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ABSTRACT
Motivation: Graph-theoretical approaches are useful for elucida-

ting the modular compositions of protein-protein interaction networks,
which are known to consist of regions of increased network connec-
tivity (clusters), corresponding to known molecular complexes or
functional pathways. In this work, we introduce the concept of semi-
supervised directed diffusion as a graph-based methodology for
cluster analysis.
Results: We show that our scheme allows both similarity propagation
and cluster boundary detection. It is experimentally verified by analy-
zing known biological pathways, and we show that it can accurately
identify an entire pathway, given only 10%-20% of its proteins. Thus,
we submit that directed diffusion is a promising approach for evidence
propagation in biological networks and clustering of functional groups.
Availability: A Matlab implementation of the proposed scheme is
available at http://pantheon.yale.edu/∼yk253/software/.
Contact: yosi.keller@yale.edu.

1 INTRODUCTION
There is much evidence that topological features of molecular inter-
action networks are useful for delineating the location andscope of
molecular pathways and complexes. Moreover, it has been shown
that network density is a useful feature for characterizingnetwork
regions consisting of elements, such as proteins, that preferably
interact with one another and participate in a common biologi-
cal function. Previous work dealing with the identificationof such
regions (commonly called network clusters) often represented mole-
cular interaction networks as graphs. These capture the network
elements as nodes and the interactions among the elements asnet-
work edges. Such methods can be divided into two categories:
unsupervised data-driven schemes in contrast to semi-supervised
approaches that incorporate prior knowledge. (Rives and Galitski,
2003) and (Wilkinson and Huberman, 2004) present data driven
approaches that perform hierarchical clustering of networks, utili-
zing different affinity measures and edge weights to identify nodes
and edges at the boundary of network clusters. Wilkinson et.al.
(Wilkinson and Huberman, 2004) followed the work by (Girvanand
Newman, 2002) (GN algorithm) to subdivide disease-specificnet-
works into meaningful gene communities. The GN algorithm starts
with a fully connected network, and successively removes edges
between compact network clusters. Another approach is discussed
by (Pereira-Leal et al., 2004), which uses the TribeMCL method
(Enright et al., 2002) to find functional modules in protein interac-
tion networks. They applied the concept of a ‘stochastic flow’ that
alternates between expansion and inflation phases, causingthe flow
to dissipate within clusters, while eliminating it betweenclusters.
There is a body of research that deals with the delimitation of net-
work clusters from a set of seed nodes that corresponds to a-priory
knowledge about a the clusters of interest. Bader and Hogue (Bader

and Hogue, 2003) developed MCODE that allows to explore net-
work clusters from specified seed nodes (such as proteins). Bader
developed SEEDY (Bader, 2003), an algorithm for finding protein
clusters through breath-first outward traversal from some known
seed genes.

Algorithms based on random walks and physical computatio-
nal models are of particular interest in the context of this work.
An approach based on the thermodynamical properties of an inho-
mogeneous ferromagnet was proposed by Domany and coauthors
(M. Blatt and Domany, 1996; Blatt et al., 1997). This approach
models the interaction between data points by assigning a spin to
each data. Each spin can be in several states. Spins belonging to
connected nodes interact and have the lowest energy when they are
in the same state. The system (known as the Potts model) is sub-
ject to equilibration at nonzero temperature, making spinsfluctuate.
The concept behind this method is that spins belonging to a highly
connected cluster fluctuate in a correlated fashion. By detecting cor-
related spins, the algorithm can identify nodes belonging to a highly
connected area of the graph. This approach was successfullyapplied
to a variety of clustering problems (Getz et al., 2000, 2002;Reich-
mann et al., 2005; Spirin and Mirny, 2003), and extended in (Getz
et al., 2005) to deal with semi-supervised classification, where the
classes of certain samples are know a priori. The Potts modelis
augmented by introducing an external field into the energy ofthe
granular ferromagnet.

A graph theoretic approach to unsupervised data analysis was
suggested by Harel and Koren in (Harel and Koren, 2001b,a). They
compute the affinity matrix related to the dataset, and row normalize
it to form a Markov matrix. A random walk is then initiated at all of
the datapoints, and the probabilities induced by it are usedas a set
of features defined on the dataset. A new graph is then defined based
on the inner similarities of this new set of features. This new graph
is then clustered by aClustering by Separation approach, where
a greedy algorithm iteratively removes edges until the clusters are
formed.

The work in (Weston et al., 2004) is of particular interest to
us, as it presents a protein ranking algorithm that utilizesan evi-
dence propagation approach similar to ours. The work exploits the
entire network structure of affinities among proteins in a sequence
database, by performing a diffusion operation on a precomputed,
weighted network.

In this work, we follow a related approach for detecting net-
work clusters by taking a closer look at spectral graph theory.
This approach was shown to provide an efficient and fundamentally
sound framework for data analysis and statistical clustering (Shi and
Malik, 2000). In such schemes multidimensional data is analyzed
by forming a graph of interactions/distances between the data ele-
ments, such as nodes in a molecular interaction networks. A data set
can then be clustered by studying the spectral properties ofthe graph
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Laplacian and computing the so-called diffusion distancesover the
data manifold (Coifman et al., 2005b).

We present a semi-supervised approach for delineating the scope
of protein clusters given a few samples nodes (seed proteins) within
it. We call this approachdirected diffusion, as we direct our analy-
sis towards a particular cluster instead of analyzing the entire data
set. Our approach is based on propagating the diffusion fromthe
seeds, using a Markov matrix and identifying the target cluster’s
boundaries by the discontinuities in the diffusion values.Let M
be a Markov matrix, thenpT

n+1 = (pn)T · M defines a Markov
random walk, while in this work we propagate the diffusion values
φn+1 = M · φn andφn is not a probability.

The proposed scheme differs from the prior results cited above
in several aspects. Compared to unsupervised approaches (M. Blatt
and Domany, 1996; Blatt et al., 1997; Bader, 2003), our approach
utilizes prior knowledge and does not require the analysis of the
entire dataset, which in the case of interaction networks, might
prove computationally prohibitive due to their size. Compared to
schemes that use Markov random walks, such as the work by Harel
and Koren in (Harel and Koren, 2001b,a), our approach propaga-
tes diffusions that are shown to have particular analyticalproperties
useful for clustering. In contrast, in (Harel and Koren, 2001b,a),
the random walk is used to derive a set of coordinates and the clu-
stering is conducted via a general purpose graph theoretic scheme.
In (Weston et al., 2004) the authors propagate diffusions similar to
us, but their scheme provides only ranking and not clustering. Last,
using a random sampling procedure, our approach naturally handles
noisy seeds. This issue was not addressed in prior works and is vital
for processing experimental data that is prone to errors.

2 DIFFUSION BASED DATA ANALYSIS
Graph based diffusion (Coifman et al., 2005b) is an approachto
analyzing the geometrical properties of data networks represented
as graphs. It is particularly appropriate for data sets witha pair-
wise similarity function between the data points. Its focalpoint is
to agglomerate the local interactions of the different entities (data
points) in order to obtain a global or semi-global embedding.

Suppose we have a data setE = {x1, ..., xL} and a non-
negative and symmetric similarity measurew(xi, xj). This results
in a symmetric graph, whoseL nodes are the data pointsE with the
symmetric affinity matrixW = {w(xi, xj)}. Forxi ∈ E, we form
theL × L matrixM with entries

m(xi, xj) =
w(xi, xj)PL

j=1 w(xi, xj)
.

As m(xi) ≥ 0 and
PL

j=1 m(xi, xj) = 1, the matrixM can be
viewed as the transition matrix of a random walk (Markov chain)
on the data setE. The diffusion framework is based on the idea
that the behavior of this random walk provides some insight on the
structure of the data set. Although the construction of this Markov
chain might seem artificial, it can reveal useful information about
the organization of the data. Consider a random walker traveling on
the graph of the data, jumping from node to node at random. Each
time he intends to move, he chooses a destination at random accor-
ding tom(xi, xj). Therefore, fromxi, he is more likely to jump to
xj if the affinity between these nodes is high, and more generally,
he will follow paths along which nodes are highly similar (inthe
sense defined byw). The walker will tend to be trapped in a certain

number of regions or wells for a long time, with some rare jumps
between these wells. From this observation, it is natural todefine
a cluster in the data setE to be a region where the random walker
tends to spend a lot of time. In contrast,regions of transitions, or
bottlenecks, constitute the boundaries of these clusters.

In unsupervised schemes, the random walk is initiated in allof
the samples at once, and we can compare two pointsx andz in E,
by comparing the behaviors of two random walks starting atx and
z respectively. Letpn(x, y) denote the probability of being iny at
time t when starting atx, then the comparison of the distributions
pn(x, ·) andpn(z, ·) can be used for measuring a notion of distance
betweenx andz denoted as thediffusion distance (Coifman et al.,
2005b,a)

D2
t (x, z) =

X
y∈E

1

d(y)
(pt(x, y) − pt(z, y))2 . (1)

whered(y) is the degree of the nodey.
In contrast, in this work, we comparediffusions rather than pro-

babilities. The pointsx and z in E are compared by considering
the diffusionsφn(y, x) andφn(y, z), wherey ∈ S, S ⊂ E, is the
point where the diffusion is initiated. In a biological context,E can
be the set of proteins represented by an interaction networkandS
might be the cellcycle pathway. This allows us to focus our analysis
on S and avoid the computation of the eigenfunctions of the Mar-
kov matrixM in Eq. 1. These eigenfunctions are global and embed
the entire graph. Therefore, if one only wants to study the neigh-
borhoods of the setS, a large number of these eigenfunctions are
needed to achieve the desired resolution. In addition, the compu-
tational complexity of computing them might prove prohibitive for
large networks.

In order to identify the setS we utilize the analysis given in (Kel-
ler, Keller), where it was shown thatφn(y, ·) is discontinuous across
the boundary ofS, and this discontinuity is followed by a saddle-
like structure corresponding to the clusterS. In the next section
we describe how to utilize these notions to derive an unsupervised
clustering scheme applicable to proteins networks analysis,

3 EVIDENCE PROPAGATION VIA DIRECTED
DIFFUSION

Directed diffusion is a mean to identify the members ofS, when
only a subset of themSo ⊂ S is known. We call these proteins
seeds. For instance, if the dataset is a collection ofE proteins, then
S can be a subset of proteins that participate in a common biologi-
cal pathway (e.g. cell cycle). For that we start by propagating the
diffusions initiated from setSo using Algorithm 1.

Algorithm 1 Computing the probabilityφn

1: Let φ0 be the indicator vector that is zero outsideSo, and 1 on
So. nmax is a predefined number of time steps.

2: for n = 1 to nmax do
3: Computeeφn = (φn−1)

T M
4: Defineφn by φn(x) = epn(x) if x /∈ S0 andφn(x) = 1 if

x ∈ S0.
5: end for
6: Returnφn wheren = nmax.
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Applying Algorithm 1 results in a vector of diffusionsφn, in
which high values correspond to nodes with high affinity to the set
S. In order to cluster the elements ofS, we utilize the property of
φn discussed in (Keller, Keller), where it was shown thatφn will be
discontinuous across the boundary of the setS, denoted∂S. Thus,
nodes{xi} ∈ E that are outside ofS will have smaller diffusion
valuesφn, and we denote the value ofφn at the discontinuity point
T ∗. The setS can be then clustered by

x ∈ S if φn(x) > T ∗

x /∈ S otherwise.

Let N(φn > T ) = |φn > T | be the number of samples with diffu-
sion values larger thanT , then in order to identify the discontinuity
T ∗, we utilize the observation thatN(φn > T ) is a monotonically
decreasing function ofT and is discontinuous (with respect toT ) at
T ∗. Thus, we aim to find the largest discontinuity inN(φn > T )
and the saddle point following it. Note thatN(φn > T ) is a robust
measure as it is computed over the entire setE. This is summarized
in Algorithm 2.

Algorithm 2 Computing the thresholdT ∗

1: Apply Algorithm 1 and computeφn.
2: ComputeN(φn > T ) = |φn > T | for 0 ≤ T ≤ 1.
3: Identify the largest discontinuity

Tmax = arg max
��� ∂N(φn>T )

∂T

��� .
4: Look for T ∗, the first saddle point of

���∂N(φn>T )
∂T

��� such that

T ∗ > Tmax.

3.1 Random sampling in diffusion space
In practice,So might contain erroneous seedsSf such thatSo =
Sf ∪ St but Sf /∈ S and St ∈ S. A straightforward implemen-
tation of Algorithm 1 can not distinguish between true and false
seeds, as the diffusion values of the seeds are a-priory set to 1.0.
Thus, In order to analyze the seeds themselves, we introducea ran-
dom sampling scheme to account for the existence of erroneous
seeds. We randomly choose a subset ofSo, and propagate from it
using Algorithm 1. This is repeatedK times and we denote the ran-
domly chosen subsetSk

0 , and the corresponding diffusion vector
φk

n. After K such iterations, we average
�
φk

n

	
over k and denote

the resultφn (x). For each iterationk, we do not average over the
samplesSk

0 that were used as seeds. This corresponds to only con-
sideringsecondary evidence for the seeds. Assuming|St| ≫ |Sf |,
the affinity is likely to spread faster withinSt than withinSf , and
φn (St) ≫ φn (Sf ) .This approach is described in Algorithm 3.

4 RESULTS AND DISCUSSION
The effectiveness of the directed diffusion was experimentally veri-
fied by analyzing the cluster boundaries of the cell cycle (100
proteins), apoptosis (80 proteins) and TGF-beta (69 proteins)
pathways. These are known biological pathways that were used as
ground-truth.

Our analysis is based on a protein-protein interaction network
constructed using the Human Reference Protein Database (HRPD)
(Peri et al., 2003). This network provides hand-curated interaction

Algorithm 3 Random sampling
1: Given the set of seedsSo, the random sampling ratior and the

number of random iterationsK.
2: for k = 1 to K do
3: Choose a random setSk

0 ⊂ So made ofr · |So| elements and
define the functionQk (x) such that

Qk (x) =

�
1 x ∈ Sk

0

0 otherwise

4: Apply Algorithm 1 usingSk
0 as seeds and denote the result

φk
n.

5: end for
6: Compute the weighted average

φn (x) =

X
k=1..K

φk
n (x) Qk (x)X

k=1..K

Qk (x)
. (2)

data for several thousand human proteins, and is based on data from
the scientific literature. Where possible, it provides external data-
base references for the listed proteins; we discarded HRPD entries
without such references, as we were unable to uniquely identify
the corresponding proteins. The resulting human protein interac-
tion network consisted of 5537 nodes and is a binary network where
nodes are either connected or not. Within this network, we identified
protein nodes that belong to the cell cycle, apoptosis and three diffe-
rent signaling pathways (Notch, TGF-beta and phosphatidylinositol
signaling pathways). For that, we used the KEGG curated pathway
repository (Kanehisa et al., 2004) to obtain the corresponding gene
identifiers.

In terms of Section 3,E is the entire set of 5537 proteins encoded
by the network. In each experiment we analyzed a single pathway,
that acted as the setS. In order to derive the set of seedsSo, we
randomly chose20% of the samples inS and applied the iterative
random sampling described in Algorithm 3 using the random samp-
ling ratio r = 50%. We used 150 random walk steps in Algorithm
1, and the entire experiment was repeated 200 times (i.e. we chose
200 different setsSo).

For each protein we computed the diffusions according to Step#6
in Algorithm 3 and ranked the proteins according to the descending
order of their average diffusionsφn (x). Thus, proteins with high
φn (x) values are ranked low. This allows us to verify the validity of
Algorithm 1 as a similarity propagation measure, as low ranking are
expected to correspond to samples related to the seeds and pathway
of interest. For a successful diffusion propagation, we expect the
proteins inS to have low rankings. Indeed, the rankings of the
apoptosis, cell cycle and TGF-beta pathways (shown in Figs.1a-
3a, respectively), are all considerably lower than the rankings of the
other pathways. In contrast, we applied the same procedure to a ran-
dom set of seeds, and the resulting rankings shown in Fig. 4a,are
uniformly spread over the range of 1500-3500.

This exemplifies that proteins clusters with low ranking arenot
formed by random seeds, and it is evident that the rankings (and
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Fig. 1. Analysis results for the Apoptosis pathway that contains 80proteins. The diffusions were initiated using 20% (16 samples) of the proteins.(a) The
ranking of the probabilitiesφn of five protein pathways high-to-low. The Apoptosis proteins (black circles) show the lowest rankings and highest probabilities.
(b) We detect the largest discontinuity inφn and the saddle point is detected atT ∗ = 0.5 and overlayed on the ROC curve in(c). This choice ofT ∗

corresponds to an accurate classification of the Apoptosis pathway. In addition, the ROC curve has an area of 0.942.

diffusion values) of the random seeds are indistinguishable from the
rest of the network.

Next, we tested the clustering component of our scheme that is
described in Algorithm 2. For each pathway we computed the cor-

responding function
��� ∂N(φn>T )

∂T

��� and depict it in Figs. 1b-3b. For

each of them, we look for the saddle pointT ∗, which follows the lar-

gest maxima of
���∂N(φn>T )

∂T

���. Note that the left-most discontinuity

atT ∗ = 0 corresponds to disconnected nodes/proteins.
In order to asses the classification accuracy we computed theROC

curve (Fawcett, Fawcett) for each pathway, shown in Figs. 1c-3c,
by choosing a set of thresholds{Ti}, uniformly spread over the
interval [0..1] . For each threshold we identify the nodes for which
φn > Ti as belonging to the pathway of interest, using the KEGG
repository as ground truth. Thus, the ROC curve depicts the classi-
fier’s performance with respect to all possible values ofT ∗, and we
mark the thresholdT ∗, computed according to Algorithm 2, on the
ROC curve. An optimal classifier (and value ofT ∗) will be loca-
ted as close as possible to the upper-left corner of the ROC curve,
where it maximizes the ratio of true positives to false positives. It
is evident in Figs. 1c-3c that the chosen thresholdsT ∗ are indeed
close to the optimal position. In contrast, in Figs. 4b-4c, where
seeds were picked at random, the ROC curve correspond to thatof
a random classifier (ROC area equal to 0.5) and the saddle point is
meaningless.

In order to study the directed diffusions’ dependency on thenum-
ber of seeds, we computed the ROC curves for varying numbers
of seeds. It is well known (Fawcett, Fawcett) that a random classi-
fier would yield an area of 0.5, while an optimal classifier yields an
area of 1.0. These results are shown in Figs. 5a-5c and it is evident
that 10% of the proteins within each pathway suffice to recover the
remaining proteins by achieving a ROC area of 0.9. For comparison,
we computed the ROC area for a directed diffusion classifier based
on random seeds. As expected the average ROC area is 0.5 regard-
less of the number of seeds, and the real and random classifiers are
more than one standard deviation apart.

5 CONCLUSIONS
This work discusses the application of directed diffusion to the ana-
lysis of protein interaction data. We presented a task driven approach
to protein clustering within large interactions networks,by propa-
gating the diffusion locally using a given set of seed proteins. This
enables the detection of protein cluster boundaries, and (using a ran-
dom sampling approach) overcomes the presence of corrupt seeds.
We demonstrated the applicability of our approach by applying it
to a protein interaction network. To conclude, we believe that we
provided compelling evidence that directed diffusion is anefficient
evidence propagation and

6 ACKNOWLEDGMENTS
The author would like to thank Amit Singer (Applied Math depart-
ment, Yale University) for many helpful discussions duringthe
course of this work, regrading the Fokker-Planck operator.We also
thank Michael Krauthammer for the biological datasets and many
helpful insights.

REFERENCES
Bader, G. D. and C. W. Hogue (2003). An automated method for fin-

ding molecular complexes in large protein interaction networks.
BMC Bioinformatics 4(1), 2.

Bader, J. S. (2003). Greedily building protein networks with
confidence.Bioinformatics 19(15), 1869–74.

Blatt, M., S. Wiseman, and E. Domany (1997). Data clustering
using a model granular magnet.Neural Computation 9(9), 1805–
1842.

Coifman, R., S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner,
and S. Zucker (2005a). Geometric diffusions as a tool for harmo-
nics analysis and structure definition of data. part 2: Multiscale
methods. Proceedings of the National Academy of Science. To
appear.

Coifman, R. R., S. Lafon, A. B. Lee, M. Maggioni, B. Nadler,
F. Warner, and S. W. Zucker (2005b, May). Geometric diffu-
sions as a tool for harmonic analysis and structure definition of
data: Multiscale methods.PNAS 102(21), 7432–7437.

4



0 100 200 300 400
0

1000

2000

3000

4000

5000

6000

7000

8000
R

an
ki

ng

Seed Idx

 

 

Apoptosis
Cellcycle
Notch
Phosphatidylinositol
Tgfbeta

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

Levelset

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

os
iti

ve

False Positives

(c)

Fig. 2. Analysis results for the Cell Cycle pathway that contains 100 proteins. The diffusions were initiated using 20% (20 samples) of the proteins.(a)
Ranking of the probabilitiesφn of five protein pathways high-to-low. The Apoptosis proteins (black circles) show the lowest rankings and highest probabilities.
(b) We detect the largest discontinuity inφn and the saddle point is detected atT ∗ = 0.525 and overlayed on the ROC curve in(c). This choice ofT ∗

corresponds to an accurate classification of the Apoptosis pathway. In addition, the ROC curve has an area of 0.937.
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Fig. 3. Analysis results for the TGF-beta pathway that contains 69 proteins. The diffusions were initiated using 20% (13 samples) of the proteins.(a) Ranking
of the probabilitiesφn of five protein pathways high-to-low. The Apoptosis proteins (black circles) show the lowest rankings and highest probabilities. (b) We
detect the largest discontinuity inφn and the saddle point is detected atT ∗ = 0.46 and overlayed on the ROC curve in(c). This choice ofT ∗ corresponds
to an accurate classification of the Apoptosis pathway. In addition, the ROC curve has an area of 0.883.
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Fig. 4. Analysis results for the a randomly chosen set of seeds containing 84 proteins. The diffusions were initiated using 20% (17 samples) of the proteins.
(a) Ranking of the probabilitiesφn of five protein pathways high-to-low. The random seeds are spread randomly and not characterized by low rankings as
the actual pathways.(b) The saddle point following largest discontinuity is overlayed in (c), but does not correspond to an accurate classification.(c) As
expected, the ROC curve corresponds to the output of a randomclassifier and has an area of 0.55
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Fig. 5. ROC results for(a) apoptosis,(b) cell cycle and(c) TGF-beta. In all three cases, the average ROC curve of the directed diffusion classifier, is well
above the average ROC curve computed using random seeds. Theaverage ROC area achieved by the directed diffusion is in theorder of 90%.

Enright, A. J., S. Van Dongen, and C. A. Ouzounis (2002). An
efficient algorithm for large-scale detection of protein families.
Nucleic Acids Res 30(7), 1575–84.

Fawcett, T. Roc graphs: Notes and practical considerationsfor data
mining researchers.Technical Report HPL-2003-4, HP Labs,
2003..

Getz, G., E. Levine, and E. Domany (2000). Coupled two-way
clustering analysis of gene microarray data.Proceedings of the
National Academy of Science 97(22), 12079–12084.

Getz, G., N. Shental, and E. Domany (2005, August). Semi-
supervised learning - a statistical physics approach. Bonn,
Germany.

Getz, G., M. Vendruscolo, D. Sachs, and E. Domany (2002).
Automated assignment of scop and cath protein structure clas-
sifications from fssp scores.Proteins (46), 405415.

Girvan, M. and M. E. Newman (2002). Community structure in
social and biological networks.Proceedings of the National
Academy of Science 99(12), 7821–6.

Harel, D. and Y. Koren (2001a). Clustering spatial data using
random walks. InKDD ’01: Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and
data mining, New York, NY, USA, pp. 281–286. ACM Press.

Harel, D. and Y. Koren (2001b). On clustering using random walks.
In FST TCS ’01: Proceedings of the 21st Conference on Founda-
tions of Software Technology and Theoretical Computer Science,
London, UK, pp. 18–41. Springer-Verlag.

Kanehisa, M., S. Goto, S. Kawashima, Y. Okuno, and M. Hattori
(2004). The kegg resource for deciphering the genome.Nucleic
Acids Res 32(Database issue), D277–80.

Keller, Y. Local spectral analysis and its applications.Submitted for
publication.

M. Blatt, S. W. and E. Domany (1996, April). Superparamagnetic
clustering of data.Physical Review Letters 76, 32513254.

Pereira-Leal, J. B., A. J. Enright, and C. A. Ouzounis (2004). Detec-
tion of functional modules from protein interaction networks.
Proteins 54(1), 49–57.

Peri, S., R. Navarro, J.and Amanchy, T. Kristiansen, C. Jonnal-
agadda, and V. Surendranath (2003). Development of human
protein reference database as an initial platform for approaching
systems biology in humans.Genome Res 13(10), 2363–71.

Reichmann, D., O. Rahat, S. Albeck, R. Meged, O. Dym, and
G. Schreiber. (2005, January). The modular architecture of
protein-protein binding interfaces.Proceedings of the National
Academy of Science 102(1), 57–62.

Rives, A. and T. Galitski (2003). Modular organization of
cellular networks. Proceedings of the National Academy of
Science 100(3), 1128–33.

Shi, J. and J. Malik (2000, August). Normalized cuts and image seg-
mentation.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 888–905.

Spirin, V. and L. A. Mirny (2003). Protein complexes and functio-
nal modules in molecular networks.Proceedings of the National
Academy of Science 100(21), 12123–12128.

Weston, J., A. Elisseeff, D. Zhou, C. Leslie, and W. S. Noble
(2004). Protein ranking: from local to global structure in the pro-
tein similarity network.Proceedings of the National Academy of
Science 101(17), 6559–6563.

Wilkinson, D. M. and B. A. Huberman (2004). A method for fin-
ding communities of related genes.Proceedings of the National
Academy of Science 101 Suppl 1, 5241–8.

6


