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Abstract

Our goal in this paper is to show that many of the tools of signal processing, adapted Fourier and wavelet analysis can be naturally
lifted to the setting of digital data clouds, graphs, and manifolds. We use diffusion as a smoothing and scaling tool to enable coarse
graining and multiscale analysis. Given a diffusion operator T on a manifold or a graph, with large powers of low rank, we
present a general multiresolution construction for efficiently computing, representing and compressing T t . This allows a direct
multiscale computation, to high precision, of functions of the operator, notably the associated Green’s function, in compressed
form, and their fast application. Classes of operators for which these computations are fast include certain diffusion-like operators,
in any dimension, on manifolds, graphs, and in non-homogeneous media. We use ideas related to the Fast Multipole Methods
and to the wavelet analysis of Calderón–Zygmund and pseudo-differential operators, to numerically enforce the emergence of a
natural hierarchical coarse graining of a manifold, graph or data set. For example for a body of text documents the construction
leads to a directory structure at different levels of generalization. The dyadic powers of an operator can be used to induce a
multiresolution analysis, as in classical Littlewood–Paley and wavelet theory: we construct, with efficient and stable algorithms,
bases of orthonormal scaling functions and wavelets associated to this multiresolution analysis, together with the corresponding
downsampling operators, and use them to compress the corresponding powers of the operator. While most of our discussion deals
with symmetric operators and relates to localization to spectral bands, the symmetry of the operators and their spectral theory need
not be considered, as the main assumption is reduction of the numerical ranks as we take powers of the operator.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Our goal in this paper is to show that many of the tools of signal processing, adapted Fourier and wavelet analysis
can be naturally lifted to the setting of digital data clouds, graphs, and manifolds. We use diffusion as a smoothing and
scaling tool to enable coarse graining and multiscale analysis. We introduce a multiresolution geometric construction
for the efficient computation of high powers of local diffusion operators, which have high powers with low numerical
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rank. This organization of the geometry of a matrix representing T enables fast direct computation of functions of the
operator, notably the associated Green’s function, in compressed form. Classes of operators satisfying these conditions
include discretizations of differential operators, in any dimension, on manifolds, and in non-homogeneous media. The
construction yields multiresolution scaling functions and wavelets and domains, manifolds, graphs, and other general
classes of metric spaces. The quantitative requirements of numerical precision in matrix compression enforce the
emergence of a natural hierarchical coarse graining of the data set. As an example, for a body of text documents our
construction leads to a directory structure at different levels of specificity.

Our construction can be related to Fast Multipole Methods [1] and to the wavelet representation for Calderón–
Zygmund integral operators and pseudo-differential operators of [2], but from a “dual” perspective. We start from
a semigroup {T t }, associated to a diffusion process (e.g., T = e−ε�), rather than from the Green’s operator, since
the latter is not available in the applications we are most interested in, where the space may be a graph and very
little geometrical information is available. We use the semigroup to induce a multiresolution analysis, interpreting the
powers of T as dilation operators acting on functions, and constructing precise downsampling operators to efficiently
represent the multiscale structure. This yields a construction of multiscale scaling functions and wavelets in a very
general setting.

For many examples arising in physics, geometry, and other applications, the powers of the operator T decrease in
rank, thus suggesting the compression of the function (and geometric) space upon which each power acts. The scheme
we propose, in a nutshell, consists in the following: apply T to a space of test functions at the finest scale, compress the
range via a local orthonormalization procedure, represent T in the compressed range and compute T 2 on this range,
compress its range and orthonormalize, and so on: at scale j we obtain a compressed representation of T 2j

, acting on
a family of scaling functions spanning the range of T 1+2+22+···+2j−1

, for which we have a (compressed) orthonormal
basis, and then we apply T 2j

, locally orthonormalize and compress the result, thus getting the next coarser subspace.
Among other applications, this allows a generalization of the Fast Multipole algorithm for the efficient computation
of the product of the inverse “Laplacian” (I − T )−1 (on the complement of the kernel, of course) with an arbitrary
vector. This can be carried out (in compressed form) via the Schultz method [2]: we have

(I − T )−1f =
+∞∑
k=1

T kf =
∞∏

k=0

(
I + T 2k )

f

letting SK = ∑2K

k=1 T k ,

SK+1 = SK + T 2K

SK =
K∏

k=0

(
I + T 2k )

. (1.1)

Since the powers T 2k
have been compressed and can be applied efficiently to f , we can express (I − T )−1 in com-

pressed form and efficiently apply it to any function f .
The interplay between geometry of sets, function spaces on sets, and operators on sets is classical in harmonic

analysis. Our construction views the columns of a matrix representing T as data points in Euclidean (or Hilbert) space,
for which the first few eigenvectors of T provide coordinates (see [3,4]). The spectral theory of T provides a Fourier
analysis on this set relating our approach to multiscale geometric analysis, Fourier analysis, and wavelet analysis. The
action of a given diffusion semigroup on the space of functions on the set is analyzed in a multiresolution fashion,
where dyadic powers of the diffusion operator correspond to dilations, and projections correspond to downsampling.
The localization of the scaling functions we construct allows to reinterpret these operations in function space in a
geometric fashion. This mathematical construction has a numerical implementation which is fast and stable. The
framework we consider in this work includes at once large classes of manifolds, graphs, spaces of homogeneous type
and can be extended even further.

Given a metric measure space and a symmetric diffusion semigroup on it, there is a natural multiresolution analysis
associated to it, and an associated Littlewood–Paley theory for the decomposition of the natural function spaces on the
metric space. These ideas are classical (see [5] for a specific instance in which the diffusion semigroup is center-stage,
but the literature on multiscale decompositions in general settings is vast, see, e.g., [6–10] and references therein).
Generalized Heisenberg principles exist [11] that guarantee that eigenspaces are well approximated by scaling func-
tions spaces at the appropriate scale. Our work shows that scaling functions and wavelets can be constructed and
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efficient numerical algorithms that allow the implementation of these ideas exist. In effect, this construction allows to
“lift” multiscale signal processing techniques to graph and data sets, for compression and denoising of functions and
operators on a graph (and of the graph itself), for approximation and learning.

It also allows the introduction of dictionaries of diffusion wavelet packets [12], with the corresponding fast algo-
rithms for best basis selection.

The paper is organized as follows. In Section 2 we present a sketch of the construction of diffusion wavelets in
the finite-dimensional case, with minimal assumptions on the operator and the graph on which it acts. We consider
the examples of a sampled manifold and of a body of documents. In Section 3 we introduce definitions and notations
that will be used throughout the paper. In Section 4 we present the construction of the multiresolution analysis and
diffusion wavelets and study some of their properties, in the context of spaces of homogeneous type. In Section 5 we
discuss several algorithms for the orthogonalization step, which is crucial to our construction. They also demonstrate
how the construction generalizes beyond the setting of spaces of homogeneous type. In Section 6 we discuss how
our construction allows to perform certain computations efficiently, in particular the calculation of low-frequency
eigenfunctions of the Laplacian in compressed form, and of the Green’s function of the Laplacian in compressed
form. Section 7 is devoted to two classes of examples to which our construction applies naturally: diffusions on
discretized Riemannian manifolds and random walks on weighted graphs. In Section 8 we present several examples
of our construction. In Section 9 we discuss how to extend the functions we construct outside the original domain of
definition. Section 10 is a discussion of related work. Section 11 concludes the paper, with hints at future work and
open questions.

Material related to this paper, such as examples and Matlab scripts for their generation, is made available at:
http://www.math.yale.edu/~mmm82/diffusionwavelets.html.

2. The construction in the finite dimensional, discrete setting

In this section we present a particular case of our construction in a finite-dimensional, purely discrete setting, for
which only finite dimensional linear algebra is needed.

Here and in the rest of the paper we will use the notation [L]B2
B1

to indicate the matrix representing the linear
operator L with respect to the basis B1 in the domain and B2 in the range. A set of vectors B1 represented on a
basis B2 will be written in matrix form [B1]B2 , where the rows of [B1]B2 are the coordinates of the vectors B1 in the
coordinates B2.

2.1. Setting and assumptions

We consider a finite weighted graph X and a symmetric positive definite and positive “diffusion” operator T on
(functions on) X (for a precise definition and discussion of these hypotheses see Section 4).1 Without loss of generality,
we can assume that ‖T ‖2 � 1. Interesting examples include:

(i) The graph could represent a metric space in which points are data (e.g., documents) and edges have positive
weights (e.g., a function of the similarity between documents), and I − T could be a Laplacian on X. The Lapla-
cian is associated to a natural diffusion process and random walk P , and T is a self-adjoint operator conjugate
to the Markov matrix P . See, for example, [13] and references therein. Also, T could be the heat kernel on a
weighted undirected graph.

(ii) X could represent the discretization of a domain or manifold and T = e−ε(�+V ), where � is an elliptic partial
differential operator such as a Laplacian on the domain, or the Laplace–Beltrami operator on a manifold with
smooth boundary, and V is a non-negative potential function. This type of operators are called Schrödinger op-
erators and are well studied objects in mathematical physics. See, for example, [14,15]. A particular example
is when X represents a cloud of points generated by a (stochastic) process driven by a Langevin equation (e.g.,
a protein configuration in a solvent) and the diffusion operator is the Fokker–Planck operator associated to the
system.

1 The construction here described can be immediately generalized to the case of directed graphs and associated non-self-adjoint diffusion opera-
tors T , which arise and are important in several applications.
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Fig. 1. Spectra of powers of T and corresponding multiscale eigenspace decomposition.

Our main assumptions are that T is local, i.e., T (δk), where δk is (a mollification of) the Dirac δ-function at
k ∈ X, has small support, and that high powers of T have low numerical rank (see Fig. 1), for example because T is
smoothing. Ideally there exists a γ < 1 such that for every j � 0 we have Ranε(T

2j
) < γ Ranε(T

2j−1
), where Ranε

denotes the ε-numerical rank as in Definition 12.
We want to compute and describe efficiently the powers T 2j

, for j > 0, which describe the behavior of the diffusion
at different time scales. This will allow the computation of functions of the operator in compressed form (notably of
the Green’s function (I − T )−1), as well as the fast computation of the diffusion from any initial conditions. This is
of course of great interest in the solution of discretized partial differential equations, of Markov chains (for example
arising from physics), but also in learning and classification problems.

The reason why one expects to be able to compress high powers of T is that they are low rank by assumption, so
that it should be possible to efficiently represent them on an appropriate basis, at the appropriate resolution. From the
analyst’s perspective, these high powers are smooth functions with small gradient (or even “band-limited” with small
band), hence compressible.

2.2. Construction of the multi-resolution and compression

We start by fixing a precision ε > 0; we assume that T is self-adjoint and is represented on the basis Φ0 = {δk}k∈X

and consider the columns of T , which can be interpreted as the set of functions Φ̃1 = {T δk}k∈X on X. We refer
the reader to the diagram in Fig. 2 for a visual representation of the scheme presented. We use a local multiscale
orthogonalization procedure, to be described later, to carefully orthonormalize these columns to get a basis Φ1 =
{ϕ1,k}k∈X1 (X1 is defined as this index set), written with respect to the basis Φ0, for the range of T up to precision ε

(see Definition 12). This information is stored in the sparse matrix [Φ1]Φ0 . This yields a subspace that we denote
by V1. Essentially Φ1 is a basis for the subspace V1 which is ε-close to the range of T and with basis elements that are
well-localized. Moreover, the elements of Φ1 are coarser than the elements of Φ0, since they are the result of applying
the “dilation” T once. Obviously |X1| � |X|, but this inequality may already be strict since the numerical range of
T may be approximated, within the specified precision ε, by a subspace of smaller dimension. Whether this is the

Φ0

[T ]Φ1
Φ0

[T ]Φ0
Φ0

Φ1

[T 2]Φ2
Φ1

[T 2]Φ1
Φ1

. . .
[T 2j ]Φj+1

Φj
Φj+1

[T 2j+1 ]Φj+2
Φj+1

[Φj+2]Φj+1

. . .

Φ̃1

[Φ1]Φ0

Φ̃2

[Φ2]Φ1

. . .

[Φj+1]Φj

[T 2j+1 ]Φj+1
Φj+1

Φ̃j+1

Fig. 2. Diagram for downsampling, orthogonalization, and operator compression. (All triangles are commutative by construction.)
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{Φj }J
j=0, {Ψj }J−1

j=0 , {[T 2j ]Φj

Φj
}J
j=1 ←DiffusionWaveletTree ([T ]Φ0

Φ0
,Φ0, J,SpQR, ε)

// Input:

// [T ]Φ0
Φ0

: a diffusion operator, written on the o.n. basis Φ0
// Φ0: an orthonormal basis which ε-spans V0
// J : number of levels to compute
// SpQR: a function compute a sparse QR decomposition, see template below
// ε: precision.

// Output:
// The orthonormal bases of scaling functions, Φj , wavelets, Ψj , and

// compressed representation of T 2j
on Φj , for j in the requested range.

for j = 0 to J − 1 do

[Φj+1]Φj
, [T ]Φ1

Φ0
←SpQR([T 2j ]Φj

Φj
, ε)

Tj+1 := [T 2j+1 ]Φj+1
Φj+1

← [Φj+1]Φj
[T 2j ]Φj

Φj
[Φj+1]∗Φj

[Ψj ]Φj
← SpQR(I〈Φj 〉 − [Φj+1]Φj

[Φj+1]∗Φj
, ε)

end

Function template for sparse QR factorization:
Q,R ←SpQR (A, ε)

// Input:
// A: sparse n × n matrix
// ε: precision.

// Output:
// Q,R matrices, possibly sparse, such that A =ε QR

// Q is n × m and orthogonal
// R is m × n, and upper triangular up to a permutation
// the columns of Q ε-span the space spanned by the columns of A.

Fig. 3. Pseudo-code for construction of a diffusion wavelet tree.

case or not, we have computed the sparse matrix [T ]Φ1
Φ0

, a representation of an ε-approximation of T with respect to

Φ0 in the domain and Φ1 in the range. We can also represent T in the basis Φ1: we denote this matrix by [T ]Φ1
Φ1

and

compute [T 2]Φ1
Φ1

= [Φ1]Φ0 [T 2]Φ0
Φ0

[Φ1]TΦ0
= [T ]Φ1

Φ0
([T ]Φ1

Φ0
)∗. The last equality holds only when T is self-adjoint and it

is the only place where we use self-adjointness.
We proceed now by looking at the columns of [T 2]Φ1

Φ1
, which are Φ̃2 = {[T 2]Φ1

Φ1
δk}k∈X1 i.e., by unraveling the bases

on which this is happening, {T 2ϕ1,k}k∈X1 up to precision ε. Again we can apply a local orthonormalization procedure
to this set: this yields an orthonormal basis Φ2 = {ϕ2,k}k∈X2 for the range of T 2

1 up to precision ε, and also for the
range of T 3

0 up to precision 2ε. Observe that Φ2 is naturally written with respect to the basis Φ1, and hence encoded in
the matrix [Φ2]Φ1 . Moreover, depending on the decay of the spectrum of T , |X2| is in general a fraction of |X1|. The
matrix [T 2]Φ2

Φ1
is then of size |X2| × |X1|, and the matrix [T 4]Φ2

Φ2
= [T 2]Φ2

Φ1
([T 2]Φ2

Φ1
)∗, a representation of T 4 acting on

Φ2, is of size |X2| × |X2|.
After j steps in this fashion, we will have a representation of T 2j

onto a basis Φj = {ϕj,k}k∈Xj
, encoded in a matrix

Tj := [T 2j ]Φj

Φj
. The orthonormal basis Φj is represented with respect to Φj−1 and encoded in the matrix [Φj ]Φj−1 . We

let Φ̃j = TjΦj We can represent the next dyadic power of T on Φj+1 on the range of T 2j
. Depending on the decay of
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the spectrum of T , we expect |Xj | 	 |X|, in fact in the ideal situation the spectrum of T decays fast enough so that
there exists γ < 1 such that |Xj | < γ |Xj−1| < · · · < γ j |X|. This corresponds to downsampling the set of columns of
dyadic powers of T , thought of as vectors in L2(X). The hypothesis that the rank of powers of T decreases guarantees
that we can downsample and obtain coarser and coarser lattices in this spaces of columns.

While Φj is naturally identified with the set of Dirac δ-functions on Xj , we can extend these functions living on
the “compressed” (or “downsampled”) graph Xj to the whole initial graph X by writing

[Φj ]Φ0 = [Φj ]Φj−1[Φj−1]Φ0 = · · · = [Φj ]Φj−1[Φj−1]Φj−2 · · · [Φ1]Φ0 [Φ0]Φ0 . (2.1)

Since every function in Φ0 is defined on X, so is every function in Φj . Hence any function on the compressed
space Xj can be extended naturally to the whole X. In particular, one can compute low-frequency eigenfunctions

on Xj in compressed form and then extend them to the whole X. The elements in Φj are at scale T 2j+1−1 and are
much coarser and “smoother,” than the initial elements in Φ0, which is why they can be represented in compressed
form. The projection of a function onto the subspace spanned by Φj will be by definition an approximation to that
function at that particular scale. We refer the reader to Fig. 3 for pseudo-code illustrating the algorithm.

2.3. Scaling function and wavelet transforms

There is an associated fast scaling function transform: suppose we are given f on X and want to compute 〈f,ϕj,k〉
for all scales j and corresponding “translations” k. Being given f means we are given (〈f,ϕ0,k〉)k∈X . Then we can
compute (〈f,ϕ1,k〉)k∈X1 = [Φ1]Φ0(〈f,ϕ0,k〉)k∈X and so on for all scales. The sparser the matrices [Φj ]Φj−1 (and

[T ]Φj

Φj
), the faster this computation. This generalizes the classical scaling function transform. We will show later that

wavelets can be constructed as well, and that a wavelet transform is also possible.

2.4. Computation of functions of powers of T

In the same way, any power of T can be applied efficiently to a function f . Also, the Green’s function (I − T )−1

can be applied efficiently to any function, since it can be represented as a (short) product of dyadic powers of T as
in (1.1), each of which can be applied efficiently.

We are at the same time compressing the powers of the operator T and the space X itself, at essentially the optimal
“rate” at each scale, as dictated by the portion of the spectrum of the powers of T which is above the precision ε.

Observe that each point in Xj can be considered as a “local aggregation” of points in Xj−1, which is completely
dictated by the action of the operator T on functions on X: the operator itself is dictating the geometry with respect
to which it should be analyzed, compressed or applied to any vector.

2.5. Structure of the scaling function bases

The choice of the maps [Φj+1]Φj
, which at the same time orthogonalize and downsample the redundant families

Φ̃j+1, is quite arbitrary, but should be such that the representation of Φj+1 onto Φj is sparse.
For the construction of Φj we use a multiresolution strategy which could be of independent interest in wavelet the-

ory and in numerical analysis. The details of the construction are given in Section 5. This construction yields an ortho-
normal basis Φj = {ϕj,k}k∈Xj

. The elements of this basis can be rearranged in the form Φj = {{ϕj,k,l}k∈Kj,l
}l=1,...,Lj

.
The index l controls what we call the layer and the index k controls the translation within each layer. The functions
{ϕj,k,0}k∈Kj,0 have, qualitatively speaking, support of size 
2j , and they are centered at points roughly equispaced at

a distance 
2 ·2j , in such a way that their supports are disjoint. The functions {ϕj,k,1}k∈Kj,1 have, always qualitatively

speaking, support of size 
2 · 2j , and are centered at points roughly equispaced at a distance 
4 · 2j , so that their
supports disjoint. These functions of course have been orthogonalized to {ϕj,k,0}k∈Kj,0 . We proceed by adding one
layer of scaling functions at a time, orthogonalizing each time to the previous layers and picking functions that, after
orthogonalization, have disjoint supports. In this way the functions {ϕj,k,l}k∈Kj,l

have support of size 
2l · 2j and are
centered at points roughly equispaced at a distance 
2 · 2l · 2j , so that their supports are disjoint.
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Fig. 4. Some diffusion scaling functions (first 7 pictures, counting left to right, top to bottom) and wavelets (last 4 pictures) at different scales on
a dumbell-shaped manifold sampled at 1400 points. Colors are proportional to the function values. Please notice that the color scale may change
from picture to picture.

The wavelets Ψj are constructed in a similar fashion, simply by continuing the orthogonalization process till the

domain (instead of the range) of [T 2j ]Φj

Φj
is exhausted. In practice, to preserve numerical accuracy, this is achieved by

starting with the columns of IVj
− Φj+1Φ

∗
j+1.

2.6. Dumbell manifold

As an example, we consider a dumbell-shaped manifold. We sampled the manifold at 1400 points, and we consider
the diffusion associated to the (discretized) Laplace–Beltrami operator discussed in Section 7. In Fig. 4 we represent
some scaling functions and wavelets, at different scales. Observe how the shape of the scaling functions and wavelets
changes with the scale and with the location on the dumbell. This is a consequence of the curvature of the manifold,
which varies from point to point and affects the diffusion operator. The scaling functions look like “bump” functions at
different locations and have no or few oscillations. Wavelets (last four pictures in Fig. 4) have an oscillatory character.
Scaling functions and wavelets on the middle part of the dumbell resemble “standard” scaling functions and wavelets
on the interval, rotated around the axis of symmetry of the manifold.

2.7. A corpus of documents

We consider the following cloud of digital data. We are given 1047 articles from Science News and a dictionary of
10,906 words chosen as being relevant for this body of documents. Each document is categorized as belonging to one
of the following fields: Anthropology, Astronomy, Social Sciences, Earth Sciences, Biology, Mathematics, Medicine,
or Physics. Let C denotes the set of these categories. This information can be assimilated to the function cat: X → C,
defined by

cat(x) = {category of the point x}.
This data has been prepared and is analyzed in the manuscript [16], to which we refer the reader for further informa-
tion.

A similarity Wxy = Wyx is given between documents pairs, at least for documents which are very similar. This
similarity measure does not depend on the categorization, but only on the word frequencies of the documents. We will
report on this and other examples in an upcoming report [17]. Each document has in average 33 neighbors. The (graph)

Laplacian is defined as L = D− 1
2 (D − W)D− 1

2 , where D is the diagonal matrix with entries Dxx = ∑
Wxy ; L is
y∼x
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Fig. 5. Embedding Ξ
(0)
6 (x) = (ξ1(x), . . . , ξ6(x)): on the left coordinates 3,4,5, and on the right coordinates 4,5,6.

self-adjoint and the spectrum of L is contained in [0,1] [13]. The diffusion kernel we consider is T = D− 1
2 WD− 1

2 =
I − L.

We can compute the eigenvalues 0 = λ0 � λ1 � · · · � λn � · · · of L and the corresponding eigenvectors
ξ0, ξ1, . . . , ξn, . . . . As described in [3,18–20] and in Section 4.2, these eigenfunctions can be used to define, for each
n � 0 and t � 0, the non-linear embedding (Fig. 5)

Ξ(t)
n :X → Rn

defined by

x 
→ (
λ

t
2
i ξi(x)

)
i=1,...,n

.

The properties of these embeddings are discussed in the references above. This embedding seems a posteriori par-
ticularly meaningful since it separates quite well among the different categories. For example a simple K-means or
hierarchical clustering algorithm ran on Ξ

(t)
n (X), yields clusters which match closely the given labels, with some (usu-

ally interesting!) outliers. This just corresponds to a particular choice of kernel K-means (or hierarchical clustering),
motivated by diffusion distance. We do not give the details of the results here, since work is still in progress [17], and
the point of this discussion is that interesting information can be extracted from the multiscale construction presented
in this paper. The diffusion kernel is iterated over the set, induces a natural multiscale structure, that gets organized
coherently, in space and scale.

We construct the diffusion scaling functions and wavelets on this cloud of points. Some scaling functions are
represented in Fig. 6. Scaling functions at different scales represent (from coarse to fine) categories, sub-categories
(“topics”), sub-sub-categories (“specialty topics”), and so on. By this we mean that the (essential) support of most
scaling functions consists of a set of documents, which are related by diffusion at a certain time (= scale), and have
common, well-distinguished topics.

For example, we represent in Fig. 6 some scaling functions at scale 3 and retrieve the documents corresponding to
their (essential) supports. We find that:

φ3,4 is about Mathematics, but in particular applications to networks, encryption and number theory;
φ3,10 is about Astronomy, but in particular papers in X-ray cosmology, black holes, galaxies;
φ3,15 is about Earth Sciences, but in particular earthquakes;
φ3,5 is about Biology and Anthropology, but in particular about dinosaurs;
φ3,2 is about Science and talent awards, inventions and science competitions.

These scaling functions (as well as most of the others at scale 3) not only have (essential) support in each of the
categories, but on some meaningful, specialized topics. We move then to the next scale: the supports of the scaling
functions grow, and so do the corresponding topics. For example φ4,3 now corresponds to a larger portion of Biology
and Anthropology, compared to φ3,5, and includes articles on fossils in general, not just dinosaurs. φ4,2 corresponds to
a larger portion of Astronomy, compared to φ3,10, and includes articles on comets, asteroids, and space travel. The list
of examples could continue. In Fig. 6 we represent scaling functions at even coarser scale and it is obvious how they
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Fig. 6. Scaling functions at different scales represented on the set embedded in R3 via (ξ3(x), ξ4(x), ξ5(x)).

grow, by diffusion, on the set. To show that the coarse scaling functions correspond rather well with the categories we
are given, for each category c ∈ C we can consider

χc(x) =
{

1, x if cat(x) = c,
0, otherwise

(2.2)

and expand this function onto the scaling functions at a coarse scale, to get a sequence of coefficients {〈χc, φj,k〉}k∈Kj
.

For most classes we get a small number of large coefficients, which means that few scaling functions are enough to
represent well a given category. The only exception is the category Biology. This could be explained by the fact
that Biology is a category having rich and complex relationship with many other categories, as can be seen from
the documents themselves, but also from the location of documents related to Biology in the diffusion embedding
in Fig. 5: many documents in Biology have strong connections with Medicine, Mathematics, Earth Sciences, and
Anthropology. Details are left to [17].

Further examples can be found in Section 8. The example in Section 8.1 is particularly simple and detailed.
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3. Notation and definitions

To present our construction in some generality, we will need the following definitions and notations. We start by
introducing a model for the spaces X we will consider.

Definition 1. Let X be a set. A function d :X × X → [0,+∞) is called a quasi-metric if:

(i) d(x, y) � 0 for every x, y ∈ X, with equality if and only if x = y,
(ii) d(x, y) = d(y, x), for every x, y ∈ X,

(iii) there exists AX > 0 such that d(x, y) � AX(d(x, z) + d(z, y)) for every x, y, z ∈ X (quasi-triangle inequality).

The pair (X,d) is called a quasi-metric space. (X,d) is a metric space if one can choose AX = 1 in (iii).

Example 2. A weighted undirected connected graph (G,E,W), where W is the set of positive weights on the edges
in E, is a metric space when the distance is defined by

d(x, y) = inf
γx,y

∑
e∈γx,y

we,

where γx,y is a path connecting x and y. Often in applications a measure on (the vertices of) G is either uniform or
specified by some connectivity properties of each vertex (e.g., sum of weights of the edges concurrent in each vertex).

Let (X,d,μ) be a quasi-metric space with Borel measure μ. For x ∈ X, δ > 0, let

Bδ(x) = {
y ∈ X: d(x, y) < δ

}
be the open ball of radius δ around x. For a subset S of X, we will use the notation

Nδ(S) = {
x ∈ X: ∃y ∈ S: d(x, y) < δ

}
for the δ-neighborhood of S.

Since we would like to handle finite, discrete and continuous situations in a unique framework, and since many
finite-dimensional discrete problems arise from the discretization of continuous and infinite-dimensional problems,
we introduce the following definitions.

Definition 3. A quasi-metric measure space (X,d,μ) is said to be of homogeneous type [6,21] if μ is a non-negative
Borel measure and there exists a constant CX > 0 such that for every x ∈ X, δ > 0,

μ
(
B2δ(x)

)
� CXμ

(
Bδ(x)

)
. (3.1)

We assume μ(Bδ(x)) < ∞ for all x ∈ X,δ > 0, and we will work on connected spaces X. In the continuous
situation, we will assume that X is purely non-atomic, i.e., μ({x}) = 0 for every x ∈ X.

One can replace the quasi-metric d with a quasi-metric ρ, inducing a topology equivalent to the one induced by d ,
so that the δ-balls in the ρ metric have measure approximately δ: it is enough to define ρ(x, y) as the measure of the
smallest ball containing x and y [22]. One can also assume some Hölder-smoothness for ρ, in the sense that∣∣ρ(x, y) − ρ(x′, y)

∣∣ � LXρ(x, x′)β
[
ρ(x, y) + ρ(x′, y)

]1−β

for some LX > 0, β ∈ (0,1), c > 0, see [7,8,22,23].

Definition 4. Let (X,ρ,μ) be a space of homogeneous type and γ > 0. A subset {xi}i of X is a γ -lattice if ρ(xi, xj ) >
1
2clatγ , for all i �= j , and if for every y ∈ X, there exists i(y) such that ρ(y, xi(y)) < 2clatγ . Here clat depends only on
the constants AX,CX of the space of homogeneous type.

Example 5. Examples of spaces of homogeneous type include:



R.R. Coifman, M. Maggioni / Appl. Comput. Harmon. Anal. 21 (2006) 53–94 63
(i) Euclidean spaces of any dimension, with isotropic or anisotropic metrics induced by positive-definite bilinear
forms and their powers (see, e.g., [24]).

(ii) Compact Riemannian manifolds of bounded curvature, with the geodesic metric, or also with respect to metrics
induced by certain classes of vector fields [25].

(iii) Finite graphs of bounded degree with shortest path distance, in particular k-regular graphs, where the degree of
a vertex is defined as

dx =
∑
y∼x

wyx,

where y ∼ x means there is an edge between y and x.

In quite general settings, one can construct the following analogue of the dyadic cubes in the Euclidean setting
[26,27].

Theorem 6. Let (X,ρ,μ) be a space of homogeneous type as above. There exists a collection of open subsets

Q= {{Qj,k}k∈Kj

}
j∈Z

and constants δX > 1, η > 0 and c1, c2 ∈ (0,∞), depending only on AX,CX , such that

(i) for every j ∈ Z, μ(X \⋃
k∈Kj

Qj,k) = 0;
(ii) for j � j0 either Qj0,k ⊆ Qj,k′ or μ(Qj,k ∩ Qj0,k

′) = 0;
(iii) for each j ∈ Z, k ∈Kj and j ′ < j , there exists a unique k′ such that Qj ′,k ⊆ Qj,k′ ;
(iv) each Qj,k contains a point xj,k , called center of Qj,k , such that

B
min{c1δ

j
X,diam.X}(xj,k) ⊆ Qj,k ⊆ B

c2δ
j
X

(xj,k);
(v) for each j ∈ Z and each k ∈Kj , if we let

∂tQj,k := {
x ∈ Qj,k: ρ(x,X \ Qj,k) � tδ

j
X

}
,

then μ(∂tQj,k) � c2t
ημ(Qj,k).

A set Q = {Qj,k}j,k satisfying the properties (i)–(iv) above is called a family of dyadic cubes for X; {Qj,k}k∈Kj

is called the set of dyadic cubes at scale j , and the set of points Γj = {xj,k}k∈Kj
is called the set of dyadic centers at

scale j . For each j ∈ Z the unique dyadic cube at scale j containing x will be denoted by Qj(x).

Example 7. In the case of Euclidean space Rn, the classical dyadic cubes correspond to choices δX = 2, η = 1,
c1 = c2 = 1, Kj = 2jZ in the theorem above.

Definition 8. A center set center(Φ) for a family of functions Φ = {ϕk}k∈K is a set {xk}k∈K ⊆ X such that there exists
η > 0 such that for every k ∈ K we have suppϕk ⊆ Bη(xk). A set of functions {ϕk}k∈K with such a supporting set is
called η-local.

Notation 9. If Ψ is a family of functions on X and S ⊆ X, we let

Ψ |S = {ψ ∈ Ψ : suppψ ⊆ S}.

Notation 10. If V is a closed linear subspace of L2(X,μ), we denote the orthogonal projection onto V by PV . The
closure V̄ of any subspace V is taken in L2(X,μ), unless otherwise specified.

Notation 11. If L is a self-adjoint bounded operator on L2(X,μ), with spectrum σ(L), and spectral decomposition

L =
∫

λdEλ,
σ(L)
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we define

Lε =
∫

{λ∈σ(L): |λ|>ε}
λdEλ.

Definition 12. Let H be a Hilbert space and {vk}k∈K ⊆ H. Fix ε > 0. A set of vectors {ξi}i∈I ε-spans {vk}k∈K if for
every k ∈ K

‖P〈{ξi }i∈I 〉vk − vk‖H � ε.

We also say, with abuse of notation, that 〈{ξi}i∈I〉 is an ε-span of 〈{vk}k∈K〉 and write 〈{vk}k∈K〉 ⊆ 〈{ξi}i∈I〉ε . We let

dimε

({vk}k∈K
) = inf

{
dim(V ′): V ′ is an ε-span of

〈{vk}k∈K
〉}

.

The abuse of notation is in the fact that ε-span does not apply to a subspace, but to a set of vectors (spanning some
subspace). For instance the ε-spans corresponding to two different set of vectors, spanning the same subspace, are in
general different. As an example, if {v1, v2} are orthonormal and ε is small, 〈v1〉 is an ε-span for 〈{v1, εv2}〉, but not
for 〈{v1, v2}〉.

4. Multiresolution analysis induced by symmetric diffusion semigroups

4.1. Symmetric diffusion semigroups

We start from the following definition [5,14]:

Definition 13. Let {T t }t∈[0,+∞) be a family of operators on (X,μ), each mapping L2(X,μ) into itself. Suppose this
family is a semigroup, i.e., T 0 = I and T t1+t2 = T t1T t2 for any t1, t2 ∈ [0,+∞), and limt→0+ T tf = f in L2(X,μ)

for any f ∈ L2(X,μ).
Such a semigroup is called a symmetric diffusion semigroup (or a Markovian semigroup) if it satisfies the following:

(i) ‖T t‖p � 1 for every 1 � p � +∞ (contraction property).
(ii) Each T t is self-adjoint (symmetry property).

(iii) T t is positivity preserving: Tf � 0 for every f � 0 in L2(X) (positivity property).
(iv) The semigroup has a positive self-adjoint generator −�, so that

T t = e−t�. (4.1)

While some of these assumptions are not strictly necessary for our construction, their adoption simplifies this
presentation without reducing the types of applications we are interested in at this time.

Some of the hypotheses in the definition above are redundant. For example by interpolation it is easy to see that
if T t is a contraction on L∞(X,μ) for all times t , then it is a contraction on Lp(X,μ) for all 1 � p � +∞ and all
t � 0. Moreover, one can prove that if T t is compact on L2(X,μ) for all t > 0, then it is compact on all Lp(X,μ), for
all 1 < p < +∞ and t > 0, and the spectrum, for each t > 0, is independent of p and every L2(X,μ) eigenfunction
is in Lp(X,μ) for p ∈ (1,+∞). See [5,14] for these and related properties of semigroups.

We will denote by σ(T ) the spectrum of T (so that {λt }λ∈σ(T ) is the spectrum of T t ), and by {ξλ}λ∈σ(T ) the
corresponding basis (orthogonal since T t is normal) of eigenvectors, normalized in L2 (without loss of generality).
Here and in all that follows we will use the obvious abuse of notation that implicitly accounts for possible multiplicities
of the eigenvalues.

Remark 14. Observe that σ(T ) ⊆ [0,1]: by the semigroup property and (ii), we have

T = T
1
2 T

1
2 = (

T
1
2
)∗

T
1
2

so the spectrum is non-negative. The upper bound obviously follows from condition (i).
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4.1.1. Examples
(a) The Poisson semigroup, for example, on the circle or half-space, or anisotropic and/or higher dimensional

anisotropic versions (e.g., [24]).
(b) The random walk diffusion induced by a symmetric Markov chain (on a graph, a manifold etc.), or the dual/

reversed random walk. In particular Markov chains from statistical physics and dynamics are of great interest.
(c) The semigroup T t = etL generated by a second-order differential operator on some interval (a, b) (a and/or b

possibly infinite), in the form

Lf = a2(x)
d2

dx2
f + a1(x)

d

dx
f + a0(x)f (x)

with a2(x) > 0, a0(x) � 0, acting on a subspace of L2((a, b), q(x)dx), where q is an appropriate weight function,
given by imposing appropriate boundary conditions, so that L is (unbounded) self-adjoint. Conditions (i) to (iii)
are satisfied and (iv) is satisfied if c = 0.
This extends to Rn by considering elliptic partial differential operators in the form

Lf = 1

w(x)

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

f

)
+ c(x)f,

where we assume c(x) � 0 and w(x) > 0, and we consider this operator as defined on a smooth manifold.
L, applied to functions with appropriate boundary conditions, is formally self-adjoint and generates a semigroup
satisfying (i) to (iii) and (iv) is satisfied if c = 0.
An important case is the Laplace–Beltrami operator on a compact smooth manifold (e.g., a Lie group), with Ricci
curvature bounded below [15] and subordinated operators [5].
A potential term V could be added to the Laplacian, to yield the semigroup et(L+V ). The operator L+V is called a
Schrödinger operator, a very well-studied object in mathematical physics: see, e.g., [14,15] and references therein,
in particular for conditions guaranteeing compactness, self-adjointness and positivity.

(f) If (X,d,μ) is derived from a finite graph (G,W) as described above in Example 2, one can define Dii = ∑
j Wij

and then the matrix D−1W is a Markov matrix, which corresponds to the natural random walk on G. The operator

L = D− 1
2 (I −W)D− 1

2 is the normalized Laplacian on graphs, it is a contraction on Lp(G,μG), where μG({i}) =
Dii , and it is self-adjoint. This discrete setting is extremely useful in applications and widely used in a number
of fields such as data analysis (e.g., clustering, learning on manifolds, parametrization of data sets), computer
vision (e.g., segmentation) and computer science (e.g., network design, distributed processing). We believe our
construction will have applications in all these settings. As a starting point, see, for example, [13] for an overview,
and [28,29] for particular applications.

(g) One parameter groups (continuous or discrete) of dilations in Rn, or other motion groups (e.g., the Galilei group
or Heisenberg-type groups), act on square-integrable functions on these spaces (with the appropriate measures)
as isometries or contractions. Continuous wavelets in some of these settings have been widely studied (see, e.g.,
[30,31] and references therein), but an efficient discretization of such transforms seems in many respects still an
open problem.

(h) The random walk diffusion on a hypergroup (see, e.g., [32] and references therein).

Definition 15. A diffusion semigroup {T t }t�0 is called compact if T t is compact for every t � 0.

Definition 16. A compact diffusion semigroup {T t } with spectrum λ0 � λ1 � · · · � λk � · · · � 0 is said to have
γ -strong decay, for some γ > 0, if there exists a constant C > 0 such that for every λ ∈ (0,1)

#{k: λk � λ} � C logγ

2
1

λ
.

Remark 17. There are classes of diffusion operators that are not self-adjoint but very important in applications. The
construction we propose actually does not depend on this hypothesis, however the interpretation of many results does
depend on the spectral decomposition. In a future publication we will address these and related issues in a broader
framework.
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Definition 18. A positive diffusion semigroup {T t } acts η-locally, for some η > 0, if for every x and every function ϕ

δ-local around x, the function T ϕ is (η + δ)-local around x.

Definition 19. A positive diffusion semigroup {T t } is expanding if suppf ⊆ suppT tf , for every t > 0 and every
smooth f .

In practice the definition above can be interpreted up to a given precision ε, in the sense that the numerical support
of a function ϕ is the set on which ϕ � ε.

4.2. Diffusion metrics and embeddings induced by a diffusion semigroup

In all that follows, we will assume, mainly for simplicity, that {T t } is a compact semigroup with γ -strong decay,
that acts η-locally on X.

We refer the reader to [3,18,33] and references therein for some motivations and applications of the ideas presented
in this section.

Being positive definite, T t induces the diffusion metric

d(t)(x, y) =
√ ∑

λ∈σ(T )

λt
(
ξλ(x) − ξλ(y)

)2 =
√〈

δx − δy, T t (δx − δy)
〉 = ∥∥T

t
2 δx − T

t
2 δy

∥∥
2. (4.2)

Definition 20. The metric defined above is called the diffusion metric associated to T , at time t .

If the action of T t on L2(X,μ) can be represented by a (symmetric) kernel Kt(x, y), then d(t) can be written as

d(t)(x, y) = √
Kt(x, x) + Kt(y, y) − 2Kt(x, y), (4.3)

since the spectral decomposition of K is

Kt(x, y) =
∑

λ∈σ(T )

λt ξλ(x)ξλ(y). (4.4)

For any subset σ(T )′ ⊆ σ(T ) we can consider the map of metric spaces

Ξ
(t)

σ (T )′ :
(
X,d(t)

) → (
R|σ(T )′|, dEuc.

)
,

x 
→ (
λ

t
2 ξλ(x)

)
λ∈σ(T )′ , (4.5)

which is in particular cases called eigenmap [33,34] and is a form of local multidimensional scaling (see also [3,4,
35]). By the definition of d(t), this map is an isometry when σ(T )′ = σ(T ), and an approximation to an isometry
when σ(T )′ � σ(T ).

If σ(T )′ is the set of the first n top eigenvalues, and if
∫
X

K(x, y)dμ = 1, then Φσ(T )′ is a minimum local distortion
map (X,d(t)) → Rn, in the sense it minimizes

n − tr
(
P〈{ξλ}λ∈σ(T )′ 〉K

tP ∗〈{ξλ}λ∈σ(T )′ 〉
) = 1

2

∑
λ∈σ(T )′

∫
X

∫
X

(
ξλ(x) − ξλ(y)

)2
Kt(x, y)dμ(x)dμ(y) (4.6)

among all possible maps x 
→ (φ1(x), . . . , φn(x)) such that 〈φi,φj 〉 = δij . This is just a rephrasing, in our situation,
of the well-known fact that the top k singular vectors span the best approximating k-dimensional subspace to the
domain of a linear operator, in the L2 sense. See, e.g., [36] and references therein for a comparison between different
dimensionality reduction techniques that can be cast in this framework.

These ideas are related to various techniques used for non-linear dimension reduction: see, for example, [3,4,18,
35,37–40] and references therein and http://www.cse.msu.edu/~lawhiu/manifold/ for a list of relevant links.

Example 21. Suppose we have a finite symmetric Markov chain M on (X,μ), which we can assume irreducible, with
transition matrix P . We assume P is positive definite (otherwise we could consider 1 (I + P)). Let {λl}l be the set of
2
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eigenvalues of P , ordered by increasing value, and {ξl}l be the corresponding set of right eigenvectors of P , which
form an orthonormal basis. Then by functional calculus we have

P t
i,j =

∑
l

λt
l ξl(i)ξl(j)

and for an initial distribution f on X, we define

P tf =
∑

l

λt
l 〈f, ξl〉ξl. (4.7)

Observe that if f is a probability distribution, so is P tf for every t since P is Markov. The diffusion map Φσ(T )′

embeds the Markov chain in the Euclidean space R|σ(T )′| in such a way that the diffusion metric induced by M on X

becomes Euclidean distance in R|σ(T )′|.

4.3. Multiresolution scaling function spaces

We can interpret T as a dilation operator acting on functions in L2(X,μ) and use it to define a multiresolution
structure. As in [5] and in classical wavelet theory, we may start by discretizing the diffusion semigroup {T t } at the
increasing sequence of times

tj =
j∑

l=0

2l = 2j+1 − 1 (4.8)

for j � 0. Observe the choice of the factor 2 is arbitrary, and could be replaced by any factor λ > 1 here and in all
that follows. In particular the factor δX > 1, associated with geometric properties of the space, as in Theorem 6, will
play an important role. Let {λi}i�0 be the spectrum of T , ordered in decreasing order, and {ξi}i the corresponding
eigenvectors. We can define “low-pass” portions of the spectrum by letting

σj (T ) = {
λ ∈ σ(T ), λtj � ε

}
. (4.9)

For a fixed ε ∈ (0,1) (which we may think of as our precision), we define the (finite dimensional!) approximation
spaces of band-limited functions by

Vj = 〈{
ξλ: λ ∈ σ(T ), λtj � ε

}〉 = 〈{
ξλ: λ ∈ σj (T )

}〉
(4.10)

for j � 0. We let V−1 = L2(X). The set of subspaces {Vj }j�−1 is a multiresolution analysis in the sense that it
satisfies the following properties:

(i) V−1 = L2(X), limj→+∞ Vj = 〈{ξi : λi = 1}〉.
(ii) Vj+1 ⊆ Vj for every j ∈ Z.

(iii) {ξλ: λtj � ε} is an orthonormal basis for Vj .

We can also define, for j � −1, the subspaces Wj as the orthogonal complement of Vj+1 in Vj , so that we have the
familiar relation between approximation and detail subspaces as in the classical wavelet multiresolution constructions:

Vj = Vj+1 ⊕⊥ Wj . (4.11)

The direct orthogonal sum

L2(X) =
⊥⊕

j�−1

Wj

is a wavelet decomposition of the space, induced by the diffusion semigroup, and related to the Littlewood–Paley
decomposition studied in this setting by Stein [5].

Observe that when {T t } has γ -strong decay, then we have

dimVj � C

(
2−j log2

1
)γ

= C2−jγ logγ

2
1
. (4.12)
ε ε
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MultiscaleDyadicOrthogonalization (Ψ,Q, J, ε):

// Ψ : a family of functions to be orthonormalized, as in Proposition 22
// Q: a family of dyadic cube on X

// J : finest dyadic scale
// ε: precision

Φ0 ← Gram-Schmidtε(
⋃

k∈KJ
Ψ |QJ,k

)

l ← 1
do

for all k ∈KJ+l

Ψ̃l,k ← Ψ |QJ+l,k
\⋃

QJ+l−1,k′⊆QJ+l,k
Ψ |QJ+l−1,k′

Φ̃l,k ← Gram-Schmidtε(Ψ̃l,k )
Φl,k ← Gram-Schmidtε(Φ̃l,k )

end
l ← l + 1

until Φl is empty.

Fig. 7. Pseudo-code for the MultiscaleDyadicOrthogonalization of Proposition 22.

While by definition (4.10) we already have an orthonormal basis of eigenfunctions of T for each subspace Vj (and
for the subspaces Wj as well), these basis functions are in general highly non-localized, being global Fourier modes
of the operator. Our aim is to build localized bases for (ε-approximations of) each of these subspaces, starting from
a basis of the fine subspace V0 and explicitly constructing a downsampling scheme that yields an orthonormal basis
for Vj , j > 0. This is motivated by general Heisenberg principles (see, e.g., [41] for a setting similar to ours) that
guarantee that eigenfunctions have a smoothness or “frequency content” or “scale” determined by the corresponding
eigenvalues, and can be reconstructed by maximally localized “bump functions,” or atoms, at that scale. Such ideas
have many applications in numerical analysis, especially to problems motivated by physics (matrix compression [42–
45], multigrid techniques [46,47], etc.).

We avoid the computation of the eigenfunctions, nevertheless the approximation spaces Ṽj that we build will be
ε-approximations of the true Vj ’s.

4.4. Orthogonalization and downsampling

A crucial ingredient for the construction of the scaling functions will be a scheme that starts with a set of “bump”
functions, and constructs a set of well-localized orthonormal functions spanning the same subspace, up to a given
precision. In the next section, this will be applied to families of the form {T tδx}, where T is a local semigroup, t + 1
a dyadic power, and δx either a set of Dirac δ-functions (in the discrete setting), or a mollification of those (in the
continuous case).

In this section we present two ways for orthogonalizing a set of “bump” functions. The first one is based on the
following proposition.

Proposition 22 (Multiscale dyadic orthogonalization). Let (X,ρ,μ) be a space of homogeneous type, diam(X) <

+∞ and Q = {{Qj,k}k∈Kj
}j∈Z a family of dyadic cubes, and δX > 1, η > 0, c1, c2 > 0 as in Theorem 6. Assume

X ∈ Q, more precisely X = QJ+jX,k for some jX � logδX
(c−1

1 δ−J
X diam(X)). Fix ε > 0. Let Ψ = {ψx}x∈Γ be a αδJ

X-
local family, α � c1, with center set Γ . Suppose Ψ is “uniformly locally finite-dimensional” in the sense that there
exist c′

ε, c
′′
ε > 0 such that for all k ∈ KJ ,

dim J −1 (Ψ |QJ,k
) � c′

εμ(QJ,k),
c1δXμ(X) ε
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and for all l � 0, k ∈ KJ+l ,

dim
c1δ

J+l
X (2μ(X))−1ε

({ψx}x∈Γ ∩∂
αδ

−l
X

QJ+l,k

)
� c′′

ε

(
αδ−l

X

)η
μ(QJ+l,k).

Then there exists an orthonormal basis

Φ = {Φl}l=0,...,L = {{{ϕl,k,i}i∈Il,k

}
k∈KJ+l

}
l=0,...,L

,

with L � jX such that

(i) 〈Ψ 〉 ⊆ 〈Φ〉(jX+1)ε .
(ii) For l = 0, . . . ,L, all k ∈KJ+l and all i ∈ Il,k , suppϕl,k,i ⊆ QJ+l,k . In particular, ϕl,k,i is c2δ

J+l
X -local.

(iii) For l > 0,〈 ⋃
k∈KJ+l

Ψ |QJ+l,k

〉
⊆

〈
l⋃

l′=0

Φl

〉
(l+1)ε

,

and #Il,k � c′′
ε (α min{δ−(l−1)

X ,1})ημ(QJ+l,k).

Before presenting the proof, we discuss qualitatively the contents of the proposition. Qualitatively, Ψ is a local
family of functions “well-spread” on X, and we orthonormalize it in the following way. At the finest scale J , we
consider Ψ |QJ,k

for every k ∈ KJ , and orthonormalize this family, to get Φ0. At the next scale, we consider, for each
k ∈ KJ+1, Ψ |QJ+1,k

minus the subset of Ψ already considered, which is Ψ |QJ,k′ for QJ,k′ ⊆ QJ+1,k . Hence the new
subset of Ψ to be considered consists of functions in Ψ close to the boundary of QJ+1,k : we orthonormalize them to
〈Φ0〉, and orthonormalize what is left to itself, obtaining Φ1. We proceed in this fashion, at layer l adding a subset of
Ψ not considered yet, consisting of function close to the boundary of QJ+l,k for each k ∈ KJ+l . We refer the reader
Fig. 7 for pseudo-code implementing the construction in the proposition.

Observe that the condition of “uniform local finite-dimensionality” imposed on Ψ is quite natural. This condi-
tion says, roughly speaking, that the set of functions in Ψ which has support in a given set, ε-spans a subspace of
ε-dimension at most proportional to the measure of that set. However, we do not need this condition for all sets, but
for very special families of sets. First of all it should hold for all the dyadic cubes at the finest scale considered, QJ,k ,
k ∈ KJ . This is the finest scale considered in the proposition because it is comparable with the size of the supports of
the functions in Ψ . Secondly, it should hold for the boundaries of the cubes at all scales. The condition imposed is
exactly consistent with the estimate on the volume of this boundaries as given by Theorem 6.

Proof. The construction of the orthonormal basis Φ is done at different scales and locations, corresponding to dif-
ferent dyadic cubes. We will need to orthonormalize various sets of functions {vi}, to obtain an orthonormal basis
for their ε-span, that contains dimε({vi}) elements: we will call such a process ε-orthogonalization. For example one
can use a modified Gram–Schmidt algorithm described in Section 5 or the orthonormalization method suggested in
Proposition 25.

The first “layer” l = 0 is constructed as follows: for each dyadic cube QJ,k , k ∈ KJ , consider Ψ |QJ,k
and

c1δ
J
Xμ(X)−1ε-orthonormalize (c1 is as in Theorem 6) this set of functions to obtain Φ0 := {ϕ0,k,i}i∈I0,k

. Property (ii)
is satisfied by construction and by the assumption on uniform local finiteness. Observe also that〈 ⋃

k∈KJ

Ψ |QJ,k

〉
⊆ 〈Φ0〉ε,

since the restriction of a function in the subspace on the right-hand side to every dyadic cube QJ,k is c1δ
J
Xμ(X)−1ε-

approximated in 〈Φ0〉, and there are at most (c1δ
J
X)−1μ(X) such cubes, by volume considerations.

For the second “layer,” l = 1, consider, for k ∈KJ+1,

Ψ̃1,k := Ψ |QJ+1,k

∖ ⋃
QJ,k′⊆QJ+1,k

Ψ |QJ,k′

= {ψ ∈ Ψ : suppψ ⊆ QJ+1,k but suppψ � QJ,k′ for all QJ,k′ ⊆ QJ+1,k}



70 R.R. Coifman, M. Maggioni / Appl. Comput. Harmon. Anal. 21 (2006) 53–94
⊆
⋃

QJ,k′⊆QJ+1,k

{ψx ∈ Ψ : x ∈ ∂
αδJ

Xδ−J
X

QJ,k′ }.

The last inclusion holds because suppψx ⊆ QJ+1,k implies x ∈ QJ,k′ for some QJ,k′ ⊆ QJ+1,k , and suppψ � QJ,k′
forces x ∈ ∂αδJ

X
QJ,k′ , for otherwise suppψx ⊆ BαδJ

X
(x) ⊆ QJ,k′ (because ψx is αδJ

X-local). From the assumptions we
deduce that

dimc1δ
J
X(2μ(X))−1ε(Ψ̃1,k) � c′′

ε

(
αδ0

X

)η
μ(QJ+1,k).

We c1δ
J+1
X (2μ(X))−1ε-orthonormalize Ψ̃1,k to the functions in Φ0, obtaining Φ̃1,k , and then let Φ1,k := {ϕ1,k,i}i∈I1,k

be the result of c1δ
J+1
X (2μ(X))−1ε-orthonormalizing Φ̃1,k for every k ∈ KJ+1. Observe that each function in Φ1,k

has support in the dyadic cube QJ+1,k , since so do the functions in Ψ̃1,k and Φ̃1,k . This proves property (ii). To see
that (iii) also holds, observe that 〈⋃k∈KJ+1

Ψ̃1,k〉 ⊆ 〈Φ1〉ε; in fact〈 ⋃
k∈KJ

Ψ̃0,k ∪
⋃

k∈KJ+1

Ψ̃1,k

〉
⊆ 〈Φ0〉ε + 〈Φ1〉ε ⊆ 〈Φ0 ∪ Φ1〉2ε.

Finally, #I1,k � dimε Ψ̃1,k � c′′
ε (αδ0

X)ημ(QJ+1,k).
Proceeding in this fashion, at “layer” j � 1 we consider, for k ∈KJ+l ,

Ψ̃l,k := Ψ |QJ+l,k

∖ ⋃
QJ+l−1,k′⊆QJ+l,k

Ψ |QJ+l−1,k

= {ψ ∈ Ψ : suppψ ⊆ QJ+l,k but suppψ � QJ+l−1,k′ for all QJ+l−1,k′ ⊆ QJ+l,k}
⊆

⋃
QJ+l−1,k′⊆QJ+l,k

{ψx ∈ Ψ : x ∈ ∂
αδJ

Xδ
−(J+l−1)
X

QJ+l−1,k}.

As above, the last step follows because suppψx ⊆ QJ+l,k implies x ∈ QJ+l−1,k′ for some QJ+l−1,k′ ⊆ QJ+l,k , and
suppψx � QJ+l−1,k′ forces x ∈ ∂

αδJ
Xδ

−(J+l−1)
X

QJ+l−1,k′ , for otherwise suppψx ⊆ BαδJ
X
(x) ⊆ QJ+l−1,k′ (because ψx

is αδJ
X-local). By assumption it follows that

dim
c1δ

J+l
X (2μ(X))−1ε

(Ψ̃l,k) � c′′
ε

(
αδ−l

X

)η
μ(QJ+l−1,k).

We c1δ
J+l
X (2μ(X))−1ε-orthonormalize Ψ̃l,k to the functions in Φ0, . . . ,Φl−1, obtaining Φ̃l,k , and then let Φl,k :=

{ϕl,k,i}i∈Il,k
be the result of c1δ

J+l
X (2μ(X))−1ε-orthonormalizing Φ̃l,k for every k ∈ KJ+l . As above, each function

in Φl,k has support in the dyadic cube QJ+l,k , since so do the functions in Ψ̃l,k and Φ̃l,k . This proves property (ii). To
see that (iii) also holds, first observe that〈

l⋃
l′=0

⋃
k∈KJ+l′

Ψ̃l′,k

〉
⊆

l⊕
l′=0

〈Φl′ 〉ε ⊆
〈

l⋃
l′=0

Φl′

〉
(l+1)ε

,

and secondly, #Il,k � dimε Ψ̃l,k � c′′
ε (αδ

−(l−1)
X )ημ(QJ+l,k).

We stop if #Il,k = 0. Since X ∈Q, eventually, for l large enough, X is the only dyadic cube QJ+l,k , and we simply
finish by orthonormalizing the subset of functions in Ψ which have not been already considered, which finishes the
construction. This happens at most at scale L � logδX

(c−1
1 δ−J

X diamX). �
Corollary 23. Let everything be as in Proposition 22. Furthermore assume that Ψ is also “well-distributed” in the
sense that there exist c′, c′′ > 0 such that for all k ∈ KJ

#(Ψ |QJ,k
) � c′μ(QJ,k),

and for all l � 0 and k ∈KJ+l ,

#{Γ ∩ ∂ −lQJ+l,k} � c′′(αδ−l
)η

μ(QJ+l,k).
αδX
X
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Then the cost of computing {{ϕl,k,i}i∈Il,k
}k∈KJ+l

is upper-bounded by

∼(c′′
ε )2α2ηδ

2l(1−η)+2(J+η)
X μ(X) + c′c′′

ε

(
αδ

−(l−1)
X

)η
δ
(2J+l)
X · (1 + (αδX)ηcηδ

(1−η)l
X

)
μ(X),

where cη is a universal constant depending only on η.

Proof. First observe that from the proof of Proposition 22 it follows that, for l � 1,

#Ψ̃l,k � c′(αδ
−(l−1)
X

)η
μ(QJ+l−1,k).

To estimate the computational cost, first recall that the cost of orthonormalizing k vectors to m vectors in n dimen-
sions is in general equal to kmn. When l = 0 it is easy to see the cost of computing Φ0 is proportional to μ(X). For
each layer l > 0, the cost of computing Φl can be calculated as follows. First we need to orthonormalize the functions
to Ψ̃l,k , for all k ∈ KJ+l to the functions already orthonormalized at the previous layers. The result of this operation is
Φ̃l,k , and the cost is

∑
k∈KJ+l

#Ψ̃l,k︸ ︷︷ ︸
#fcns. to orthonormalize

·
l−1∑
l′=0

∑
k′:QJ+l′,k′⊆QJ+l,k

#Il′,k′μ(Q + l′, k′)

︸ ︷︷ ︸
cost of projecting off previous layers

�
∑

k∈KJ+l

c′(αδ
−(l−1)
X

)η
μ(QJ+l,k)

×
( ∑

k′:QJ,k′⊆QJ+l,k

c′′
εμ(QJ,k′)2 +

l−1∑
l′=1

∑
k′:QJ+l′,k′⊆QJ+l,k

c′′
ε

(
αδ

−(l′−1)
X

)η
μ(QJ+l′,k′)2

)

∼ c′(αδ
−(l−1)
X

)η
μ(X) ·

(
c′′
ε δ2J+l

X + c′′
εα

ηδ
η+2J+l
X

l−1∑
l′=1

δ
l′(1−η)
X

)

∼ c′c′′
ε

(
αδ

−(l−1)
X

)η
μ(X)δ2J+l

X · (1 + (αδX)ηcηδ
(1−η)l
X

)
.

Then we compute the cost of the orthonormalization of Φ̃l,k for all k ∈ KJ+l to obtain Φl,k :∑
k∈KJ+l

dimε Ψ̃ 2
l,kμ(QJ+l,k) �

(
c′′
ε

(
αδ

−(l−1)
X

)η)2(
δJ+l
X

)2
μ(X) � (c′′

ε )2α2ηδ
2l(1−η)+2(J+η)
X μ(X). �

A result in [6] suggests another way of orthonormalizing families of localized functions. This second orthonormal-
ization technique guarantees asymptotic exponential decay on the orthonormal functions we build. We will need the
following definitions.

Definition 24. A matrix (B)(j,k)∈J×J is called η-accretive [6], if there exists an η > 0 such that for every ξ ∈ l2(J )

we have

�e
∑
j

∑
k

Bjkξj ξ̄k � η
∑
j

‖ξ‖2
l2(J )

.

Proposition 25. Let Ψ = {ψj }j∈Γ be a Riesz basis of some Hilbert space H, Γ at most countable. Let ρ be a metric
on Γ , for which there exist νΓ ,EΓ > 0 such that∑

j∈Γ

e−νΓ ρ(i,j) < EΓ (4.13)

for every i ∈ Γ . Suppose the Gramian matrix Gij = 〈ψi,ψj 〉 is η-accretive and there exist C > 0, α > νX such that
for all i, j ∈ Γ

|Gi,j | � Ce−αρ(i,j).
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Then there exist C′, α′ > 0 and an orthonormal basis {ϕ}j∈Γ such that

ϕj =
∑
k∈Γ

β(j, k)ψk

with ∣∣β(j, k)
∣∣ � C′e−α′ρ(j,k).

Proof. The proof proceeds exactly as in [6, Proposition 3 in Section 11.4], with the triangle inequality on Zn replaced
by the quasi-triangle inequality for the metric ρ. �

Condition (4.13) is automatically satisfied on spaces of homogeneous type, up to a change to a topologically
equivalent metric:

Lemma 26. Let (X,ρ,μ) be a space of homogeneous type. There exists a metric ρ′, topologically equivalent to ρ,
such that for any ν > 0, there exists a constant E = E(ν) > 0 such that∫

X

e−νρ′(x,y) dμ(y) < E. (4.14)

Proof. Let ρ′ be a metric, topologically equivalent to ρ, such that μ({y ∈ X: ρ′(x, y) < r}) � CXrd for some d > 0.
The existence of such a ρ′ is proved in [48]. We have:∫

X

e−νρ′(x,y) dμ(y) =
∫

{y:ρ′(x,y)�1}
e−νρ′(x,y) dμ(y) +

∑
j�0

∫
{y:ρ′(x,y)∈(2j ,2j+1]}

e−νρ′(x,y) dμ(y)

� μ
(
B1(x)

) +
∑
j�0

e−ν2j

2(j+1)d � E(ν). �

One can apply Proposition 25 for orthogonalizing the set of functions Ψ̃l and Φ̃l in Proposition 22. This may lead
to a lower computational complexity for the multiscale orthogonalization scheme in Proposition 22, possibly down to
order μ(X) logδX

μ(X), at least when η = 1. This will be reported in a separate work.

4.5. Construction of the multi-resolution analysis

We can use the orthogonalization procedures in Proposition 22 or Proposition 25 to construct orthonormal scaling
functions for the subspaces Vj and generate multiscale bases of orthonormal scaling functions. Other orthogonaliza-
tion schemes are viable as well. We start with an application of Proposition 22.

Theorem 27. Suppose we are given:

(1) A space of homogeneous type (X,ρ,μ), with diamX < +∞, a family of dyadic cubes Q, and X = QJ0+jX,k for
some jX � 0 and k ∈ KJ0+jX

. Let δX > 1, η > 0 be as in Theorem 6.

(2) A Markovian semigroup {T t }t�0, that acts δ
J0
X -locally on X.

(3) A precision ε > 0.
(4) An orthonormal basis Φ0 = {ϕx}x∈Γ , α0δ

J0
X -local with center set Γ , and such that V0 ⊆ 〈Φ0〉ε .

Assume there exist constants c′
ε, c

′′
ε such that if ε′ = c1δ

J
X(2μ(X))−1ε, then for all l � 0 and k ∈ KJ+l ,

dimε′(Φ0|QJ+l,k
) � c′

εμ(QJ+l,k)

and

dimε′
({ϕx : x ∈ Γ ∩ ∂ −lQJ+l,k}

)
� c′′

ε

(
αδ−l

)η
μ(QJ+l,k).
α0δX

X
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Then there exists a sequence of orthonormal scaling function bases {Φj }j=1,...,jX
,

Φj := {{{ϕj,l,k,i}i∈I(j,l,k)

}
k∈KJ0+j+l

}
l=0,...,jX−j

with the following properties:

(i) Vj = 〈T tj Φ0〉 ⊆ 〈Φj 〉(jX−j)ε , where tj is as in (4.8).
(ii) suppϕj,l,k,i ⊆ QJ0+j+l,k for all l = 0, . . . , jx − j , k ∈ KJ0+j+l , i ∈ I(j, l, k).

(iii) #I(j, l, k) � c′′
ε (1 + δ−1

X (α0 − 1)min{δ−(l−1)
X ,1})ημ(QJ0+j+l,k).

Proof. We let, for every j � 0, Φ̃j = T δ
j
X−1Φ0. Since T is a compact contraction and V0 is an ε-span of Φ0, Vj is an

ε-span of Φ̃j . We would like to apply Proposition 22 to Φ̃j to obtain an orthonormal basis for Vj , up to ε. We need to

check that the hypothesis of the proposition are satisfied by Φ̃j , for Jj = J0 + j , and αj = 1 + δ
−j
X (α0 − 1) < 1. The

ingredients needed to see this are:

(P1) T and its powers are contractions, so dimε T (S) � dimε S for any subspace S.

(P2) T is δ
J0
X -local, so Φ̃j is αj δ

Jj

X -local.
(P3) T and its powers preserve any chosen center(Φ0).

For example we want to check that

dimε

(
T δ

j
X−1Φ0|QJ,k

)
< c′

εμ(QJ,k).

We have

dimε(Ψ |QJ,k
) = dimε

(
T δ

j
X−1Φ0|QJ,k

)
� dimε

(
T δ

j
X−1(Φ0|QJ,k

)
)
� dimε(Φ0|QJ,k

) � c′
εμ(QJ,k).

The first inequality follows from (P2) and (P3), the second from (P1), and the last from the hypotheses on Φ0. In an
analogous way one checks that

dimε

({Ψx}x∈Γ ∩∂
αj δ

−l
X

QJ+l,k

)
� c′′

ε

(
αj δ

−l
X

)η
μ(QJ+l,k).

The properties of Φj all follow from Proposition 22. �
A. Nahmod shows [11,41] that for large classes of diffusion-like operators on spaces of homogeneous type one can

estimate precisely, in an asymptotic sense, the ε-dimensions of the eigenspaces and of the restriction of the eigenspaces
to dyadic cubes and lattices. Her results suggest that in those settings one may assume, in the theorem above, that there
exist constants c′

ε, c
′′
ε such that if ε′ = c1δ

J
X(2μ(X))−1ε, then for all l � 0 and k ∈KJ+l ,

dimε′(Φ0|QJ+l,k
) � c′

εδ
−(J+l)
X μ(QJ+l,k)

and

dimε′
({ϕx : x ∈ Γ ∩ ∂

α0δ
−l
X

QJ+l,k}
)
� c′′

ε δ
−(J+l)
X

(
αδ−l

X

)η
μ(QJ+l,k).

These connections are currently being investigated and we will report on them in a future work.
The following theorem is an application of Proposition 25. To simplify the notation, we introduce the following

definition.

Definition 28. A smooth (Lipschitz) function f on a metric measure space (X,ρ,μ) has (C,α) exponential decay
from the center x0 ∈ X, where C and α are two positive constants, if |f (y)| � Ce−αρ(x0,y) for every y ∈ X.

Theorem 29. Suppose we are given:

(1) A space of homogeneous type (X,ρ,μ).
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(2) A Markovian semigroup {T t }t�0, that maps functions with exponential decay into functions with exponential
decay. More precisely, there exists CT (t) ∈ (0,C∗

T ] and αT (t) ∈ (0, α∗
T ] such that for any smooth (Lipschitz) f

with (C,α) exponential decay from x0, α > α∗
T , T tf has (CT (t)C,α − αT (t)) exponential decay from x0.

(3) A precision ε > 0.
(4) A set Γ ⊆ X and constants ν,E > 0 such that∑

j∈Γ

e−νρ(i,j) < E (4.15)

for all i ∈ Γ .
(5) An orthonormal basis Φ0 = {ϕx}x∈Γ , such that ϕx has (C0, α0) exponential decay from x, for some α0 > ν + α∗

T ,
and for every x ∈ Γ (C0, α0 independent of x ∈ Γ ). Furthermore, assume V0 ⊆ 〈Φ0〉ε .

Then there exists a family of orthonormal scaling function bases {Φj }j�1, such that Vj = 〈T tj Φ0〉 ⊆ 〈Φj 〉ε . The
scaling functions in Φj := {ϕj,i}i∈Γj

, Γj ⊆ Γ , have exponential decay. More precisely, ϕj,i has exponential decay
from i.

Proof. Let Φ̃j = (T δ
j
X )εΦ0 (see Notation 11). We would like to apply Proposition 25 to Φ̃j in order to obtain Φj .

So let us check that the hypotheses of the proposition are satisfied. Clearly Φ̃j is accretive, since it is the image

of an orthonormal basis under the strictly positive operator (T δ
j
X )ε . Secondly, it is easy to see that if f1 is (C1, α)

exponentially decaying from x1 and f2 is (C2, α) exponentially decaying from x2, then

〈f1, f2〉 � CC1C2e
−αρ(x1,x2),

where C depends only on (X,ρ,μ). This implies that the Gramian of Φ̃j satisfies the hypothesis in Proposition 25,
with α = α0 − αT (t) � α0 − α∗

T > ν. Hence we can apply Proposition 25, obtaining an orthonormal basis Φj , such
that Vj ⊆ 〈Φj 〉ε . Each function in Φj is exponentially decaying, because of Proposition 25 and the well-separateness
hypothesis on Γ . �
Corollary 30. Let everything be as in Theorem 29, except that instead of (4) we assume that Γ is a lattice in X. Then
ρ can be replaced by a topologically equivalent metric with respect to which the conclusion of the theorem holds.

Proof. If Γ is a lattice, then (Γ,ρ|Γ ) is a space of homogeneous type when endowed with the counting measure, and
hence condition (4.15) is satisfied for any ν > 0, after replacing the metric ρ|Γ with a topologically equivalent one,
for some E dependent on ν. �
4.6. Multiscale construction with compression

The construction in the theorem is not computationally efficient because it requires the computation of T 2j
for

large j , which is not a sparse matrix. Moreover it does not emphasize the multiresolution structure, in particular the
fact that Vj+1 ⊆ε Vj , and consequently that the scaling functions in Vj+1 can be encoded as linear combinations of

scaling functions in Vj . We want to take advantage of the fact that T 2j
is low rank by assumption, in order to speed

up this computation, and explicitly reveal the multiresolution structure and use it for efficient encoding of the scaling
functions and wavelets. We reproduce in Fig. 8 the diagram for the multiscale construction.

To simplify the notation, let us assume, without loss of generality, that the finest scale is J0 = 0. We start from a
given orthonormal basis Φ0 which is 1-local, and ε-dense in V0. Assume that T is 1-local as well.

We apply T to the basis functions in Φ0, to obtain Φ̃1. Observe that Φ̃1 is 2-local. By definition 〈Φ̃1〉 =
Ranε(T ) = V1. Observe that by spectral theory, we know that

dimε(Φ̃1) = dimε(T Φ0) = dim Ranε(T ) = #
{
λ ∈ σ(T ): |λ| � ε

}
.

We orthogonalize Φ̃1 by the method in Proposition 22 or Proposition 25 (if applicable): this yields a factorization
[T ]Φ0 = M0Φ1, where the columns of Φ1 are a basis, up to precision, for the range of [T ]Φ0 , written on the basis Φ0,
Φ0 Φ0
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Φ0

[T ]Φ1
Φ0

[T ]Φ0
Φ0

Φ1

[T 2]Φ2
Φ1

[T 2]Φ1
Φ1

. . .
[T 2j ]Φj+1

Φj
Φj+1

[T 2j+1 ]Φj+2
Φj+1

[Φj+2]Φj+1

. . .

Φ̃1

[Φ1]Φ0

Φ̃2

[Φ2]Φ1

. . .

[Φj+1]Φj

[T 2j+1 ]Φj+1
Φj+1

Φ̃j+1

Fig. 8. Diagram for downsampling, orthogonalization and operator compression. (All triangles are commutative by construction.)

and M0 is the matrix representing T on Φ0 in the domain and Φ1 in the range, i.e., M0 = [T ]Φ1
Φ0

. We now represent

T 2 on Φ1. This matrix is given by[
T 2]Φ1

Φ1
= [Φ1]Φ0

[
T 2]Φ0

Φ0

([Φ1]Φ0

)T = [T ]Φ1
Φ0

([T ]Φ1
Φ0

)∗ = M0M
∗
0 ,

where the second equality follows from the self-adjointness of T . This is the only place where we could use the
self-adjointness, which has the advantage that [T 2]Φ1

Φ1
computed in this way is automatically symmetric to precision.

If the matrix M0 in this product is sparse, so is [T 2]Φ1
Φ1

. Observe that [T 2]Φ1
Φ1

is of size dimV1 × dimV1. We are
representing T 2 as an operator acting on an ε-numerical range of T , for which we have constructed the orthogonal
and well-localized basis Φ1. We proceed now by applying [T 2]Φ1

Φ1
to Φ1, and so on.

By induction, at scale j we have a basis Φj , and T 2j
represented on this basis by a matrix [T 2j ]Φj

Φj
. We apply this

matrix to Φj , obtaining a set of bump functions Φ̃j+1, which we orthonormalize with the algorithm of Proposition 22,

and obtain a basis Φj+1 of scaling functions at the next scale, written on the basis Φj . We then represent (T 2j
)2 on

Φj+1:[(
T 2j )2]Φj+1

Φj+1
= [Φj+1]Φj

[
T 2]Φj

Φj

([Φj+1]Φj

)T = MjM
T
j , (4.16)

where the last equality holds if T = T ∗ and Mj = [T ]Φj+1
Φj

is the analogue of a classical low-pass filter.

Remark 31. We could have used the orthogonalization scheme of Proposition 25 instead of the one of Proposition 22.

We can interpret this construction as having “downsampled” the subspace Vj at the critical “rate” for representing

up to the specified precision the action of T 2j
on it. This is related to the Heisenberg principle and sampling theory

for these operators [11], which implies that low-frequency eigenfunctions are smooth and non-localized, and can be
synthesized by coarse (depending on the scale) “bump” functions, while higher-order eigenfunctions required finer and
finer “bump” functions. The scaling functions we construct are equivalent to interpolation formulas for functions in Vj .
These can be thought as a generalization of interpolation formulas for trigonometric polynomials (eigenfunctions of
the Laplacian on the circle). Most of the functions {ϕj,l,k} are essentially as well localized as it is compatible with their
being in Vj . Because of this localization property, we can interpret this downsampling in function space geometrically.
We have the identifications

Xj := {xl,k: xl,k is center of ϕj,l,k} ↔Kj,l ↔ {ϕj,l,k}k∈Kj,l
. (4.17)

The natural metric on Xj is d(tj ), which is, by (4.2), the distance in L2(X,μ) between the ϕj,l,k’s, and can be computed
recursively in each Xj by combining (4.2) with (4.16). This allows us to interpret Xj as a space representing the metric
d(tj ) in compressed form. With this in mind, the construction can be interpreted as a scheme for compression of graphs
and manifolds.

In our construction we only compute ϕj,l,k expanded on the basis {ϕj−1,l,k}k∈Kj−1,l
, i.e., up to the identifications

above, we know ϕj,l,k on the downsampled space Xj only. However we can extend these functions to Xj−1 and
recursively all the way down to X0 = X, just by using the multiscale relations:
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ϕj,l,k(x) = [Φj ]Φj−1ϕj−1,l,k(x), x ∈ Xj−1

= [Φj ]Φj−1[Φj−1]Φj−2 · · · [Φ1]Φ0ϕ0,l,k(x)

=
(

j−1∏
l=0

[Φl]Φl−1

)
ϕ0,l,k(x), x ∈ X0. (4.18)

This is of course completely analogous to the standard construction of scaling functions in the Euclidean setting [2,
49–51]. This formula also immediately generalizes to arbitrary functions in Vj , extending them from Xj to the whole
original space X (see, for example, Fig. 13).

A detailed analysis of computational complexity is left to a forthcoming publication. We mention here that when
the spectrum of T has γ -strong decay, with γ large enough, the matrix Mj = [Φj+1]Φj

is sparse, since T 2j
is local

(in the compressed space |Xj |), so that Mj has O(|Xj | log |Xj |) elements above precision ε, at least for ε not too
small and j not too large. When j is large the operator is in general not local anymore, but the space Xj on which it is

compressed is very small because of the very small rank of T 2j
. In this case the algorithms presented can have order

O(n2 log2 n), or even O(n log2 n) for ε not too small and γ large enough.

Remark 32. We could have started from Ṽ0 and the defined Vj as the result of j steps of our algorithm: in this way we
could do without the spectral decomposition for the semigroup. This permits the application of our whole construction
and algorithms to the non-self-adjoint case.

Remark 33. Instead of squaring the operator at each level, one could let Tj = mj(Tj−1), and V ′
j+1 = Tj (V

′
j ), j � 1,

T0 = T and V ′
0 = V0, for some function mj for which functional calculus is applicable. In practice one can choose mj

to be a low-order polynomial. This is analogous to certain non-stationary constructions in classical wavelet theory. It
allows to sharpen or smooth the spectral projections onto the spaces Vj spanned by the eigenvectors; it requires only
minor modifications to the algorithm and to its analysis.

Remark 34 (Biorthogonal bases). While at this point we are mainly concerned with the construction of orthonormal
bases for the approximation spaces Vj , well-conditioned bases would be just as good for most purposes and would
lead to the construction of stable biorthogonal scaling function bases. This could follow the ideas of “dual” operators
in the reproducing formula on space of homogeneous type [6,52], and also, exactly as in the classical biorthogonal
wavelet construction [53], we would have two ladders of approximation subspaces, with wavelet subspaces giving
the oblique projection onto their corresponding duals. Work on this construction is presented in [54] and more is in
progress and will be reported in [55]. Different types of multiscale bases on graphs and manifolds are constructed
in [56].

4.7. Wavelets

We would like to construct bases {ψj,l,k}k,l for the spaces Wj , j � 1, such that Vj+1 ⊕⊥ Wj = Vj . To achieve
this, after having built {{ϕj,l,k}k∈Kj,l

}l and {{ϕj,l,k}k∈Kj,l
}l , we can apply our modified multiscale Gram–Schmidt

procedure to the set of functions{
(Pj − Pj+1)ϕj,l,k

}
k∈Kj,l

,

where Pj is the projection onto Vj , that yields an orthonormal basis Ψj of wavelets for the orthogonal complement
Wj of Vj in Vj+1. Moreover one can easily prove upper bounds for the diameters of the supports of the wavelets so
obtained and for their decay.

4.8. Vanishing moments for the scaling functions and wavelets

In Euclidean settings vanishing moments are usually defined via orthogonality relations to subspaces of polyno-
mials up to a certain degree. In our setting the natural subspaces with respect to which to measure orthogonality is
the set of eigenfunctions ξλ of T . So the number of vanishing moments of an orthonormal scaling function ϕj,l,k can
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be defined as the number of eigenfunctions corresponding to eigenvalues in σj (T ) \ σj+1(T ) (as defined in (4.9))

to which T 2j
ϕj,l,k is orthogonal up to precision ε. Observe this is comparable to defining the number of vanishing

moments based on ‖T 2j+1
ϕj,l,k‖2, as in classical estimates in multiscale theory of Calderón–Zygmund operators.

In Section 5 we will see that there is an approximately monotonic relationship between the index l for the “layer”
of scaling functions and the number of eigenfunctions to which the scaling function are orthogonal, i.e., the number
of moments of the scaling functions.

In particular, the mean of the scaling functions is typically roughly constant for the first few layers and then quickly
drops below precision as l grows: this would allow to split each scaling function space in two subspaces, one with
scaling functions of non-zero mean and one of scaling functions with zero mean, which in fact could be appropriately
called wavelets.

5. The orthogonalization step: computational and numerical considerations

In this section, algorithmic in nature, we discuss details of the implementation, comment on the computational
complexity of the algorithms and on their numerical stability.

Suppose we are given a δ-local family Φ̃ = {ϕ̃k}k∈K̃ of positive functions on X and let X0 = {x̃k}k∈K̃ be a support-

ing set for Φ̃ . With obvious meaning, we will sometimes write ϕ̃x̃k
for ϕ̃k . Let V = 〈{ϕ̃k}k∈K̃〉. We want to build an

orthonormal basis Φ = {ϕk}k∈K whose span is ε-close to V . Out of the many possible solutions to this standard prob-
lem (see, e.g., [57,58] and references therein as a starting point), we seek one for which the ϕk’s have small support
(ideally of the same order as the support of ϕ̃k). Standard orthonormalization in general may completely destroy the
size the of the support of (most of) the ϕ̃k’s.

Proposition 22 suggests a possible solution to this problem, at least when the supporting set for Φ̃ has some
regularity, with respect to a dyadic structure in the space. Observe that there are many choices for the dyadic cubes
described in Theorem 6, so the assumption is not overly restrictive.

Here we suggest two algorithms that do not assume any regularity on the family Φ̃ , but for which we cannot
guarantee good bounds on the numerical stability. We have been using these in practice and in general obtained very
satisfying results, but we will point out their possible weaknesses.

The first algorithm uses geometric information on the set (hence outside the scope of linear algebra) to derive a
pivoting rule that guarantees that several orthogonal functions have small support; the second one uses uniquely the
matrix representing T in a local basis and a non-linear pivoting rule mixing L2 and Lp norms, p < 2, which favors
sparsity.

The computational cost of constructing the multi-resolution analysis described can be as high as O(n3) in general,
where n is the cardinality of X, if we do not assume that the semigroup is local and has strong decay. It is because of
these two distinct types of properties of T that one can dramatically improve the computational burden necessary for
the construction. In general:

I. The decay of σ(T ): the faster the spectrum decays, the smaller the numerical rank of the powers of T , the more
these can be compressed, and the faster the construction of Φj for large j ’s.

II. If each basis Φj of scaling functions that we build is such that the elements with large support (large “layer
index” l) are in a subspace spanned by eigenvectors of T corresponding to very small eigenvalues (depending
on l), then these basis functions of large support will not be needed to compute the next (dyadic) power of T . This
implies that the matrices representing all the basis transformations will be uniformly sparse.

A combination of these two hypothesis, which are in fact quite natural and verified by several classes of operators
arising in practice, allow to perform the construction of the whole multi-resolution analysis in time asymptotically
O(n2 log2 n) or even O(n log2 n).

5.1. Modified Gram–Schmidt with pivoting

Given a set of functions Ψ on X, and ε > 0, the classical algorithm “Modified Gram–Schmidt with Pivoting”
computes an orthonormal basis Φ for a subspace ε-close 〈Ψ̃ 〉, as follows.
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1. Let Φ̃ = Ψ , k = 0.
2. Let ϕk be an element of Φ̃ with largest L2 norm. If ‖ϕk‖2 < ε√|Ψ | , stop, otherwise add ϕk/‖ϕk‖2 to Φ .

3. Orthogonalize all the remaining elements of Ψ to ϕk , obtaining a new set Φ̃ . Increment k by 1. Go to step 2.

At least when Φ̃ is not too ill-conditioned, the algorithm stops it yields an orthonormal basis Φ whose span is
ε-close to 〈Ψ 〉 [57–59]. This classical procedure can be shown to be stable numerically, at least when Φ̃ is not too
ill-conditioned [57,58]. When the problem is very ill-conditioned, a loss of orthogonality in Φ may occur. Reorthog-
onalizing the elements already selected in Φ is enough to achieve stability, see [57,59] for details and references.

The main drawback of this procedure is that the supports of the functions in Φ can be arbitrarily large even if the
supports of Φ̃ are small and there exists another orthonormal basis for 〈Φ̃〉 made of well-localized functions. This is
undesirable, because the size of the supports of the functions in the new basis are crucial for the speed of the algorithm.
We suggest two modifications of the modified Gram–Schmidt that seek to obtain orthonormal bases of functions with
smaller support.

5.2. Multiscale modified Gram–Schmidt with geometric pivoting

We suggest here to use a local Gram–Schmidt orthogonalization with “geometric pivoting”: it does not provide
guarantees on the size of the support of the orthonormal functions it constructs, but in practice has complexity
O(n2 log2 n), or even O(n log2 n), where n is the cardinality of X, when applied to a local family. It is inspired
by the construction in Proposition 22, but it is greedy and can be applied with no assumption on the geometry of the
supporting set of the functions to be orthonormalized. Here we are assuming that the approximate (up to precision)
ε-neighbors of any point in X are known. After all, we are given T with respect to a local basis, and this already
encodes most of the nearest neighbor information needed. This is a highly non-trivial encoding, especially in high
dimensions: the literature on fast approximate nearest neighbors and range searches is vast, see, for example, [60]
and references therein as a starting point. In the following section we will present an algorithm that does not use the
geometry of the supports and does not need any knowledge of nearest neighbors, except what is already encoded in
the matrix representing T .

The Gram–Schmidt procedure we present is completely local, in the sense that it is organized so that each of the
constructed functions needs to be orthonormalized only to the nearby functions, across scales, at the appropriate scale.

Description of the algorithm. We are given a precision ε > 0 and an αδ-local, α � 1, set of functions Ψ = {ψx}x∈Γ

with a supporting set Γ . We pick a maximal net of points x0,0, . . . , x0,k in Γ which is 2αδ-separated (this is similar
to the construction of lattices on spaces of homogeneous type [11,26,61]). In order to do this, we pick x0,0 ∈ Γ , then
pick x0,1 to be a closest point in Γ which is at distance at least 2δ from x0,0, and so on: after x0,0, . . . , x0,l have been
picked, let x0,l+1 ∈ Γ be a closest point to N2δ({x0,0, . . . , x0,l}). Let {x0,k}k∈K0 be a maximal such collection and let
B0,k = Bαδ(x0,k) for each k ∈K0, and Ψ0 ⊆ Ψ be the set of functions having support completely contained in B0,k for
some k ∈ K0. We ε-orthonormalize this family of functions (i.e., we obtain a basis for an ε-span of Ψ0, for example
with any of the variations of Gram–Schmidt orthogonalization described) to obtain

Φ0 = {ϕ0,k}k∈K0 .

Observe that this orthonormalization procedure is local, in the sense that each function ψx ∈ Ψ0 only interacts with
the other functions in Ψ0 contained in the same ball B0,k containing the support of ψx .

We orthogonalize all the remaining functions in Ψ to the functions in Φ0, and get a new set of functions, Ψ1. This
orthonormalization is also local: each function ψx ∈ Ψ being αδ-local, it interacts only with the functions in Φ0 which
have support in a ball B0,k containing x. Moreover, Ψ1 is also a local family. In fact it is at least (αδ + 2αδ)-local. We
then proceed in the same way with Ψ1.

By induction, once Φ0, . . . ,Φl have been constructed, so that their union is an orthonormal basis and Ψl+1 is the set
of functions in Ψ not yet picked, orthonormalized with respect to Φ0 ∪· · ·∪Φl , we pick a maximal subset of functions
in Ψl+1 with disjoint supports and ε-orthonormalize them to get Φl+1. The algorithm terminates when Φl+2 is empty,
which happens when Φ0 ∪ · · · ∪ Φl+1 already ε-spans 〈Ψ 〉. When the space X is finite, this happens after a finite
number of steps since eventually the support of the functions in Ψl+1 is the whole X, in which case the family Ψl+1
consists of all the functions in Ψ which have not been picked already, 〈Ψ 〉 ⊆ 〈Φ0 ∪ · · · ∪ Φl+1〉ε , and Ψl+2 is empty.
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The greedy choice of the points at each “layer” can lead to more localized basis than the one obtained by modified
Gram–Schmidt. However this algorithm can lead to numerically instabilities. Qualitatively speaking, it is expected to
perform well when the L2 norms of the functions Ψ are within close constants and Γ is a rather dense and uniformly
well-distributed set.

Remark 35. The construction in this proposition applies in particular to the fast construction of local orthonormal
(multi-)scaling functions in Rn, which may be of independent interest. As an example, this construction can be applied
to spline functions of any order, yielding an orthonormal basis of splines different from the classical one due to
Strömberg [62].

Remark 36. The cost of running the above algorithm can be as low as O(n logn) times the cost of finding (approxi-
mate) r-neighbors, in addition to the cost of any pre-processing that may be necessary to perform these searches fast.
This follows from the fact that all the orthogonalization steps are local unless Γ is very irregular. A full analysis of
the complexity will be presented in a future publication.

5.3. Modified Gram–Schmidt with mixed L2–Lp pivoting

In this section we propose a second algorithm for computing an orthogonal basis spanning the same subspace as
the one spanned by a given δ-local family Ψ . The main motivation for the algorithm in the previous section was the
observation that modified Gram–Schmidt with pivoting in general can generate basis functions with large supports,
while it is crucial in our setting to find orthonormal bases with rather small support.

We would like to introduce a term in modified Gram–Schmidt that prefers functions with smaller support to func-
tions with larger support. On the unit ball of L2, the functions with concentrated support are those in L0 or, more
generally, in Lp for some p < 2.

We can then modify the “modified Gram–Schmidt with pivoting” algorithm of Section 5.1 as follows:

1. Let Φ̃ = Ψ , k = 0, λ > 0, p ∈ [0,2].
2. Let ϕk′ the element of Φ̃ with largest L2 norm, say Nk = ‖ϕk′‖2. Among all the elements of Φ̃ with L2 norm

larger than Nk/λ, pick the one with the smallest Lp norm: let it be ϕk . If ‖ϕk‖2 < ε√|Ψ | , stop, otherwise add
ϕk/‖ϕk‖2 to Φ .

3. Orthogonalize all the remaining elements of Ψ to ϕk , obtaining a new set Φ̃ . Increment k by 1. Go to step 2.

Choosing the element by bounding from below its L2 norm is important for numerical stability, but having relaxed
the condition of picking the element with largest L2 norm allows us to pick an element with smaller Lp norm,
yielding potentially much better localized bases. The parameter λ controls this slack. It is easy to construct examples
in which the standard modified Gram–Schmidt with L2 pivoting (which corresponds to λ = 1) leads to bases with
most elements having large support, while our modification with mixed norms yields much better localized bases.

Remark 37. Observe that this algorithm seems not require knowledge of the nearest neighbors. However, in the
implementation, the matrix representing Ψ should be in sparse form and queries of non-zero elements by both rows
and columns should ideally be O(1) operations.

We have not investigated theoretically the stability of this algorithm. We just observed that it worked very well in
the examples tried, with stability comparable to the standard modified Gram–Schmidt with pivoting and very often
much better localization in the resulting basis functions. On the other hand, we can construct quite artificial examples
in which any choice of λ < 1 leads to loss of precision.

5.4. Rank revealing QR factorizations

We refer the reader to [63] and references therein, for details regarding the numerical and algorithmic aspects
related to the rank-revealing factorizations discussed in this section.
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Definition 38. A partial QR factorization of a matrix M ∈ Mat(n,n)

MΠ = QR = Q

(
Ak Bk

0 Ck

)
, (5.1)

where Q is orthogonal, Ak ∈ Mat(k, k) and is upper-triangular with non-negative diagonal elements, Bk ∈
Mat(k, n − k), Ck ∈ Mat(n − k,n − k), and Π is a permutation matrix, is a strong rank-revealing QR factoriza-
tion if

σmin(Ak) � σk(M)

p1(k, n)
and σj (Ck) � σk+j (M)p1(k, n) (5.2)

and ∣∣(A−1
k Bk

)∣∣ � p2(k, n), (5.3)

where Q in orthogonal, p1(k, n) and p2(k, n) are functions bounded by a low-degree polynomial in k and n, and
σmax(A) and σmin(A) denote the largest and smallest singular values of a matrix A.

Modified Gram–Schmidt with pivoting, as described in Section 5.1 actually yields a decomposition satisfying (5.2),
but with p1 depending exponentially in n [63], at least for some matrices (which seem to be quite rare).

Let SRRQR(M,ε) be an algorithm that computes a rank-revealing QR factorization of M , with σk+1 � ε. Gu and
Eisenstat present such an algorithm, that satisfies (5.2) and (5.3) with

p1(k, n) = √
1 + nk(n − k) and p2(k, n) = √

n.

Moreover, this algorithm requires in general O(n3) operations, but faster algorithms exploiting sparsity of the matrices
involved can be devised.

We can then proceed in the construction of the multi-resolution analysis described in Theorem 27 as follows. We
replace each orthogonalization step Gj by the following two steps. First we apply SRRQR(T 2j

j , ε) to get a rank-
revealing QR factorization of T 2j

, on the basis Φj , which we write as

T 2j

j Πj = QjRj = Qj

(
Aj,k Bj,k

0 Cj,k

)
. (5.4)

The columns of Qj span Ṽj+1 up to error ε · p(k,n), where

k = arg max
i

{
i: λ

ηj+1−1

i � ε
} = dim(Ṽj+1).

In fact, the strong rank-revealing QR decomposition above shows that the first k columns of T 2j
Πj are a well-

conditioned basis that ε ·p(k,n)-spans Ṽj+1. Now, this basis is a well-selected subset of “bump functions” T 2j+1−1Φ̃

and can be orthogonalized with Proposition 22, with estimates on the supports exactly as claimed Theorem 27.

5.5. Computation of the wavelets

In the computation of wavelets as described in Section 4.7, numerically one has to make sure that, at every orthog-
onalization step, the construction of the wavelets is made on vectors that are numerically orthogonal to the scaling
functions at the previous scale. This can be attained, in a numerically stable way, by repeatedly orthogonalizing the
wavelets to the scaling functions. Observe that this orthogonalization is again a local operation and hence the compu-
tation is fast. This is also necessary to guarantee that the construction of wavelets will stop exactly at the exhaustion
of the wavelet subspace, without “spilling” into the scaling spaces.

6. Wavelet transforms and algorithms

Assume that each orthonormalization step and change of basis can be computed in time O(nk), up to logarithmic
factors. Usually k = 1,2. Then the computational cost for the algorithms for constructing the whole multi-resolution
analysis are as follows.
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Proposition 39. The construction of all the scaling functions and linear transformations {Gj } and {Mj }, for j =
0, . . . , J , as described in Theorem 27, can be done in time O(nk).

Corollary 40 (The fast scaling function transform). Let the scaling function transform of a function f ∈ L2(X,μ),
|X| = n, be the set of all coefficients{〈f,Φj 〉

}
j=0,...,J

.

All these coefficients can be computed in time O(nk).

The following is a simple consequence of Corollary 40.

Corollary 41 (The fast wavelet transform). Let the wavelet transform of a function f ∈ L2(X,μ) be the set of all
coefficients

{〈f,Ψj 〉}j=0,...,J .

All these coefficients can be computed in time O(nk).

Material relevant to the following two sections is in the papers [44,45,64] (and references therein) which present
matrix compression techniques with applications to numerical functional calculus and eigenfunction computations.

6.1. Compressed eigenfunction computation

The computation of approximations to the eigenfunctions ξλ corresponding to λ > λ0 can be computed efficiently
in Vj , where j is min{j : λ

tj
0 > ε}, and then the result can be extended to the whole space X by using the extension

formula (4.18). This technique is equivalent to having constructed integration formulae for the top eigenfunctions of
the operator and the linear space they span.

These eigenfunctions can also be used to embed the coarsened space Xj into Rn, along the lines of Section 4.2, or
can be extended to X and used to embed the whole space X.

6.2. Direct inversion of “Laplacian-like” operators

Since we can compute efficiently high powers of T , the “Laplacian” (I − T ) can be inverted (on the orthogonal
complement of the eigenspace corresponding to the eigenvalue 1) via the Schultz method [2], that we exemplify for
η = 2. Since

(I − T )−1f =
+∞∑
k=1

T kf

and, if SK = ∑2K

k=1 T k , we have

SK+1 = SK + T 2K

SK =
K∏

k=0

(
I + T 2k )

.

Since we can apply efficiently T 2k
to any function f and hence the product SK+1, we can apply (I − T )−1 in

compressed form to any function f . The value of K depends on the gap between 1 and the first eigenvalue smaller
than 1, which essentially regulates the speed of convergence of a distribution to its asymptotic distribution.

Observe that we never construct the full matrix representing (I − T )−1 (which is general full!), but we only keep
a compressed multiscale representation of it, which we can use to compute the action of the operator on any function.

This matrix is of fundamental importance in Markov chains (and it often goes under the name of “fundamental
matrix”), discrete and continuous potential theory, study of complex networks, clustering. These and other applications
will be discussed in forthcoming publications.
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6.3. Relationship with eigenmap embeddings

In Section 4.2 we discussed metrics induced by a symmetric diffusion semigroup {T t } acting on L2(X,μ) and how
eigenfunctions of the generator of the semigroup can be used to embed X in Euclidean space. Similar embeddings can
be obtained by using diffusion scaling functions and wavelets, since they span subspaces localized around spectral
bands. So, for example, the top diffusion scaling functions in Vj approximate well, by the arguments in this section,
the top eigenfunctions. See, for example, Fig. 13.

7. Natural multiresolution on sampled Riemannian manifolds and on graphs

The natural construction of Brownian motion and the associated Laplace–Beltrami operator for compact Rie-
mannian manifolds can be approximated on a finite number of points which are realizations of a random variable
taking values on the manifold according to a certain probability distribution as in [3,4,65,66]. The construction starts
with assuming that we have a data set Γ which is obtained by drawing according to some unknown distribution p and
whose range is a smooth manifold Γ̄ . Given a kernel that satisfies some natural mild conditions, for example in the
standard Gaussian form

K(x,y) = e−(
‖x−y‖

δ
)2

for some scale factor δ > 0, is normalized twice as follows before computing its eigenfunctions. The main observation
is that any integration on the empirical data set Γ of the kernel against a function is in the form∑

Γ

K(x, yi)f (yi)

and thus it a Riemann sum associated to the integral∫
Γ̄

K(x, y)f (y)p(y)dy.

Hence to capture only the geometric content of the manifold it is necessary to get rid of the measure p on the dataset.
This can be estimated at scale δ for example by convolving with some smooth kernel (for example, K itself), thus
obtaining an estimated probability density pδ . One then considers the kernel

K̃(x, y) = K(x,y)

pδ(y)

as new kernel. This kernel is further normalized so that it becomes averaging on the data set, yielding

K̄(x, y) = K̃(x, y)√∫
Γ

K̃(x, y)p(y)dy

.

It is shown in [3] that with this normalization, in the limit |Γ | → +∞ and δ → 0, the kernel K̄ thus obtained is the
one associated with the Laplace–Beltrami operator on Γ̄ . Applying our construction to this natural kernel, we obtain
the natural multiresolution analysis associated to the Laplace–Beltrami operator on a compact Riemannian manifold.
This also leads to compressed representation of the heat flow and of functions of it. One can show that Weyl’s theorem
implies that the heat semigroup has n

2 -strong decay.
On weighted graphs, the canonical random walk is associated with the matrix of transition probabilities

P = D−1W,

where W is the symmetric matrix of weights and D is the diagonal matrix defined by Dii = ∑
j Wij . P is in general

not symmetric, but it is conjugate, via D
1
2 to the symmetric matrix D− 1

2 WD− 1
2 which is a contraction on L2. Our

construction allows the construction of a multiresolution on the graph, together with downsampled graphs, adapted to
the random walk [13].
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8. Examples and applications

8.1. A diffusion multiresolution on the circle

For pedagogical purposes, we illustrate the construction in a very simple example. We consider the Laplacian on
the circle T, since even in this case the multiresolution analysis we introduce is new.

We let X be a set of 512 equispaced on R, and let T ′ the standard 3-point discretization of the Laplacian:

T ′ =
⎛
⎜⎝

. . . . . . . . . . . . . . . . . .

. . . 1
4

1
2

1
4 . . . . . .

. . . . . . 1
4

1
2

1
4 . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎠ .

We let T = (T ′)2 be our diffusion operator, and let the initial basis Φ0 is the set of δ-functions on X. We set ε, the
precision, to 10−4.

The first 11 levels of our construction leads to subspaces V0,V1, . . . , V11 of decreasing dimension, as represented
in Fig. 9. Observe that the spectrum does not decay very fast in this case.

We apply T to Φ0 and after downsampling we obtain a layered orthonormal basis of scaling functions Φ1 (which,
incidentally, are quadratic splines), some of which are represented in Fig. 10. These scaling functions are clearly linear
combinations of the δ-functions spanning V0. The matrix of coefficients is represented in Fig. 11. We then apply T 2,

Fig. 9. Left: the spectrum of T . Right: the dimension of Vj as a function j .

Fig. 10. Some scaling functions in V1 (top left), in V3 (top right), V6 (bottom left), and V12 (bottom right).
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Fig. 11. The scaling function filters M1 (top left), M2 (top right), M5 (bottom left), and M11 (bottom right). The images are in logarithmic scale to
show entries larger than 10−6.

Fig. 12. The compressed powers of T at scale j = 1,2,5,11. The images are in logarithmic scale to show entries larger than 10−6.

represented on Φ1, and so on. We represent in Fig. 10 some scaling functions in V1,V2,V5, and V11, extended to the
whole circle. Some observations are in order. In each picture, we represent scaling functions from different layers:
some of them maximally concentrated, others more oscillating and with larger support, but still exponential decay.
Notice how the scaling functions at very coarse scale, e.g., V11 tend to sine and cosine functions. This is because V11
is spanned by the few top eigenfunctions of T , which are exactly sine and cosine functions with low frequency, and
when only few frequencies are available, these functions cannot be localized very well by taking linear combinations.
In V15, an even coarser scale, there are only three scaling functions: the constant function, and sine and cosine.

Observe that the algorithm does not construct them explicitly, but only computes and stores the filter matrices Mj

(see Fig. 11), such that

Φj+1 = MjΦj ,

as discussed above (see Eq. (2.1) and also the diagram 2). Notice that these matrices have a multi-layer structure and
also that the filters they represent are non-stationary both in scale and in location, i.e., they depend on both the scale
and the location of the scaling function. The dimension of Vj decreases with j because the part of the spectrum of

T 2j+1−1 above precision gets smaller and smaller with j , and so does the size of the matrices Mj . In Fig. 12 we
represent some of the dyadic powers of T represented on the corresponding scaling function bases.

8.2. A simple homogenization problem

We consider the non-homogeneous heat equation on the circle

∂u

∂t
= ∂

∂x

(
c(x)

∂

∂x
u

)
, (8.1)

where c(x) is quite non-uniform and we want to represent the large scale/large time behavior of the solution by
compressing powers of the operator representing the discretization of the spatial differential operator ∂

∂x
(c(x) ∂

∂x
).

The spatial operator is of course one of the simplest Sturm–Liouville operators in one dimension.
We choose the function 0 < c < 1 represented in Fig. 13. We discretize the spatial differential operator, thus ob-

taining a matrix W . In order to have an operator T with L2-norm 1, we let Dii = ∑
j (2 −Wij ) and T = D− 1

2 WD− 1
2 ,

which has the desired properties of contraction, self-adjointedness and positiveness.
We discretize the interval at 256 equispaced points, as in the previous example, and the discretization of the right-

hand side of (8.1) is a matrix T which, when properly normalized, can be interpreted as a non-translation invariant
random walk. Our construction yields a multiresolution associated to this operator that is highly non-uniform, with
most scaling functions concentrated around the points where the conductivity is highest, for several scales. The di-
mension of Vj drops quite fast and V8 is already reduced to two dimensions. In Fig. 13 we plot, among other things,
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Fig. 13. Non-homogeneous medium with non-constant diffusion coefficient (plotted top left): the scaling functions for V15 (top right). In the middle
row: an eigenfunction (the 35th) of the diffusion operator (left), and the same eigenfunction reconstructed by extending the corresponding eigen-
vector of the compressed T10 (right): the L2-error is of order 10−5. The entries above precision of the matrix T 8 compressed on V4 (bottom left).
Bottom: we plot on the right {(ϕ18,1(xi ), ϕ18,2(xi ))}i , which are an approximation to the eigenmap corresponding to the first two eigenfunctions,
since V18 has dimension 3. Points at the bottom of circle are farther in diffusion distance because there the conductivity is lower.

the embedding given by the two scaling functions in V8: while it differs from an eigenmap because the coordinates
are not scaled by the eigenvalues (which we could cheaply compute since it is a 2 × 2 matrix), it clearly shows the
non-uniformity of the heat distance (which is roughly Euclidean distance in the range of this map): the points with
very high conductivity are very tightly clustered together, while all the others are further apart and almost equispaced.
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Fig. 14. Example of scaling functions at coarse level associated with a Beltrami diffusion on randomly distributed points on the unit square. For
graphical reasons, we are plotting a smooth extension of these scaling functions on a uniform grid by cubic interpolation.

The compressed matrices representing the (dyadic) powers of this operator can be viewed as homogenized versions,
at a certain scale which is time and space dependent, of the original operator. The scaling functions at that scale
span the domain the homogenized operator at that scale. Further developments in the applications to homogenization
problems will be presented in a future work.

8.3. Perturbed lattices

Our construction applies naturally to perturbed lattices in any dimension. Wavelets and multiresolution analysis
on irregular lattices have been studied and applied by various researchers, see, for example, [67,68] and references
therein. Our construction overcomes the usual difficulties related to local oversampling (too many lattice points accu-
mulating around a single point) and non-uniformities, by automatically computing the local oversampling and locally
downsampling and orthogonalizing as requested by the problem.

As an example, we consider a set of 500 randomly drawn from a uniform distribution on the square, and consider
the diffusion operator normalized a la Beltrami as described in Section 7. We plot in Fig. 14 some of the scaling
functions we obtain.

8.4. A noisy example

We consider a data set X consisting of 1200 points in R3, which are the union of 400 realizations of thee indepen-
dent Gaussian normal variables G1, G2, G3, with values in R3, with means (1,0,0), (0,1,0), (0,0,1), respectively,
and standard deviations all equal to 0.4. The data set if depicted in Fig. 15. We consider the graph (G,E,W) built

as follows: the vertex set G is X, two points x, y ∈ G are connected by an edge of weight Wx,y = e−(
‖x−y‖

0.3 )2
if such

weight is greater than 10−3. We let T be the random walk naturally associated to this graph, which is defined by the
row-stochastic matrix of transition probabilities

P = D−1W,

where Dx,x = ∑
y∈G Wx,y and Dx,y = 0 for x �= y. We let the diffusion semigroup be generated by T = P/‖P ‖2,2

and construct the corresponding multiresolution analysis and wavelets.
We can see in Fig. 15 that the eigenfunctions of this operator can tell rather well the three Gaussian clouds apart,

since the diffusion inside each cloud is rather fast while the diffusion across clouds is much slower. For the same
reason, the diffusion scaling functions, as well as the wavelets, tend to be concentrated on each cloud. The top scaling
functions in several scaling subspaces approximate very well the characteristic function of each cloud and the wavelets
analyze well oscillating functions which are concentrated on each cloud (local-modes).

In Fig. 16 we show how the diffusion scaling functions compress the data. Let χR,χB,χG be the characteristic
functions of each Gaussian cloud and χ = χR + χB + χG. In the figure we represent, for several j ’s, Xj (notation
as in Section 2.2), which is a compressed version of X after diffusing till time 2j+1 − 1. We also compute the
multiscale expansion of χ , and use colors to represent the projection onto j th approximation subspace, evaluated
on Xj .

8.5. Non-linear analysis of images

We present a toy example of an application to the construction of features and basis functions for the analysis of
images. We start with an image I of a white disk on black background, of size 36 by 36, and add a small amount
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Fig. 15. Top, left to right: the dataset described in Example 8.4 with labels for each Gaussian random variable, the embedding given by the top
3 non-trivial eigenfunction of the graph Laplacian, the values of the scaling function ϕ6,1,1. Bottom, left to right: values of the scaling functions
ϕ6,1,2, ϕ6,1,3, and of the wavelet ψ8,5.

Fig. 16. Left to right, we plot Xj = Mj · · ·M1M0X for j = 1,3,5, respectively. The color is proportional to the projection of χ onto Vj evaluated
at each point of Xj . The dataset is being compressed, since we have |X| = 1200, |X1| = 1200, |X3| = 186, |X5| = 39, and the images of the
centers of the classes are preserved as sampling points at each scale.

of Gaussian white noise. We collect all 5 by 5 squares (“patches”) from an image, map each of them to a vector in
R25 in an arbitrary (but fixed) way, obtaining a point cloud G consisting of 362 points in R25. Clearly each x ∈ G

corresponds to a “patch” in the original image. We attach two extra coordinates to each point x ∈ G, which are the
x and y coordinates of the center of p, viewed as a “patch” in I . We connect p1 and p2 if they both have similar
(x, y)-coordinates and are close as vectors in R25. In the specific situation for each p we first consider the set N(p)

of the 50 nearest neighbors of p in (x, y) and in N(p) we find the 20 nearest neighbors of p in R25, which we denote

by NN(p). We connect p with each element p′ ∈ NN(p) with weight e−(‖p−p′‖
R25/5)2

. The weight matrix thus
obtained is in general not symmetric: we average with the transpose of the weight matrix in order to obtain symmetric
weights. Let (G,E,W) denote the graph thus obtained. We consider the natural diffusion I −L on G, where L is the
normalized Laplacian and construct the corresponding diffusion scaling functions and wavelets.

Observe that every function on G is actually a 36 by 36 image, because of the natural identifications between
vertices of G, “patches,” and (x, y)-centers of these “patches.” Hence every scaling function and wavelet is actually
an image and we see they represent in general interesting multiscale features, such as blobs, edge filters, functions
oscillatory along an edge and essentially supported on the edge, and coarser features like Gabor-like filters, and so on.
The diffusion process and the multiscale construction allow to discover some of the simplest features of the image,
from extremely “local” (in the space of “patches,” R25) to more global and complex (see Fig. 17).

Furthermore, the original image I itself can be viewed as a function on G, and hence it can be analyzed as a function
on G and denoised by using standard wavelet denoising algorithms [69] adapted to the context of diffusion wavelets,
such as best basis algorithms [12]. This denoising naturally preserves edges: the “filtering” happens mainly on and
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Fig. 17. Scaling functions at scale 2 and 3 on the graph of patches extracted from an image of a white full circle on black background, with noise.

along the edges and not across them, since in “patch” space points corresponding to “patches” with edges are far from
points corresponding to “patches” which do not contain edges. Preliminary results are extremely promising [70]; we
will report on progress in future publications. This is a highly non-linear analysis of images, since the analyzing
elements depend very much on the image itself. Of course the framework can be significantly broadened, in particular
in the construction of the graph (other features of images rather than “patches” could be considered in order to build
the graph, for example, sets of filter responses) and of the diffusion on the graph (choice of weights, distances, etc.)
and extended to movies, hyper-spectral images, and so on. This framework can also be broadened to the joint analysis
of families of images, for the construction of features that can be used to analyze new images.

9. Extending the scaling functions outside the set

Suppose there exists a metric measure space (X̄, d̄, μ̄) such that X ⊂ X̄, and suppose that the projection operator

RX̄
X : L2(X̄, μ̄) → L2(X,μ),

f 
→ f |X
is bounded. Suppose we have a sequence of subspaces {En}n�0, with En → L2(X̄, μ̄) as n → ∞, and a singular value

decomposition for RX̄
X |En that we write as

RX̄
X |Enf =

∑
i�1

αn,i〈f, θ̃n,i〉θn,i ,

where αn,1 � αn,1 � · · · � 0.
Given a scaling function ϕj,k , we can find the smallest n such that

ϕj,k ∈ P〈θn,1,θn,2,...〉En (9.1)

where in practice this relationship is to be intended in the sense of numerical range of the projection involved. Then
we would define the extension of

ϕj,k =
∑
i�1

aiθn,i (9.2)

to be

ϕj,k =
∑
i�1

ai

αn,i

θ̃n,i . (9.3)

This makes numerical sense only when the sum is extended over those indices i such that αn,i is well separated below
from 0, which is equivalent to the condition that (9.1) holds in the numerical sense. See also [71].

Observe that since the n for which (9.1) holds depends on ϕj,k , each scaling function will be extended in different
ways. If we think of the En as spaces of functions on X̄ with increasing complexity as n grows, and we try to extend
each scaling function to a function on X̄ with the minimum complexity required, the requirement being (9.1).
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Example 42. If X is a subset of Rn, then we can, for example, [3,4] proceed in any of the following ways:

(i) Let

BLc = {
f ∈ L2(Rn

)
: supp f̂ ⊆ Bc(0)

} = 〈{
ei〈ξ,·〉: |ξ | � c

}〉
,

the space of band-limited functions with band c and then let En be BL2n . The {θ̃n,i}i in this case are generalized
prolate spherical functions of [72,73], called geometric harmonics in [3,4].

(ii) Let En be one the approximation spaces Vn of some classical wavelet multiresolution analysis in Rn, like the one
associated to Meyer wavelets.

(iii) Let

BGc = 〈{
e− ‖·−y‖

c

}
y∈cZn

〉
,

the bump algebra at scale 1/c, and furthermore let En = BG2−n . While in this case it is not the case that En ⊂
En+1, it is true that for every ε > 0 there exists an integer p = p(ε) > 0 such that Epn is ε-dense in En for every
n � 0.

Once all the scaling functions have been extended, any function f in L2(X) can be extended to a function f̄ in
L2(X̄), by expanding f onto the scaling functions and then extending each term of the expansion. How far the support
of f̄ extends outside of X ⊂ X̄ is dependent on properties of f , on the embedding of X in X̄ and on the function
spaces En we use to extend. This automatic adaptiveness allows to tune the extension locally to smoothness and
frequency properties of f and of the embedding of X in X̄. This is a great advantage of this technique compared to
many current techniques, which provide extensions of functions at a distance from the set which is either fixed (and
usually “small,” in the sense that its based on a worst-case estimation of the property of the function on the set), or
tend to become numerically unstable when one tries to extend too far away from the set.

When the diffusion operator is induced on the data set by a kernel that is defined outside the data set, it is also
possible to use the Nyström extension [74–76], which however has the disadvantages described above.

For a survey of extension techniques in the context of non-linear dimension reduction see [38] and references
therein, as well as [3,4].

Example 43. We illustrate the construction above by extending one of the scaling functions on the dumbell-shaped
manifold already considered in Section 2.6. We consider the approximate multiresolution of Gaussian kernels as in
(iii) above as candidate function space to be used to extend the scaling function in question. Instead of extending to
the whole R3, which would not be useful since we expect the extension to be quite concentrated on the manifold X,
we extend to a large set of points Y obtained by adding white noise to the original manifold. See Fig. 18.

10. Comparison with previous work

The last 30 years have seen a flurry of activity around multiscale analysis, in particular in harmonic analysis,
scientific computation, image processing, among many others. Much of the development of multiscale analysis and
Littlewood–Paley theory can already be found in [5,21]. Here we are merging the two points of views.

Harmonic analysis of clouds of points has been considered in the past by [77–79] where the eigenfunctions of
the Laplace operator, or multiresolution constructions, on particular classes of meshes are used to filter, smooth and
compress the point set associated with a 3D mesh. This is achieved by filtering the coordinate functions, viewed as
functions on the cloud of points. Our multiscale methodology enables adaptive (both in the choice of the diffusion
operator and in the choice of scale at each location) filtering, smoothing, and denoising of the point set and in this re-
spect it is most similar to [80]. See also [81] for applications of diffusion to implicit mesh fairing. In image processing
and vision, the ideas of scale spaces, through linear and non-linear diffusion, have had a great influence.

In [2] the authors use wavelet bases to compress the matrices representing large classes of operators, including
Calderón–Zygmund operators and pseudo-differential operators, by expanding the kernel itself on a wavelet basis, and
they show this leads to matrices with O(n logn) (or even O(n) for large classes of operators) entries above precision,
allowing for fast matrix operations such as matrix–vector multiplication. The matrices representing the operator in this
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Fig. 18. Top left: the diffusion scaling function ϕ3,3 color mapped on the dumbell-shaped manifold sampled at 500 points. Top right: extension of
ϕ3,3 to 5000 points obtained by adding white Gaussian noise to the points the dumbell. Bottom left and right: as the corresponding pictures above,
but for ϕ10,1.

“non-standard form,” as they call it, are similar to the compressed matrices we obtain with our algorithm. In a way we
are generalizing the construction in [2] by building wavelet-like bases adapted to the geometry of the operator.

Our construction is in many ways related to algebraic (or rather mixed algebraic–geometric) multigrid techniques
(see the pioneer paper [46], but the literature on the subject is vast). Our construction suggests to look at the powers
of the operator and let them dictate the form of the coarsening operators, at different scales, in a natural way and with
high precision.

In [44,45] classes of matrices for which fast arithmetic exist are introduced and in subsequent papers various classes
of interesting operators arising from partial differential equations are shown to be in these classes. These matrices are
not sparse, but admit a sparse multiscale encoding structure; in this work the powers of the operator, and from them a
function of the operator, is encoded in multiscale fashion as the action of sparse matrices at different scales.

In [42,43] techniques for compressing low-rank matrices (see also [63]) are applied to the problem of obtaining
an explicit sparse inverse, in particular for the solution of integral equations arising from boundary value problems
of elliptic PDEs. The intersection with our work lies in the idea of compressing a low-rank matrix in a multiscale
fashion; however the emphasis in our work is to obtain efficient representations of powers of an operator, not on the
computation of the inverse of a fixed operator.

The construction of wavelets via lifting due to Sweldens [82–86] is in some respects similar to ours. The lift-
ing schemes yields (formally) biorthogonal wavelets by a sequence of “lifting steps,” each of which transforms a
(formally) biorthogonal pair of bases into another with more desirable properties, e.g., by adding smoothness of the
primal wavelets and/or adding vanishing moments to the dual wavelets. The setting is quite general, in particular
arbitrary lattices, varying from scale to scale, can be used. What dictates the refinement is not the action of a dila-
tion operator but the subdivision scheme that refines a mesh into a finer one. The geometric refinement implies the
functional refinement of the associated scaling functions and hence the multiresolution analysis. It also determines the
stability of the obtain system, which in general cannot be guaranteed, unless regularity assumption are made in the
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construction and refinement of the meshes. An improved construction of a subdivision scheme with good regularity
properties for arbitrary topologies is proposed in [87] and its applications to surface compression studied.

In [88] the authors propose a construction of semi-orthogonal and biorthogonal wavelets based on regular sub-
division schemes on samples from surfaces of arbitrary topology. The geometry of the subdivision scheme dictates
the refinement equations for the scaling functions and wavelets, and the corresponding multiresolution. The dilation
operator is incorporated into the action of the subdivision scheme itself. They suggest applications of their techniques
to surface and texture compression. The applications of multiscale techniques have been explored in several papers,
please see [88] and references therein.

In [89] the author constructs orthonormal wavelets on stratified Lie groups, which are smooth and well localized in
time and frequency. The dilations are given by automorphism of the Lie group, which can be assimilated to a particular
case of anisotropic diffusion in our language.

11. Conclusion

We have shown that in the context of manifolds, graphs, data sets, and general metric spaces, diffusion processes
and Markov processes can be analyzed in a multiscale fashion very much in the spirit of classical wavelet analysis.
We propose fast and stable algorithms for constructing orthonormal bases for the multiscale approximation spaces,
and we show that there is an efficient scaling function and wavelet transform.

12. Work in progress

(i) Biorthogonal multiscale spaces. Instead of orthonormal bases for the subspaces Vj we could have Riesz–Bases
with good constants. This leads to the construction of biorthogonal diffusion wavelets, which is of interest in
the multiresolution analysis of diffusion operators which are not self-adjoint and non-symmetric Markov chains
[55]. A first construction is presented in [54].

(ii) Sharper or smoother frequency filters. Instead of looking at the spectrum of the powers of T and thresholding
on it to obtain the approximation subspaces Vj , we consider thresholding a function mj of the spectrum (which
correspond, via the spectral theorem, to a function of the operator T ), which “sharpens” (to better localize the
spectrum numerically) or smoothness the spectrum of the low-pass frequency portion. We expect sharpening
to improve numerical stability and speed, and allow greater control on the subsampling rate and mechanism
in general. Smoothing, on the other hand, allows to better control support size and vanishing moments of the
scaling functions. Details will be discussed in [55].

(iii) Wavelet packets. Wavelet packets can be constructed by considering Pj and Pj − Pj+1 (and polynomials in
them, as suggest in (ii)) to further split the wavelet subspaces. This will allow to have best basis algorithms, for
compression, denoising and local discrimination for functions on manifolds, graphs, and so on. The companion
paper [12] presents the details of the construction.

(iv) This construction provides an efficient and fast technique for compressing and denoising functions on the data
set, and the data set itself (by viewing the coordinate functions as functions on the data). This has applications to
empirical function approximation, learning, denoising, surface compression. The multiscale spaces Vj seem to
provide a natural setting for structural complexity minimization and approximation, and the extensions outside
the data set, as well as efficient algorithms available for all these computations, seem to hold good promises for
problems of regression, classification, and learning. They also provide a natural local multiscale structure that
lacks in many learning algorithms or is sought after through more complicate approaches.

(v) Compression of integral operators with non-oscillatory kernels, with boundaries of arbitrary geometries, in
arbitrary dimension, with no need of providing their parametrization. We do not know how this scheme or some
modification of it would perform in compressing oscillatory kernels.

(vi) Randomization. This algorithm can be randomized as soon as a randomized modified Gram–Schmidt with some
sparsity-preserving properties (e.g., with geometric pivoting) is available.

(vii) Hierarchical coarse-graining of graphs and document directories. The multiscale organization of graphs that we
propose can be used to for matching graphs at different scale or organizational levels. The diffusion distance
seems a very natural and promising measure for quantitating relationships between documents and a multiscale
analysis of such structures can be expected to provide an interesting organization of such data.
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(viii) One can associate a graph with an image (or an hyperspectral image), for example by considering features of
the image and similarities between features, and use our methodology for filtering, smoothing, denoising, and
compressing, in a flexible and adaptive way, the image and its feature space.

(ix) Multiscale analysis of corpora of documents and web pages. In this context the multiscale scaling functions
constructed in this paper are directories of documents and the corresponding directories of words (“concept”),
at different scales. The whole multiscale analysis allows to construct a natural hierarchy of directories, topics,
and “concepts” for a given corpus of documents. This includes a detailed study of the multiscale construction
on directed graphs and associated diffusion processes.

(x) Applications to learning. Learning can often be viewed as an approximation problem under smoothness (or com-
plexity) constraints. Diffusion wavelets can potentially be used as good bases for many interesting smoothness
spaces on graphs and manifolds and be successfully employed in learning problems. Their multiscale structure
also allows them to be used as multiscale kernels in kernel methods. The multiscale extension presented above
is promising in view of extending learned functions to new samples. Applications to reinforcement learning, in
particular Markov Decision Processes, are presented in [90–94].
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