be used to map the Laplacian matrix of
the second graph onto that of the first. If the graphs are
isomorphic, then this permutation matrix satisfies the
condition L1 ¼ PL2P

T . When the graphs are not iso-
morphic, then this condition no longer holds. However,
the Frobenius distance jjL1 �PL2P

T jj between the
matrices can be used to gauge the degree of similarity
between the two graphs. Spectral techniques have been
used to solve this problem. For instance, working
with adjacency matrices, Umeyama [38] seeks the
permutation matrix PU that minimizes the Frobenius
norm JðPUÞ ¼ jjPUA1P

T
U �A2jj. The method performs

the singular value decompositions A1 ¼ U1�1U
T
1 and

A2 ¼ U2�2U
T
2 , where the Us are orthogonal matrices and

the �s are diagonal matrices. Once these factorizations
have been performed, the required permutation matrix is
approximated by U2U

T
1 .

In some applications, especially structural chemistry,
eigenvalues have also been used to compare the structural
similarity of different graphs. However, although the
eigenvalue spectrum is a permutation invariant, it repre-
sents only a fraction of the information residing in the
eigensystem of the adjacency matrix.

Since the matrix L is positive semidefinite, it has
eigenvalues which are all either positive or zero. The
spectral matrix is found by performing the eigenvector
expansion for the Laplacian matrix L, i.e.,

L ¼
Xn
i¼1

�ieie
T
i ;

where �i and ei are the n eigenvectors and eigenvalues of
the symmetric matrix L. The spectral matrix then has the
scaled eigenvectors as columns and is given by

� ¼
ffiffiffiffiffi
�1

p
e1;

ffiffiffiffiffi
�2

p
e2; . . .

ffiffiffiffiffi
�n

p
en

� �
: ð1Þ

The matrix� is a complete representation of the graph in
the sense that we can use it to reconstruct the original
Laplacian matrix using the relation L ¼ ��T .

The matrix � is a unique representation of L iff all
n eigenvalues are distinct or zero. This follows directly from
the fact that there are n distinct eigenvectors when the
eigenvalues are also all distinct. When an eigenvalue is
repeated, then there exists a subspace spanned by the
eigenvectors of the degenerate eigenvalues in which all
vectors are also eigenvectors of L. In this situation, if the
repeatedeigenvalue isnonzero, there is continuumofspectral
matrices representing the same graph. However, this is rare
for moderately large graphs. Those graphs for which the
eigenvalues are distinct or zero are referred to as simple.
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3 NODE PERMUTATIONS AND INVARIANTS

The topology of a graph is invariant under permutations of
the node labels. However, the adjacency matrix and, hence,
the Laplacian matrix, is modified by the node order since the
rows and columns are indexed by the node order. If we
relabel the nodes, the Laplacian matrix undergoes a
permutation of both rows and columns. Let the matrix P be
the permutation matrix representing the change in node
order. The permuted matrix is L0 ¼ PLPT . There is a family
of Laplacian matrices which are can be transformed into one
another using a permutation matrix. The spectral matrix is
also modified by permutations, but the permutation only
reorders the rows of the matrix � To show this, let L be the
Laplacian matrix of a graph G and let L0 ¼ PLPT be the
Laplacian matrix obtained by relabeling the nodes using the
permutation P. Further, let e be a normalized eigenvector of
L with associated eigenvalue � and let e0 ¼ Pe. With these
ingredients, we have that

L0e0 ¼ PLPTPe ¼ PLe ¼ �e0:

Hence, e0 is an eigenvector ofL0 with associated eigenvalue�.
As a result, we can write the spectral matrix �0 of the
permuted Laplacian matrix L0 ¼ �0�0T as �0 ¼ P�. Direct
comparison of the spectral matrices for different graphs is,
hence, not possible because of the unknown permutation.

The eigenvalues of the adjacency matrix have been used
as a compact spectral representation for comparing graphs
because they are not changed by the application of a
permutation matrix. The eigenvalues can be recovered from
the spectral matrix using the identity

�j ¼
Xn
i¼1

�2
ij:

The expression
Pn

i¼1 �
2
ij is, in fact, a symmetric polynomial in

the components of eigenvector ei. A symmetric polynomial
is invariant under permutation of the variable indices. In
this case, the polynomial is invariant under permutation of
the row index i.

In fact, the eigenvalue is just one example of a family of
symmetric polynomials which can be defined on the
components of the spectral matrix. However, there is a
special set of these polynomials, referred to as the elementary
symmetric polynomials (S) that form a basis set for symmetric
polynomials. In other words, any symmetric polynomial
can itself be expressed as a polynomial function of the
elementary symmetric polynomials belonging to the set S.

We therefore turn our attention to the set of elementary
symmetric polynomials. For a set of variables fv1; v2 . . . vng,
they can be defined as

S1ðv1; . . . vnÞ ¼
Pn
i¼1

vi;

S2ðv1; . . . vnÞ ¼
Pn
i¼1

Pn
j¼iþ1

vivj;

..

.

Srðv1; . . . vnÞ ¼
P

i1<i2<...<ir

vi1vi2 . . . vir ;

..

.

Snðv1; . . . vnÞ ¼
Qn
i¼1

vi:

The power symmetric polynomial functions,

P1ðv1; . . . vnÞ ¼
Pn
i¼1

vi;

P2ðv1; . . . vnÞ ¼
Pn
i¼1

v2i ;

..

.

Prðv1; . . . vnÞ ¼
Pn
i¼1

vri ;

..

.

Pnðv1; . . . vnÞ ¼
Pn
i¼1

vni ;

also formabasis set over the set of symmetricpolynomials.As

a consequence, any function which is invariant to permuta-

tion of the variable indices and that can be expanded as a

Taylor series can be expressed in terms of one of these sets of

polynomials. The two sets of polynomials are related to one

another by the Newton-Girard formula:

Sr ¼
ð�1Þrþ1

r

Xr
k¼1

ð�1ÞkþrPkSr�k; ð2Þ

where we have used the shorthand Sr for Srðv1; . . . : : ; vnÞ
and Pr for Prðv1; . . . ; vnÞ. As a consequence, the elementary

symmetric polynomials can be efficiently computed using

the power symmetric polynomials.
In thispaper,we intend touse thepolynomials to construct

invariants from the elements of the spectral matrix. The

polynomials can provide spectral “features” which are

invariant under node permutations of the nodes in a graph

and utilize the full spectral matrix. These features are

constructed as follows: Each column of the spectral matrix�

forms the input to the set of spectral polynomials. For

example, the column f�1;i;�2;i; . . . ;�n;ig produces the poly-

nomials S1ð�1;i; . . . ;�n;iÞ, S2ð�1;i; . . . ;�n;iÞ; . . . ; Snð�1;i; . . . ;

�n;iÞ. The values of each of these polynomials is invariant to

the node order of the Laplacian. We can construct a set of

n2 spectral features using then columns of the spectralmatrix

in combination with the n symmetric polynomials.
Each set of n features for each spectral mode contains all

the information about that mode up to a permutation of

components. This means that it is possible to reconstruct the

original components of the mode given the values of the

features only. This is achieved using the relationship

between the roots of a polynomial in x and the elementary

symmetric polynomials. The polynomialY
i

ðx� viÞ ¼ 0 ð3Þ

has roots v1; v2; . . . ; vn. Multiplying out (3) gives

xn � S1x
n�1 þ S2x

n�2 þ . . .þ ð�1ÞnSn ¼ 0; ð4Þ

where we have again used the shorthand Sr for

Srðv1; . . . : : ; vnÞ. By substituting the feature values into

(4) and finding the roots, we can recover the values of the

original components. The root order is undetermined, so,

as expected, the values are recovered up to a permutation.
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4 PATTERN VECTORS FROM SYMMETRIC

POLYNOMIALS

In this section, we detail how the symmetric polynomials
can be used to construct graph feature vectors which can be
used for the purposes of pattern analysis. There are two
practical issues that need to be addressed. The first of these
is how to deal with graphs which have node-sets of
different size. The second is how to transform the vectors
into an informative representation.

4.1 Graphs of Different Sizes

In order to accommodate graphs with different numbers of
nodes,weneed to be able to compare spectral representations
of different sizes. This is achieved by expanding the
representation. Consider two graphs with m and n nodes,
respectively, where m < n. If we add n�m nodes with no
connections to the smaller graph,we obtain two graphs of the
same size. The edit cost in terms of edge insertions and
deletions between these twographs is identical to the original
pair. The effect on the spectral representation ismerely to add
trailing zeros to each eigenvector and also additional zero
eigenmodes. As a consequence, the first m elementary
symmetric polynomials are unchanged and the subsequent
n�m polynomials are zero. The new representation in the
symmetric polynomials S can therefore be easily calculated.
The corresponding power symmetric polynomials can be
calculated using the Newton-Girard formula. This new
representation can be directly compared with that for the
larger graph.

4.2 Feature Distributions

While the elementary symmetric polynomials provide
spectral features which are invariant to permutations, they
are not suitable as a representation for gauging the
difference between graphs. The distribution of Sr for large
r is highly non-Gaussian with a dominant tail because of the
product terms appearing in the higher order polynomials. In
order to make the distribution more tractable, it is
convenient to take logarithms. If we wish to take logarithms,
the condition Sr > 0 8r must hold. We therefore perform a
component transform and construct the following matrix
from the symmetric polynomials

Fij ¼ signum Sjð�1;i;�2;i; . . . ;�n;iÞ
� �

ln 1þ jSjð�1;i;�2;i; . . . ;�n;iÞj
� �

;
ð5Þ

where 1 � i � n; 1 � j � n. The rows of this matrix are
stacked to form a long-vector

B ¼ ðF1;1; . . . ; F1;n; F2;1; . . . ; F2;n; . . . ; Fn;1; . . . ; Fn;nÞT : ð6Þ

4.3 Complexity

The computational complexity of generating pattern vectors
is governed by the eigendecomposition of the Laplacian
matrix. This requires Oðn3Þ operations, where n is the
number of vertices in the graph. Computation of the
symmetric polynomials and subsequent feature representa-
tions only requires Oðn2Þ operations. These operations are
effectively preprocessing of the graph structures. Matching
of two graphs simply involves comparing two pattern
vectors of length n2 and, so, takesOðn2Þ operations. Standard
inexact matching techniques are generally iterative and, for
comparison, both the graduated assignment algorithm of

Gold and Rangarajan [9] and probabilistic relaxation [5]
require Oðn4Þ operations per iteration.

5 UNARY AND BINARY ATTRIBUTES

Attributed graphs are an important class of representations
and need to be accommodated in graph matching. Van Wyk
and van Wyk [39] have suggested the use of an augmented
matrix to capture additional measurement information.
While it is possible to make use of a such an approach in
conjunction with symmetric polynomials, another approach
from the spectral theory ofHermitianmatrices suggests itself.

A Hermitian matrix H is a square matrix with complex
elements that remains unchanged under the joint operation
of transposition and complex conjugation of the elements
(denoted by the dagger operator y), i.e., Hy ¼ H. Hermitian
matrices can be viewed as the complex number counterpart
of the symmetric matrix for real numbers. Each off-diagonal
element is a complex number which has two components
and can therefore represent a 2-component measurement
vector on a graph edge. The on-diagonal elements are,
necessarily, real quantities, so the node measurements are
restricted to be scalar quantities.

There are some constraints onhow themeasurementsmay
be represented in order to produce a positive semidefinite
Hermitian matrix. Let fx1; x2; . . . ; xng be a set of measure-
ments for thenode-setV. Further, letfy1;2; y1;3; . . . ; yn;ngbe the
set ofmeasurements associatedwith the edges of the graph in
addition to the graph weights. Each edge then has a pair of
observations ðWa;b; ya;bÞ associated with it. There are a
number of ways in which the complex number Ha;b could
represent this information, for example, with the real part as
W and the imaginary part as y. However, we would like our
complex property matrix to reflect the Laplacian. As a result,
the off-diagonal elements ofH are chosen to be

Ha;b ¼ �Wa;be
iyab :

In other words, the connection weights are encoded by the
magnitude of the complex number Ha;b and the additional
measurement by its phase. By using this encoding, the
magnitude of the numbers is the same as in the original
Laplacian matrix. Clearly, this encoding is most suitable
when the measurements are angles. If the measurements are
easily bounded, they can bemapped onto an angular interval
andphasewrapping can be avoided. If themeasurements are
not easily bounded, then this encoding is not suitable.

The measurements must satisfy the conditions �� �
ya;b < � and ya;b ¼ �yb;a to produce a Hermitian matrix.
To ensure a positive definite matrix, we require
Haa > �

P
b 6¼a jHabj. This condition is satisfied if

Haa ¼ xa þ
X
b 6¼a

Wa;b

and xa � 0:

When defined in this way, the property matrix is a complex
analogue of the weighted Laplacian for the graph.

For a Hermitian matrix, there is an orthogonal complete
basis set of eigenvectors and eigenvalues obeying the
eigenvalue equation He ¼ �e. In the Hermitian case,
the eigenvalues � are real and the components of the
eigenvectors e are complex. There is a potential ambiguity
in the eigenvectors in that any multiple of an eigenvector is
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also a solution, i.e.,H�e ¼ ��e. In the real case, we choose �
such that e is of unit length. In the complex case, � itself may
be complex and needs to determined by two constraints. We
set thevector length to jeij ¼ 1and, inaddition,we impose the
condition arg

Pn
i¼1 ei ¼ 0, which specifies both real and

imaginary parts.
This representation can be extended further by using the

four-component complex numbers known as quaternions.
As with real and complex numbers, there is an appropriate
eigendecomposition which allows the spectral matrix to be
found. In this case, an edge weight and three additional
binary measurements may be encoded on an edge. It is not
possible to encode more than one unary measurement using
this approach. However, for the experiments in this paper,
we have concentrated on the complex representation.

When the eigenvectors are constructed in this way, the
spectral matrix is found by performing the eigenvector
expansion

H ¼
Xn
i¼1

�ieie
y
i ;

where �i and ei are the n eigenvectors and eigenvalues of the
Hermitian matrix H. We construct the complex spectral
matrix for the graph G using the eigenvectors as columns, i.e.,

� ¼
ffiffiffiffiffi
�1

p
e1;

ffiffiffiffiffi
�2

p
e2; . . .

ffiffiffiffiffi
�n

p
en

� �
: ð7Þ

We can again reconstruct the original Hermitian property
matrix using the relation H ¼ ��y.

Since the components of the eigenvectors are complex
numbers, therefore, each symmetric polynomial is complex.
Hence, the symmetric polynomials must be evaluated with
complex arithmetic and also evaluate to complex numbers.
Each Sr therefore has both real and imaginary components.
The real and imaginary components of the symmetric
polynomials are interleaved and stacked to form a feature-
vectorB for the graph. This feature-vector is real.

6 GRAPH EMBEDDING METHODS

We explore three different methods for embedding the
graph feature vectors in a pattern space. Two of these are
classical methods. Principal components analysis (PCA)
finds the projection that accounts for the variance or scatter
of the data. Multidimensional scaling (MDS), on the other
hand, preserves the relative distances between objects. The
remaining method is a newly reported one that offers a
compromise between preserving variance and the relational
arrangement of the data and is referred to as locality
preserving projection [10].

In this paper, we are concerned with the set of graphs
G1;G2; : : ;Gk; . . . ;GN . The kth graph is denoted by Gk ¼
ðVk; EkÞ and the associated vector of symmetric polynomials
is denoted by Bk.

6.1 Principal Component Analysis

We commence by constructing the matrix X ¼ ½B1 � �BB
jB2 � �BBj . . . jBk � �BBj. . .jBN � �BB�, with the graph feature
vectors as columns. Here, �BB is the mean feature vector for
the data set. Next, we compute the covariance matrix for the
elements of the feature vectors by taking the matrix
product C ¼ XXT . We extract the principal components
directions by performing the eigendecomposition C ¼

PN
i¼1 liuiu

T
i on the covariance matrix C, where the li are

the eigenvalues and the ui are the eigenvectors. We use the
first s leading eigenvectors (2 or 3, in practice, for visualiza-
tion purposes) to represent the graphs extracted from the
images. The coordinate system of the eigenspace is spanned
by the s orthogonal vectors U ¼ ðu1;u2; : :;usÞ. The indivi-
dual graphs represented by the long vectors Bk; k ¼
1; 2; . . . ; N can be projected onto this eigenspace using the
formula yk ¼ UT ðBk � �BBÞ. Hence, each graph Gk is repre-
sented by an s-component vector yk in the eigenspace.

Linear discriminant analysis (LDA) is an extension of PCA
to the multiclass problem. We commence by constructing
separate data matrices X1;X2; . . .XNc

for each of the Nc

classes. These may be used to compute the corresponding
class covariance matrices Ci ¼ XiX

T
i . The average class

covariance matrix ~CC¼ 1
Nc

PNc

i¼1 Ci is found. This matrix is
used as a sphering transform. We commence by computing
the eigendecomposition

~CC ¼
XN
i¼1

liuiu
T
i ¼ U�UT ;

where U is the matrix with the eigenvectors of ~CC as
columns and � ¼ diagðl1; l2; : : ; lnÞ is the diagonal eigenva-
lue matrix. The sphered representation of the data is
X0 ¼ �� 1

2UTX. Standard PCA is then applied to the
resulting data matrix X0. The purpose of this technique is
to find a linear projection which describes the class
differences rather than the overall variance of the data.

6.2 Multidimensional Scaling

Multidimensional scaling (MDS) is a procedurewhich allows
data specified in terms of a matrix of pairwise distances to be
embedded in a Euclidean space. Here, we intend to use the
method to embed the graphs extracted from different
viewpoints in a low-dimensional space. To commence, we
require pairwise distances between graphs. We do this by
computing thenormsbetween the spectral pattern vectors for
the graphs. For the graphs indexed i1 and i2, the distance is
di1;i2 ¼ ðBi1 �Bi2Þ

T ðBi1 �Bi2Þ. The pairwise distances di1;i2
are used as the elements of anN �N dissimilarity matrixR,
whose elements are defined as follows:

Ri1;i2 ¼
di1;i2 if i1 6¼ i2
0 if i1 ¼ i2:

�
ð8Þ

In this paper, we use the classical multidimensional

scaling method [7] to embed the graphs in a Euclidean space

using the matrix of pairwise dissimilarities R. The first step

of MDS is to calculate a matrix T whose element with row r

and column c is given by Trc ¼ � 1
2 ½d2rc � d̂d2r: � d̂d2:c þ d̂d2::�,

where d̂dr: ¼ 1
N

PN
c¼1 drc is the average dissimilarity value

over the rth row, d̂d:c is the dissimilarity average value over

the cth column and d̂d::¼ 1
N2

PN
r¼1

PN
c¼1 dr;c is the average

dissimilarity value over all rows and columns of the

dissimilarity matrix R.
We subject the matrix T to an eigenvector analysis to

obtain a matrix of embedding coordinatesY. If the rank ofT
is k; k � N , then we will have k nonzero eigenvalues. We
arrange these k nonzero eigenvalues in descending
order, i.e., l1 � l2 � . . . � lk > 0. The corresponding ordered
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eigenvectors are denoted by ui, where li is the
ith eigenvalue. The embedding coordinate system for the
graphs is Y ¼ ½

ffiffi
ð

p
l1Þu1;

ffiffiffiffi
l2

p
u2; . . . ;

ffiffiffiffi
ls

p
us�. For the graph

indexed j, the embedded vector of coordinates is a row of
matrix Y, so yj ¼ ðYj;1; Yj;2; . . . ; Yj;sÞT .

6.3 Locality Preserving Projection

Our next pattern space embedding method is He and
Niyogi’s Locality Preserving Projections(LPP) [10]. LPP is a
linear dimensionality reduction method which attempts to
project high-dimensional data to a low-dimensional mani-
fold, while preserving the neighborhood structure of the
data set. The method is relatively insensitive to outliers and
noise. This is an important feature in our graph clustering
task since the outliers are usually introduced by imperfect
segmentation processes. The linearity of the method makes
it computationally efficient.

The graph feature vectors are used as the columns of a
data-matrixX ¼ ðB1jB2j . . . jBNÞ. The relational structure of
the data is represented by a proximity weight matrixWwith
elements Wi1;i2 ¼ exp½�kdi1;i2 �, where k is a constant. If Q is
the diagonal degree matrix with the row weights Qk;k ¼PN

j¼1 Wk;j as elements, then the relational structure of the
data is represented using the Laplacian matrix J ¼ Q�W.
The idea behind LPP is to analyze the structure of the
weighted covariance matrixXWXT . The optimal projection
of the data is found by solving the generalized eigenvector
problem

XJXTu ¼ lXQXTu: ð9Þ

We project the data onto the space spanned by the
eigenvectors corresponding to the s smallest eigenvalues.
LetU ¼ ðu1;u2; . . . ;usÞ be thematrixwith the corresponding
eigenvectors as columns, then projection of the kth feature
vector is yk ¼ UTBk.

7 EXPERIMENTS

There are three aspects to the experimental evaluation of the
techniques reported in thispaper.Wecommencewitha study
on synthetic data aimed at evaluating the ability of the
spectral features to distinguish between graphs under
controlled structural error. The second part of the study
focuses on real-world data and assesses whether the spectral
feature vectors can be embedded in a pattern space that

reveals cluster-structure. Here, we explore the two different
applications of view-basedpolyhedral object recognition and
shock graph recognition. The latter application focuses on the
use of the complex variant of the property matrix.

7.1 Synthetic Data

Wecommence by examining the ability of the spectral feature
set anddistancemeasure to separate both structurally related
and structurally unrelated graphs. This study utilizes
random graphs which consist of 30 nodes and 140 edges.
The edges are generated by connecting random pairs of
nodes. From each seed graph constructed in this way, we
generate structurally relatedgraphs by applying randomedit
operations to simulate the effect of noise. The structural
variants are generated froma seedgraphbyeither deletingan
edge or inserting a new random edge. Each of these
operations is assigned unit cost and, therefore, a graph with
a deleted edge has unit edit distance to the original seed
graph. In Fig. 1a, we have plotted the distribution of feature
vector distance di1;i2 ¼ ðBi1 �Bi2Þ

T ðBi1 �Bi2Þ for two sets of
graphs. The leftmost curve shows the distribution of
distances when we take individual seed graphs and remove
a single edge at random. The rightmost curve is the
distribution of distance obtained when we compare the
distinct seed graphs. In the case of the randomedge-edits, the
modal distance between feature vectors ismuch less than that
for the structurally distinct seed graphs. Hence, the distance
between feature vectors appears to provide scope for
distinguishing between distinct graphs when there are small
variations in edge structure due to noise.

The results presented in Table 1 take this study one step
further and demonstrate the performance under different
levels of corruption. Here, we have computed the confusion
probability, i.e., the overlap between distribution of feature-
vector distance for the edited graphs and the seedgraphs, as a
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Fig. 1. (a) Distributions of distance to edited graphs and (b) eigenvectors.

TABLE 1
Performance of Feature Set for Edited Graphs



function of the number of randomly deleted edges. The
confusion probability increaseswith increasing edit distance.

In Fig. 1b, we investigate the effect of the different
eigenmodes used in computing symmetric polynomials. We
again compute the confusionprobabilitydue to the overlapof
the twodistance distributions.Here,we confine our attention
to the removal of a single edge. Only one eigenvector is used
in the distance measure. Eigenvector-n denotes the eigen-
vectorwith thenth largest eigenvalue. The plot demonstrates
that the leading and the last few eigenvectors give the lowest
confusion probabilities and are, hence, themost important in
differentiating graph structure.

At first sight, this suggests that only a few of the
eigenvectors need be used to characterize the graph.
However, as Table 2 reveals, this is only the case for small
edit distances. As the edit distance increases, then more of
the eigenvectors become important.

In Fig. 2a, we plot the distance in feature space, i.e., di1;i2 ¼
ðBi1 �Bi2Þ

T ðBi1 �Bi2Þ as a function of the graph edit
distance. Although the relationship is not linear, it is
monotonic and approximately linear for small edit distances.
Hence, thedistancebetween the featurevectorsdoes reflect in
a direct way the changes in structure of the graphs.

To provide an illustration, we have created three clusters
of graphs from three seed or reference graphs by perturbing
them by edit operations. The distances between the feature-
vectors for these graphs are then used to embed the graphs in
a two-dimensional space using multidimensional scaling.
The procedure is as follows: Three seed graphs are generated

at random. These seed graphs are used to generate samples
by deleting an edge at random from the graph. The distance
matrix is then constructed, which has elements di1;i2 , the
distance between graphs i1 and i2. Finally, the MDS
technique is used to visualize the distribution of graphs in
a two-dimensional space. The results are shown in Fig. 2b.
The graphs form good clusters and are well-separated from
one another.

To take this study on synthetic data one step further, we
have performed a classification experiment. We have
generated 100 graphs of 25 nodes each. For each graph, the
edge-structure is randomly generated. Associated with each
edge is a weight randomly and uniformly drawn from the
interval ½0; 1�. We have investigated the effect of adding
randomnoise to the edge-weights. Theweight noise is drawn
from a Gaussian distribution of zero mean and known
standard deviation.

We have investigated the effect of this noise on three
different vector representations of the weighted graphs. The
first of these is a vectorwith the first four polynomial features
as components. The second is a vectorwhose components are
the bin-contents of the normalized edge-weight histogram.
Here, theedgeweightsareallocatedtoeightuniformlyspaced
bins. The final vector has the leading four eigenvalues of the
Laplacian matrix as components. We have computed the
distancesbetween the featurevectors for theuncorruptedand
noisecorruptedgraphs.Tocomputea classificationerror rate,
we have recorded the fraction of times that the uncorrupted
graphsdonot have the smallest distance to the corresponding
noise corrupted graph. In Fig. 3, we show the error-rate as a
function of the edge-weight noise standard deviation. The
main features to note from this plot are that the lowest error
rate is returned by the polynomial features and the highest
error rate results from the use of the edge-weight histogram.

7.2 View-Based Object Recognition

Our first real-world experimental vehicle is provided by
2D views of 3D objects. We have collected sequences of
views for three toy houses. For each object, the image
sequences are obtained under slowly varying changes in
viewer direction. From each image in each view sequence,
we extract corner features. We use the extracted corner
points to construct Delaunay graphs. In our experiments, we
use three different sequences. Each sequence contains
images with equally spaced viewing directions. In Fig. 4,
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TABLE 2
Confusion Probabilities of Different
Eigenvector Sets and Edit Distances

Fig. 2. (a) Distance between feature vectors versus graph edit distance and (b) MDS applied to three random graph-sets.



we show examples of the raw image data and the associated
graphs for the three toy houses which we refer to as CMU/
VASC, MOVI, and Swiss Chalet.

In Fig. 5, we compare the results obtained with the
different embedding strategies and the different graph
features. In Column 1, we show the results obtained when
PCA is used, Column 2 when MDS is used, and Column 3
when LPP is used. The top row shows the results obtained
using a standard spectral feature, namely, the spectrum
ordered eigenvalues of the Laplacian, i.e.,Bk ¼ ð�k

1; �
k
2; . . .Þ

T .
The second row shows the results obtained when the
symmetric polynomials are computed using the spectral
matrix for the Laplacian. The different image sequences are
displayed in various shades of gray and black.

There are a number of conclusions that can be drawn
from this plot. First, the most distinct clusters are produced
when either MDS or LPP are used. Second, the best spectral
features seem to be the symmetric polynomials computed
from the Laplacian spectral matrix. To display the cluster-
structure obtained, in Fig. 6, we visualize the results
obtained using LPP and the Laplacian polynomials by
placing thumbnails of the original images in the space

spanned by the leading two eigenvectors. The different
objects form well-separated and compact clusters.

To take this study further, we investigate the effects of
applying the embedding methods to two of the sequences
separately. Fig. 7 shows the results obtained with the
Laplacian polynomials for MOVI and Chalet sequences.
Column 1 is for PCA, Column 2 is for MDS, and Column 3 is
for LPP. In the case of both image sequences, LPP results in a
smooth trajectory as the different views in the sequence are
traversed.

7.3 Shock Graphs

The final example focuses on the use of the complex property
matrix representation and is furnished by shock trees which
are a compact representation of curved boundary shape.
There are a number of ways in which a shape graph can be
computed [15], [35]. One of themost effective recentmethods
has been to use the Hamilton-Jacobi equations from classical
mechanics to solve the eikonal equation for inward boundary
motion [35]. The skeleton is the set of singularities in the
boundary motion where opposing fronts collide and these
can be characterized as locations where the divergence of the
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Fig. 3. Classification error rates.
Fig. 4. Example images from the CMU, MOVI, and chalet sequences
and their corresponding graphs.

Fig. 5. Clustering CMU, MOVI, and Chalet sequences, Row 1: Eigenvalues. Row 2: Laplacian Matrix Polynomials. Column 1: PCA, Column 2: MDS,
and Column 3: LPP.



distancemap to theboundary is nonzero.Oncedetected, then
the skeleton can be converted into a tree. There are several
ways in which this can be affected. For instance, Kimia et al.
use the branches and junctions of the skeleton as the nodes
and edges of a tree [15]. Siddiqi et al. use the time of formation
of singularities under the eikonal equation to order the points
on the skeleton [35].According to this representation, the root
of the tree is located at the deepest pointwithin the shape, i.e.,
the final skeleton point to be formed and the terminal nodes
are the closest to theboundary.Once the tree is tohand, then it
may be attributed with a number of properties of the
boundaries. These might include the radius of the bitangent
circle or the rate of change of skeleton length with boundary
length. The tree may also be attributed with shock labels.
These capture the differential structure of the boundary since
they describe whether the radius of the bitangent circle is
constant, increasing, decreasing, locally minimum, or locally
maximum.The labels hence indicatewhether the boundary is
of constant width, tapering-out, tapering-in, locally con-
stricted, or locally bulging.

7.3.1 Tree Attributes

Before processing, the shapes are firstly normalized in area
and aligned along the axis of largest moment. After
performing these transforms, the distances and angles
associated with the different shapes can be directly
compared and can therefore be used as attributes.

To abstract the shape skeleton using a tree, we place a
node at each junction point in the skeleton. The edges of the
tree represent the existence of a connecting skeletal branch
between pairs of junctions. The nodes of the tree are
characterized using the radius rðaÞ of the smallest bitangent
circle from the junction to the boundary. Hence, for the
node a, xa ¼ rðaÞ. The edges are characterized by two
measurements. For the edge ða; bÞ, the first of these, ya;b is the
angle between the nodes a and b, i.e., ya;b ¼ �ða; bÞ. Sincemost
skeleton branches are relatively straight, this is an approx-
imation to the angle of the corresponding skeletal branch.
Furthermore, since �� � �ða; bÞ < � and �ða; bÞ ¼ ��ðb; aÞ,
the measurement is already suitable for use in the Hermitian
property matrix.

In order to compute edge weights, we note that the
importance of a skeletal branch may be determined by the
rate of change of boundary length l with skeleton length s
[37], which we denote by dl=ds. This quantity is related to
the rate of change of the bitangent circle radius along the
skeleton, i.e., dr=ds, by the formula

dl

ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dr

ds

� �2
s

:

The edge weight Wa;b is given by the average value of dl=ds
along the relevant skeletal branch.

It must be noted that the tree representation adopted here
is relatively simplistic and more sophisticated alternatives
exist elsewhere in the literature [15], [35]. It must be stressed
that our main aim here is to furnish a simple attributed tree
representation on which to test our spectral analysis.

It is a well-known fact that trees tend to be cospectral [4]
which, as noted in Section 3, could be problematic for the
spectral representation. However, because we are using
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attributed trees, any ambiguity is removed by the measure-
ment information.

7.3.2 Experiments with Shock Trees

Our experiments are performed using a database of 42 binary
shapes. Each binary shape is extracted from a 2D view of a
3Dobject. There are three classes in the database and, for each
object, there are a number of views acquired from different
viewing directions and a number of different examples of the
class. We extract the skeleton from each binary shape and
attribute the resulting tree in the manner outlined in
Section 7.3.1. Fig. 8 shows some examples of the types of
shape present in the database along with their skeletons.

We commence by showing some results for the three
shapes shown in Fig. 8. The objects studied are a hand, some
puppies, and some cars. The dog and car shapes consist of a
number of different objects anddifferent views of each object.
The hand category contains different hand configurations.
Weapply the three embedding strategies outlined inSection6
to the vectors of permutation invariants extracted from the
Hermitian variant of the Laplacian. We commence in Fig. 9a
by showing the result of applying the MDS procedure to the
three shape categories. The “hand” shapes form a compact
cluster in the MDS space. There are other local clusters
consisting of three or four members of the remaining two
classes. This reflects the fact that, while the hand shapes have
very similar shock graphs, the remaining two categories have
rather variable shock graphs because of the different objects.

Fig. 9b shows the result of using PCA. Here, the distribu-
tions of shapes aremuch less compact.While adistinct cluster
of hand shapes still occurs, they are generallymore dispersed
over the feature space. There are some distinct clusters of the
car shape, but the distributions overlap more in the PCA
projection when compared to theMDS space.

Fig. 9c shows the result of the LPP procedure on the data
set. The results are similar to the PCA method.

One of the motivations for the work presented here was
the potential ambiguities that are encountered when using
the spectral features of trees. To demonstrate the effect of
using attributed trees rather than simply weighting the
edges, we have compared the LDA projections using both
types of data. Fig. 10 illustrates the result of this compar-
ison. Fig. 10b shows the result obtained using the
symmetric polynomials from the eigenvectors of the
Laplacian matrix L ¼ D�W, associated with the edge
weight matrix. Fig. 10a shows the result of using the using
the Hermitian property matrix. The Hermitian property
matrix for the attributed trees produces a better class
separation than the Laplacian matrix for the weighted trees.
The separation can be measured by the Fisher discriminant
between the classes, which is the squared distance between
class centers divided by the variance along the line joining
the centers. For the Hermitian property matrix, the
separations are 1.12 for the car/dog classes, 0.97 for the
car/hand, and 0.92 for the dog/hand. For the weighted
matrix, the separations are 0.77 for the car/dog, 1.02 for the
car/hand, and 0.88 for the dog/hand.

8 CONCLUSIONS

In this paper, we have shown how graphs can be converted
into pattern vectors by utilizing the spectral decomposition
of the Laplacian matrix and basis sets of symmetric
polynomials. These feature vectors are complete, unique,
and continuous. However, and most important of all, they
are permutation invariants. We investigate how to embed
the vectors in a pattern space, suitable for clustering the
graphs. Here, we explore a number of alternatives including
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Fig. 8. Examples from the shape database with their associated skeletons.

Fig. 9. (a) MDS, (b) PCA, and (c) LPP applied to the shock graphs.



PCA, MDS, and LPP. In an experimental study, we show
that the feature vectors derived from the symmetric
polynomials of the Laplacian spectral decomposition yield
good clusters when MDS or LPP are used.

There are clearly a number of ways in which the work
presented in this paper can be developed. For instance, since
the representation based on the symmetric polynomials is
complete, they may form the means by which a generative
model of variations in graph structure can bedeveloped. This
model could be learned in the space spanned by the
permutation invariants and the mean graph and its modes
of variation reconstructed by inverting the system of
equations associated with the symmetric polynomials.
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