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Abstract. In this paper, we investigate the use of invariants derived
from the heat kernel as a means of clustering graphs. We turn to the heat-
content, i.e. the sum of the elements of the heat kernel. The heat content
can be expanded as a polynomial in time, and the co-efficients of the poly-
nomial are known to be permutation invariants. We demonstrate how the
polynomial co-efficients can be computed from the Laplacian eigensys-
tem. Graph-clustering is performed by applying principal components
analysis to vectors constructed from the polynomial co-efficients. We ex-
periment with the resulting algorithm on the COIL database, where it
is demonstrated to outperform the use of Laplacian eigenvalues.

1 Introduction

One of the problems that arises in the manipulation of large amounts of graph
data is that of embedding graphs in a low dimensional space so that standard
machine learning techniques can be used to perform tasks such as clustering.
One way of realise this goal is to embed the nodes of a graph on a manifold
and to use the geometry of the manifold as a means of characterising the graph.
In the mathematics literature, there is a considerable body of work aimed at
understanding how graphs can be embedded in manifolds [7]. Broadly speaking
there are three ways in which the problem has been addressed. First, the graph
can be interpolated by a surface whose genus is determined by the number of
nodes, edges and faces of the graph. Second, the graph can be interpolated by a
hyperbolic surface which has the same pattern of geodesic (internode) distances
as the graph [1]. Third, a manifold can be constructed whose triangulation is
the simplicial complex of the graph [12]. A review of methods for efficiently
computing distance via embedding is presented in the recent paper of Hjaltason
and Samet [5].

The spectrum of the Laplacian matrix has been widely studied in spectral
graph theory [4] and has proved to be a versatile mathematical tool that can
be put to many practical applications including routing [2], clustering [9] and
graph-matching [11]. One of the most important properties of the Laplacian
spectrum is its close relationship with the heat equation. The heat equation
can be used to specify the flow of information with time across a network or a
manifold [10]. According to the heat-equation the time derivative of the kernel is
determined by the graph Laplacian. The solution to the heat equation is obtained
by exponentiating the Laplacian eigensystem over time. Because the heat kernel
encapsulates the way in which information flows through the edges of the graph
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over time, it is closely related to the path length distribution on the graph.
The graph can be viewed as residing on a manifold whose pattern of geodesic
distances is characterised by the heat kernel. For short times the heat kernel is
determined by the local connectivity or topology of the graph as captured by the
Laplacian, while for long-times the solution gauges the global geometry of the
manifold on which the graph resides. In a recent paper [13], we have exploited
this property and have used heat-kernel embedding for the purposes of graph
clustering.

There are a number of different invariants that can be computed from the
heat-kernel. Asymptotically for small time, the trace of the heat kernel [4] (or
the sum of the Laplacian eigenvalues exponentiated with time) can be expanded
as a rational polynomial in time, and the co-efficients of the leading terms in
the series are directly related to the geometry of the manifold. For instance, the
leading co-efficient is the volume of the manifold, the second co-efficient is related
to the Euler characteristic, and the third co-efficient to the Ricci curvature. The
zeta-function (i.e. the sum of the eigenvalues raised to a non-integer power) for
the Laplacian also contains geometric information. For instance its derivative
at the origin is related to the torsion tensor for the manifold. Finally, Colin
de Verdiere has shown how to compute geodesic invariants from the Laplacian
spectrum [3].

In a recent paper McDonald and Meyers [8] have shown that the heat-content
of the heat-kernel is a permutation invariant. The heat content is the sum of the
entries of the heat kernel over the nodes of the graph, which may be expanded as
a polynomial in time. It is closely related to thre trace of the heat kernel, which
is also known to be an invariant. In this paper we show how the co-efficients can
be related to the eigenvalues and eigenvectors of the Laplacian. The resulting co-
efficients are demonstrated to to outperform the Laplacian spectrum as a means
of characterising graph-structure for the purposes of clustering.

2 Heat Kernels on Graphs

In this section, we review the how the heat-kernel is related to the Laplacian
eigensystem. To commence, suppose that the graph under study is denoted by
G = (V, E) where V is the set of nodes and E ⊆ V ×V is the set of edges. Since
we wish to adopt a graph-spectral approach we introduce the adjacency matrix
A for the graph where the elements are

A(u, v) =
{

1 if (u, v) ∈ E
0 otherwise

(1)

We also construct the diagonal degree matrix D, whose elements are given by
D(u, u) =

∑
v∈V A(u, v). From the degree matrix and the adjacency matrix we

construct the Laplacian matrix L = D − A, i.e. the degree matrix minus the
adjacency matrix. The normalised Laplacian is given by L̂ = D− 1

2 LD− 1
2 . The

spectral decomposition of the normalised Laplacian matrix is
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L̂ = ΦΛΦT =
|V |∑
i=1

λiφiφ
T
i (2)

where Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the ordered eigen-
values (0 = λ1 < λ2 ≤ λ3...) as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix
with the correspondingly ordered eigenvectors as columns. Since L̂ is symmetric
and positive semi-definite, the eigenvalues of the normalised Laplacian are all
positive. The eigenvector φ2 associated with the smallest non-zero eigenvalue λ2

is referred to as the Fiedler-vector. We are interested in the heat equation asso-
ciated with the Laplacian, i.e. ∂ht

∂t = −L̂ht, where ht is the heat kernel and t is
time. The heat kernel can hence be viewed as describing the flow of information
across the edges of the graph with time. The rate of flow is determined by the
Laplacian of the graph. The heat kernel, i.e. the solution to the heat equation,
is a |V | × |V | matrix found by exponentiating the Laplacian eigenspectrum, i.e.
ht = Φ exp[−Λt]ΦT . For the nodes u and v of the graph G the resulting element
is

ht(u, v) =
|V |∑
i=1

exp[−λit]φi(u)φi(v) (3)

When t tends to zero, then ht � I − L̂t, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then ht � exp[−tλ2]φ2φ

T
2 , where λ2 is the smallest non-zero eigenvalue and φ2 is

the associated eigenvector, i.e. the Fiedler vector. Hence, the large time behavior
is governed by the global structure of the graph.

It is interesting to note that the heat kernel is also related to the path length
distribution on the graph. If Pk(u, v) is the number of paths of length k between
nodes u and v then

ht(u, v) = exp[−t]
|V |2∑
k=1

Pk(u, v)
tk

k!
(4)

Hence, the heat kernel takes the form of a sum of Poisson distributions over
the path-length with time as the parameter. The weights associated with the
different components are determined by the associated path-length frequency
in the graph. As the path-length k becomes large, the Poisson distributions
approach a Gaussian, with mean k and variance k.

The path-length distribution is itself related to the eigenspectrum of the
Laplacian. By equating the derivatives of the spectral and path-length forms of
the heat kernel it is straightforward to show that

Pk(u, v) =
|V |∑
i=1

(1 − λi)kφi(u)φi(v) (5)

The geodesic distance between nodes can be found by searching for the smallest
value of k for which Pk(u, v) is non zero, i.e. dG(u, v) = floorkPk(u, v).
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3 Invariants of the Heat-Kernel

It is well known that the trace of the heat-kernel is invariant to permutations.
It is determined by the Laplacian eigenvalues and is given by

Z(t) =
N∑

i=1

exp[−λit] (6)

To provide an illustration of the potential utility of the trace-formula, in Figure
1 we show four small graphs with rather different topologies. Figure 2 shows
the trace of the heat kernel as a function of t for the different graphs. From the
plot it is clear that the curves are distinct and could form the basis of a useful
representation to distinguish graphs. For instance, the more bi-partite the graph
the more stongly peaked the trace of the heat-kernel at the origin. This is due
to the fact the spectal gap, i.e. the size of λ2, determines the rate of decay of
the trace with time, and this in turn is a measure of the degree of separation of
the graph into strongly connected subgraphs or “clusters”.
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Fig. 1. Four graphs used for heat-kernel trace analysis.
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Fig. 2. Heat kernel trace as a function of t for four simple graphs.

Unfortunately, the trace of the heat kernel is limitted use for characterising
graphs since for each value of time, it provides only a single scaler attribute.
Hence, it must either be sampled with time or a fixed time value selected. How-
ever, in a recent paper McDonald and Meyers [8] have shown that the heat-
content of the heat-kernel is also an invariant. The heat content is the sum of
the entries of the heat kernel over the nodes of the graph and is given by
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Q(t) =
∑
u∈V

∑
v∈V

ht(u, v) =
∑
u∈V

∑
v∈V

|V |∑
k=1

exp[−λkt]φk(u)φk(v) (7)

The heat-content can be expanded as a polynomial in time, i.e.

Q(t) =
∞∑

m=0

qmtm (8)

By equating the derivatives of the spectral and polynomial forms of the heat
content at t = 0, the co-efficients are given by

qm =
|V |∑
i=1

∑
u∈V

∑
v∈V

(−λi)m

m!
φi(u)φi(v) (9)

In this paper, we will explore the use of the polynomial co-efficients for the
purposes of graph-clustering. To do this we construct a vector B = (q0, ...., q5)T

from the first six co-efficients of the heat-content polynomial To compare our
method with a standard spectral representation we also explore the use of the
vector of leading Laplacian eigenvalues B = (λ2, λ2, ....λ7)T as a feature-vector.

4 Principal Components Analysis

Our aim is to construct a pattern-space for a set of graphs with pattern vec-
tors Bk, k = 1, M , extracted using heat-content co-efficients. There are a num-
ber of ways in which the graph pattern vectors can be analysed. Here, for the
sake of simplicity, we use principal components analysis (PCA). We commence
by constructing the matrix S = [B1|B2| . . . |Bk| . . . |BM ] with the graph fea-
ture vectors as columns. Next, we compute the covariance matrix for the ele-
ments of the feature vectors by taking the matrix product C = SST . We ex-
tract the principal components directions by performing the eigendecomposition
C =

∑M
i=1 liuiu

T
i on the covariance matrix C, where the li are the eigenval-

ues and the ui are the eigenvectors. We use the first s leading eigenvectors (3
in practice for visualisation purposes) to represent the graphs extracted from
the images. The co-ordinate system of the eigenspace is spanned by the s or-
thogonal vectors U = (u1, u2, .., us). The individual graphs represented by the
vectors Bk, k = 1, 2, . . . , M can be projected onto this eigenspace using the for-
mula Bk = UT Bk. Hence each graph Gk is represented by an s-component
vector Bk in the eigenspace.

5 Experiments

We have applied our embedding method to images from the COIL data-base.
The data-base contains views of 3D objects under controlled viewer and lighting
conditions. For each object in the data-base there are 72 equally spaced views,
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Fig. 3. Eight objects with their Delaunay graphs overlayed.

which are obtained as the camera circumscribes the object. We study the images
from eight example objects. A sample view of each object is shown in Figure
3. For each image of each object we extract feature points using the method
of [6]. We have extracted graphs from the images by computing the Voronoi
tessellations of the feature-points, and constructing the region adjacency graph,
i.e. the Delaunay triangulation, of the Voronoi regions. Our embedding procedure
has been applied to the resulting graph structures.

1/(400*pi) 1/(40*pi) 1/(4*pi) 1/(pi) 1 pi 4*pi 40*pi 100*pi 1000*pi
0

20

40

60

80

100

120

Fig. 4. Heat content as a function of t for 18 COIL graphs.

To commence, we show the heat-content as a function of t for six views of the
the second, fifth and seventh objects from the COIL database shown above. From
Figure 4 it is clear that objects of the same class trace out curves that are close
together. To take this study further, in Figure 5 we plot the six co-efficients
q0, q1, q2, q3, q4 and q5 separately as a function of the view number for the
eight objects selected from the COIL data-base. The co-efficients are relatively
stable with viewpoint. In the left-hand panel of Figure 6 we show the result of
performing PCA on the vectors of polynomial co-efficients. For comparison, the
right-hand panel in Figure 6 shows the corresponding result when we apply PCA
to the vector of leading eigenvalues of the Laplacian matrix B = (λ2, λ3, ...., λ7)T

as the components of a feature vector instead. The main qualitative feature is
that the different views of the ten objects are more overlapped than when the
heat-content polynomial co-effients are used.
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Fig. 5. Individual heat-content co-efficients as a function of view number.
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Fig. 6. Applying PCA to the heat-content differential co-efficients (left) and Laplacian
spectrum (right).

To investigate the behavior of the two methods in a more quantitative way,
we have computed the Rand index for the different objects. The Rand index is
defined as RI = C

C+W where C is the number of ”agreements” and W is the
number of ”disagreements” in cluster assignment. The index is hence the fraction
of views of a particular class that are closer to an object of the same class than
to one of another class. For the heat-content co-efficients, the Rand index is 0.88
while for the Laplacian eigenvalues it is 0.58.
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6 Conclusion and Future Work

In this paper we have explored how the use of heat-content can lead to a series
of invariants that can be used for the purposes of clustering. There are clearly
a number of ways in which the work reported in this paper can be extended.
These include the use of features which have a direct geometrical meaning such
as the Euler characteristic, the torsion of the mean and Gaussian curvatures of
the manifold.
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