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Harmonic analysis on manifolds and graphs has recently led to

mathematical developments in the field of data analysis. The

resulting new tools can be used to compress and analyze large

and complex data sets, such as those derived from sensor

networks or neuronal activity datasets, obtained in the

laboratory or through computer modeling. The nature of the

algorithms (based on diffusionmaps and connectivity strengths

on graphs) possesses a certain analogy with neural information

processing, and has the potential to provide inspiration for

modeling and understanding biological organization in

perception and memory formation.
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Introduction
Data processing and analysis has always been a vital

component of scientific research; increasingly so in our

times [1��–4��,5], when highly resolved sensing in space

and time gives rise to huge, high-dimensional datasets.

The same holds when the data are the result of fine-

grained computational modeling, rather than sensor out-

put. In neuroscience, there are myriad sources of very

high dimensional data. Perhaps the simplest example is a

single spike train, or a sequence of 100 to 10,000 such

trains [6]. The situation becomes much more interesting

(and much more complicated) when one considers eval-

uating the information in electrode arrays in, for example,

the retina [7], the hippocampus [8,9] or the motor cortex

[10]. Apart from these foundational questions, ‘untan-

gling the distributed code’ (e.g. [11,12]) is now a key

question for developing man–machine interfaces [10,11],

and is not unlike related questions for the analysis of EEG
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and MEG signals. The techniques described here should

be relevant to many of these tasks, both for developing

processing algorithms and for determining the level of

structure and intrinsic information in the signals. The

additional feature of extracting higher order concepts

from data computationally resonates with the way such

concepts are extracted from data physiologically. We

comment on some such tentative ‘cognitive processing’

features of our data processing algorithms.

The mathematical theory underpinning these new data

analysis algorithms is that of harmonic analysis on sets of

data represented as points lying in n-dimensional Eucli-

dean space, Rn, and on graphs constructed using this data.

These graphs, connecting data points in a way to be

described below, are in a way reminiscent of the inter-

connectivity graphs of sensor nodes (or neurons) in which

the strength of the connections represents a high affinity

between nodes. The main challenge involving the ana-

lysis of such complex structures lies in the ability to

explain the transition from local ‘affinities’ of massive

sensor outputs, or data, to some higher order concepts,

regions of influence and connectivities on a macroscopic

scale. The mathematical theory described here leads to

various computational methodologies useful in data ana-

lysis andmachine learning and, as such, provides a power-

ful tool for empirical modeling.

One goal of this review is to present these developments

in data analysis; a second goal is to provide some insight

into mathematical processing mechanisms. These might

be useful to the scientist studying empirical data proces-

sing and biological information processing in the formula-

tion of potential models of neuronal organization (or

sensor fusion) at different levels of granularity. Our

approach gives rise to Markov processes on graphs con-

structed using the data; and uses spectral theory and

eigenfunctions of these Markov processes [1��,2��], lead-
ing to a natural geometric organization of complex data

sets, providing a ‘nonlinear’ principal component analysis.

We remark in passing that the top eigenfunction, corre-

sponding to the highest eigenvalue, for the Web graph

provides the ‘importance ranking’ used by ‘Google’1 for

webpage ranking, whereas the subsequent eigenfunc-

tions provide amore detailedmapping.More importantly,

we show how these eigenfunctions, viewed as a mathe-

matical and computational tool, can be replaced by

‘aggregates of nodes’, equipped with a notion of multi-

scale affinity which can, in principle, be implemented
www.sciencedirect.com
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biologically through various linking systems. This pro-

vides a potential theoretical mechanism for simple emer-

gent organization and learning that might have biological

relevance. Although related ideas appear in a variety of

contexts of data analyses, such as spectral graph theory

[13], manifold learning and nonlinear dimensionality

reduction [14–17], we augment them by showing that

the diffusion distances are key intrinsic geometric quan-

tities linking spectral theory of Markov processes to the

corresponding geometry of the data, relating localization

in spectrum to localization in data space [2]. Existing

dimensionality reduction techniques typically focus

either on global or on local features of the data; our

methodology integrates features at all scales in a coherent

multiscale structure.

Geometric diffusions for global structure
definition of data
In applied mathematics we often view ensembles of data

as graphs with a large number of vertices, with each vertex

being a data point (e.g. a visual stimulus), and edges

connecting very similar data points (in an application-

specific sense). For example, two visual stimuli could be

considered similar if they excite a visual receptor in a very

similar way.

Discovering large-scale structures and extracting informa-

tion from such graphs is, in general, a very challenging

task. Often the data are high-dimensional, that is, repre-

sented by long strings of numbers (vectors); however,

physical or other constraints force the set of points or their

probability densities to be intrinsically lower-dimen-

sional, so they can, in principle, be described by a small

number of degrees of freedom [1��,2��,14–17,18��,19��].
Our goal is to organize and process the data so as to reveal

the low-dimensional structure. We use diffusion semi-

groups to generate various multiscale inference (or affi-

nity) geometries (ontologies).

We show that appropriately selected eigenfunctions of

Markov matrices describing local transitions, or affinities

in the system, lead to coarse-grained, macroscopic struc-

tures at different scales.

In particular, the leading eigenfunctions enable a low

dimensional geometric embedding of the dataset into a

lower-dimensional Euclidean space, so that the ordinary

Euclidean distance in the embedding space measures

intrinsic diffusion (inference, affinity or relevance)

metrics of the data.

The Euclidean correlation in Rn, for large n is, in general,

not a good measure of affinity, except possibly for very

close-by data points. This is the reason for the introduc-

tion of the ‘closeness’ parameter e in the formula below.

The premise is that the Euclidean distance provides a

meaningful measure of ‘affinity’ for data lying closer than
www.sciencedirect.com
a cutoff distance quantified by this e; and is meaningless

for data beyond this cutoff. One of the main contributions

is to find an embedding space such that the Euclidean

distance in this space is truly representative of the close-

ness (‘affinity’) among the data.

Mathematical background
Think of a point Xi in Euclidean space as representing a

string of outputs from a neuron labeled by i (data vector,
sensor output stream, and so on). A matrix of local

affinities can be constructed as:

Ae ¼ ½Xi � Xj �e :¼ exp
�ð1� Xi � XjÞ

e

� �

jjXijj ¼ 1

:

The strength of such a data-correlation based affinity

decays rapidly with the distance of outputs (other data

affinities are possible, including chemical). We renorma-

lize this matrix to aMarkovmatrixA (or more preciselyAe),

with sums of the entries of each row equaling one. A
measures local similarities, and corresponds to one step

of a random walk on the data [1��,2��,20]; its powers At

correspond to propagation of the local similarities by the

Markov process after t steps (time) of the random walk.

This random walk on the data gives rise to a geometric

diffusion (analogous to the derivation of the diffusion

equation from Brownian motion). For large t, all simila-

rities are integrated along all paths, yielding information

about global structures in the data. Remarkably, these can

be efficiently computed: let wl (i) = wl (Xi) be the l
th eigen-

vector of A evaluated at data point i, satisfying A’lðiÞ ¼
l2l ’lðiÞ (l2l are arranged in decreasing order). Then

AtðXi;XjÞ ¼
X

l2tl ’lðXiÞ’lðXjÞ
¼ atði; jÞ� atðXi;XjÞ

:

We consider the map

X
ðtÞ
i !ðlt1’1ðXiÞ; lt2’2ðXiÞ; :::; ltm’mðXiÞÞ ¼ X̂

ðtÞ
i

called the ‘diffusion map’, embedding into Rm at time t.
The square of the ‘diffusion distance’ at time t, measuring

‘divergence’ between nodes i and j, is:

d2
t ði; jÞ ¼ atði; iÞ þ atð j; jÞ � 2atði; jÞ

¼
Xm
1

l2tl ð’lðiÞ � ’lð jÞÞ2 ¼ jjX̂ ðtÞ
i � X̂

ðtÞ
j jj2:

For large t this can be computed very accurately using only

the corresponding first few eigenfunctions, because only a

few of the terms l2tl are above the level of precision of

interest (Figure 1). This provides a diffusion map embed-

ding of output data into a new low-dimensional Euclidean

space, converting diffusion distance on the data points into

Euclidean distance in the embedding space.

As a first simple example of data reorganization provided

by the diffusion embedding, we consider a sampled

geometric hourglass surface, idealizing a set of data points
Current Opinion in Neurobiology 2005, 15:576–584
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Figure 1

The spectra of powers of A. Some examples of the spectra of the dyadic powers of A. The x axis is the index of the eigenvalue, and the y

axis the eigenvalue itself. Eigenvalues are positive and are arranged in nonincreasing order.
with two weakly connected clusters, see Figure 2. We

embed the point cloud into three-dimensional Euclidean

space so that the diffusion distance in the original space

can be computed as the ordinary Euclidean length of the

chord connecting them in embedding space. Because the

diffusion is slower through the bottleneck, the two com-

ponents are farther apart in the diffusion metric.

In Figure 3, we illustrate the organizational ability of the

diffusion maps on a collection of images given in random

order. The inputs are 2-D gray scale pictures of the object

in ‘3D’ in various positions, each viewed as a 32 � 32 =

1024 dimensional vector. To calculate the embedding,

one constructs theMarkov matrix as above, and computes

the first few eigenfunctions. The top two eigenfunctions

reveal the orientation of ‘3D’, and organize the data

accordingly, see Figure 3.

Next, we organize a heterogeneous material, consisting

of two component materials (nodes, represented by cir-

cles and crosses), possessing different conductivities

(Figure 4). Although the gross statistics of circles and

crosses are identical on both lobes, the left lobe happens

to have more highly conductive links, which reduces the

diffusion distance between its constituent nodes. The

left-to-right bottleneck increases the diffusion distance

between the two lobes, because there are fewer paths
Current Opinion in Neurobiology 2005, 15:576–584
connecting the left and right lobe. The actual long-time

affinity structure is described in terms of the eigenfunc-

tions (Figure 4): on the left all points are tightly linked,

whereas on the right they maintain some distance. The

map has accounted for the preponderance of connections

through all paths of all lengths between the nodes.

The next example (Figure 5) represents an organization

of the configuration space of lip images that arise from a

single speaker. No structure is assumed. The local simi-

larity between images, viewed as high-dimensional vec-

tors, organizes them as above in the first three diffusion

coordinates. Different locations in the diffusion plot

correspond to different clusters of strongly related lip

images.

Dynamic learning through diffusion
geometry
We now use these ideas to describe various learning

methodologies in which the diffusion mechanism is itera-

tively adjusted to improve accuracy.

First, we generalize the basic affinity matrix to enable

purely empirical and dynamical modeling and learning.

Assume that a data point set (sensor output, individual

neuron output strings, and so on) has been generated by a
www.sciencedirect.com
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Figure 3

Diffusion embedding of a set of pictures of ‘‘3D’’. Organization emerging from a collection of images given in random order (data = {xi}).

(a) The images are displayed according to their location in the two-dimensional diffusion embedding (f1(xi), f2(xi)), displayed in (b). The

coordinates capture (perceive) the orientation of the picture in 3D.

Figure 2

Diffusion embedding of a sampled hourglass manifold. (a) An original set of points sampled on a hourglass manifold, as a model for two weakly-

connected clusters C1 and C2, and (b) their embedding using the eigenfunctions of the diffusion matrix A. The Euclidean distance in image in (b) is

equivalent to large-time t diffusion distance on the original set of points in (a). The two ‘clusters’ get flattened and move further apart in the new space.

The axes just provide a reference frame.

www.sciencedirect.com Current Opinion in Neurobiology 2005, 15:576–584



580 New technologies

Figure 4

Diffusion embedding of a heterogeneous material. (a) A heterogeneous material and (b) its long-term diffusion embedding (f2(xi), f3(xi)). This

structure could be interpreted as a map of trees (circles) and shrubs (crosses), with the links representing the probability of fire propagating

among them. From (b) it is clear that the risk of fire propagating from top to bottom is higher on the left side of the forest. Color is included so

that points can be matched across the two pictures.
process, the local statistical characteristics of which vary

from location to location. For each point x, we view the

neighboring data points as generated by a local unknown

diffusion process, the probability density of which is
Figure 5

Diffusion embedding of images of lips. The lip alphabet is learnt from a set

parameters are parametrized by the three top eigenfunctions (axes in the fig

An interpretation of the low order eigenfunctions is openness of the mouth

Current Opinion in Neurobiology 2005, 15:576–584
estimated by px(y) = cxexp(�qx(x � y)), where qx is a quad-
ratic form obtained empirically (for example by local

principal component analysis [21]) from the data in a

small ‘neighborhood’ of x.
of pictures of the lips of a speaker. The manifold structure and its

ure) of the diffusion, and this parametrization can be used to lip-read.

and exposure of teeth.

www.sciencedirect.com
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We use the matrix
P

y pxðyÞ pzðyÞ ¼ aðx; zÞ to model the

corresponding data-driven diffusion. The distance defi-

ned by this kernel is dðx; zÞ ¼ ð
P

yðj pxðyÞ � pzðyÞj2Þ1=2,
which can be viewed as the natural distance on the

‘statistical tangent space’ to the point cloud.

In a dynamical learning situation we can start with a data

point x, use its Euclidean neighborhood to define px(y) at
x, then find the z s that can be reached from x to compute

locally a(x, z). We then propagate a density in a neighbor-

hood of x via powers of A, stopping when the propagation

by diffusion slows down.

When labels are available, separating (a subset of) the

data in different classes, the information they provide can

be incorporated in px, by locally warping themetric so that

the diffusion starting in one class stays in that class

without leaking to others. This could be obtained, for

example, by using any kind of local discriminant analysis

[21] to build a local metric, the ‘fast’ directions of which

are parallel to the boundary between classes and the

‘slow’ directions of which are transverse to the class

boundaries. We also suggest that an iterative, partially

supervised procedure can lead to good results in many

practical situations.

In Figure 6 we represent a diffusion from labeled sam-

ples, from three different types of tissue, seeking to

identify all related samples in the image. Here, each

pixel has an absorption spectrum, with 128 spectral

dimensions. The middle image shows the failure of

conventional ‘nearest neighbor’ classification, whereas

the diffusion distance yields a better classification.
Figure 6

Classification of tissue types in a hyperspectral image through diffusion. (a)

correspond to three different biologically significant types of tissue: nuclei (b

underlying dermis (green). (b) Predictions of tissue type by a standard neare

by the diffusion classifier described above, with the training set represented

www.sciencedirect.com
Multiscale analysis of diffusion and spectral
analysis
Our goal is to replace the analytic construction of the

eigenfunctions by direct combinatorial link organizations.

We show that the emergent organization discovered

above with the help of the eigenfunctions can be trans-

lated into a multiscale hierarchical geometry of data

points. This point of view can be used as a guide for

theoretical processing models in biological systems.

The first few eigenfunctions of the matrix A (or equiva-

lently, of the Laplacian on a graph [13]) detect and

organize global structures on the data-based graph

[1,16]. It is often the case, in biological and other complex

systems, that several organizational structures exist at

different ‘scales’. Sensor outputs can be grouped (com-

pressed) into ensembles at different scales of complexity,

to perform tasks at different levels of complexity or

abstraction, and integrating the tasks performed at lower

levels of complexity.

We sketch a technique for constructing these sets of

structures at different scales on a set of outputs or data,

starting from the finest granularity, and building up to

more complex structures, all inter-related at each scale

and across scales, culminating in the global structures

detected and described by the analysis with eigenfunc-

tions described above. In the case of clouds of data points,

this translates into a multiscale analysis of the cloud of

points; at each scale we have a set of aggregates of points,

and relationships among these groups are determined by a

power of the diffusion operator at that scale. We claim

(see [2]) that the embedding provided by the eigenfunc-
A slice of a hyperspectral image with three selected regions that

lue), cytoplasm of epidermal cells (pink) and collagen in the

st neighbor classifier, trained on the set in (a). (c) Predictions made

in (a).

Current Opinion in Neurobiology 2005, 15:576–584
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tions can also be achieved by a hierarchical regrouping of

data, using affinity at different diffusion time scales as a

grouping mechanism.

The construction alluded to above is most easily

explained in terms of conventional semantic analysis of

text documents, each document being a data point. Each

document has coordinates that represent the frequency of

occurrence of words in it. We correlate only documents

with strong similarity of vocabulary. Given a document x,

we can build a folder around it of documents with strong

immediate affinity (i.e. nearest neighbors). This becomes

a folder at ‘scale 1’. To obtain a folder at ‘scale 2’ we

consider all documents, y, that are nearest neighbors to a

nearest neighbor of x (i.e. they are linked by a chain of

length 2 to x), and measure affinity as the sum of strength

of all these chains of length 2 linking y to x; we keep only

those, y, with strong affinity to form a folder at scale 2. We

repeat this process for all chains of length 4 and less. One

can easily build a directory structure of folders at all

dyadic scales, with folders at a fixed scale being disjoint.

From our point of view, every sensor (every neuron) can

be viewed as a document for which a string of sensor

outputs are the coordinates (elementary semantic con-

tent), whereas the folders are groups of outputs combin-

ing similar or highly related outputs at different resolution
Figure 7

Multiscale folders. (a) Original picture. (b) A subset of 6 � 6 pixel patches e

of patches, representing a higher level feature. (d) Another folder at scale 2

weighted aggregates of patches (‘attributes’ or ‘features’) at an even coarse

Current Opinion in Neurobiology 2005, 15:576–584
(or abstraction) levels. In Figure 7 the elementary docu-

ments are various 6 � 6 patches of the image in the first

panel. The folders at different levels of resolution corre-

spond to higher level features of the image.

To relate this description to a mathematical formulation

we start by observing, as above (Figure 1), that the

numerical rank of (Ae)
t/e decreases rapidly as t increases.

In particular, if we consider the expansions atðx; yÞ ¼P
l
2t=e
i ’iðxÞ’iðyÞ, for t = e2 j, obtained by successive squar-

ing, then for any fixed precision the summation can be

restricted to smaller and smaller sets of indices.

Secondly, the columns at(x, y) of the matrix (Ae)
t/e repre-

sent the probability of transition in t steps from x to y.

We can also interpret the x column of the matrix A2 j ,

a2 jðx; yÞ, as a rank of affinity between sensor (neuron)

output x and sensor (neuron) output y at scale j, and the

collection of points y, such that a2 jðx; yÞ> d could repre-

sent all sensor (neuron) outputs y similar to x.

We present a very simple method for obtaining a hier-

archical ‘sensor folder’ (or ‘neuron group’) organization, as

described above for the text documents. A minimal

collection of clusters organizing the whole set of points
xtracted from the image. (c) A folder at scale 2 is a weighted aggregate

is an edge detector. (e and f) Two folders at scale 3 that represent

r scale.

www.sciencedirect.com
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at different levels of granularity is obtained as follows: let

fx jþ1
k g be a maximal subcollection of points in fx j

kg (key-

points at scale j), such that 1=2 � d2 jðx
jþ1
k ; x jþ1

i Þ, where
fxokg are the original points. Then any point is at distance

at most 1/2 at scale j from one of the selected ‘key-points’

at that scale, enabling us to create a document folder

labeled by the key-point. It is easy to modify this con-

struction to obtain a tree of non-overlapping folders.

This construction, when applied to text documents

(equipped with semantic coordinates), builds an auto-

matic folder structure with corresponding key documents

characterizing the folders.

A detailed, refined construction of scaling functions (col-

umns of At) and wavelets representing this multiscale

organization of the graph is provided in Coifman and

Maggioni [2], and connections with related algorithms in

numerical analysis in Brandt [22]. This analysis of aggre-

gation at different times (and corresponding scales),

enables us to perform multiscale wavelet analysis on

manifolds and graphs in a natural way. Applications

include compression of functions on the dataset, denois-

ing of such functions, and learning (in the sense of

classification and regression) of functions on the dataset.

Although the description of the analysis given above

refers only to organization of existing data, we point

out that the tools developed also enable the incorporation

of new data points into the structure in a consistent way,

and the extension of functions modeled on the data to

new sensor outputs [1��,2��,4��].

The multiscale construction enables structure to emerge

at different scales as a function of connectivity. In

Figure 7 we show several small patches from a simple

image. If all patches are considered, edge filters (at the

finer scales) and blob filters (at the coarser scales) natu-

rally arise. Note the clear curvature in their structure [23].

Restricting the number of patches would result in more

V1-like ‘receptive-fields’ [24–27].

Stochasticity and coherence
Global geometric diffusions can be applied to data driven

by a Langevin equation [19��] that is used to model many

biological systems [28–30], for example, stochastic unsyn-

chronized neuronal pulse trains. The macroscopic prob-

ability density behavior of such systems is governed by

the Fokker–Planck operator [19��], the eigenfunctions of

which can be empirically approximated as described

above, leading to efficient descriptions of likely, long-

time probability configurations and geometries [2��,9,19].
The connections between Bayesian learning and Fokker-

Planck equations date back to Verrelst [31] and refer-

ences therein.

Diffusion wavelets and global diffusion have both been

applied successfully to learning processes in a variety of
www.sciencedirect.com
(stochastic) environments, where an agent (e.g. robot)

learns optimal behavior for achieving certain tasks from

past experiences [18��].

Conclusions
Diffusion geometries can reveal structure in data at

different levels of organization. Because many sources

of data in neuroscience are high-dimensional, under-

standing their primary, low-dimensional intrinsic struc-

ture can be insightful. It has been indicated that image

patch structure can suggest receptive field properties, and

that different properties emerge at different levels. The

intrinsic dimensionality can also be useful for efficient

data analysis. Many applications of these techniques in

neuroscience remain to be tried, from spike train analysis

to olfaction and the electroencephalogram (EEG). But

perhaps more exciting is the possibility that emergent

structure across levels will open a theoretical door into

cognitive neuroscience and memory organization.

Matlab scripts for the computations involved in diffusion

maps and multiscale analysis of diffusion are available

online [32] or upon request from M Maggioni.
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