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ABSTRACT

Motivation: Graph-theoretical approaches are useful for elucida-
ting the modular compositions of protein-protein interaction networks,
which are known to consist of regions of increased network connec-
tivity (clusters), corresponding to known molecular complexes or
functional pathways. In this work, we introduce the concept of semi-
supervised directed diffusion as a graph-based methodology for
cluster analysis.
Results: We show that our scheme allows both similarity propagation
and cluster boundary detection. It is experimentally verified by analy-
zing known biological pathways, and we show that it can accurately
identify an entire pathway, given only 10%-20% of its proteins. Thus,
we submit that directed diffusion is a promising approach for evidence
propagation in biological networks and clustering of functional groups.
Availability: A Matlab implementation of the proposed scheme is
available at http:/pantheon.yale.edu/~yk253/software/.
Contact: yosi.keller@yale.edu.

1 INTRODUCTION

There is much evidence that topological features of moédanter-
action networks are useful for delineating the location seape of
molecular pathways and complexes. Moreover, it has beenrsho
that network density is a useful feature for characterizingvork
regions consisting of elements, such as proteins, thataiety
interact with one another and participate in a common bielog
cal function. Previous work dealing with the identificatiohsuch
regions (commonly called network clusters) often repressbmole-
cular interaction networks as graphs. These capture theonet
elements as nodes and the interactions among the elememts-as

and Hogue, 2003) developed MCODE that allows to explore net-
work clusters from specified seed nodes (such as proteirglerB
developed SEEDY (Bader, 2003), an algorithm for finding @irot
clusters through breath-first outward traversal from somewhn
seed genes.

Algorithms based on random walks and physical computatio-
nal models are of particular interest in the context of thisrky
An approach based on the thermodynamical properties oftast in
mogeneous ferromagnet was proposed by Domany and coauthors
(M. Blatt and Domany, 1996; Blatt et al., 1997). This apptoac
models the interaction between data points by assigningnatsp
each data. Each spin can be in several states. Spins bejotrgin
connected nodes interact and have the lowest energy whemaithe
in the same state. The system (known as the Potts model) is sub
ject to equilibration at nonzero temperature, making sfittuate.

The concept behind this method is that spins belonging taglalyi
connected cluster fluctuate in a correlated fashion. Byctietgcor-
related spins, the algorithm can identify nodes belongira highly
connected area of the graph. This approach was successbpliyd

to a variety of clustering problems (Getz et al., 2000, 20R&ich-
mann et al., 2005; Spirin and Mirny, 2003), and extended ietG
et al., 2005) to deal with semi-supervised classificationeng the
classes of certain samples are know a priori. The Potts msdel
augmented by introducing an external field into the energthef
granular ferromagnet.

A graph theoretic approach to unsupervised data analysss wa
suggested by Harel and Koren in (Harel and Koren, 2001bfsgy T
compute the affinity matrix related to the dataset, and romniadize
it to form a Markov matrix. A random walk is then initiated &t af

work edges. Such methods can be divided into two categoriedh® datapoints, and the probabilities induced by it are ased set

unsupervised data-driven schemes in contrast to semnsspé
approaches that incorporate prior knowledge. (Rives aridsiia

of features defined on the dataset. A new graph is then defamtb
on the inner similarities of this new set of features. Thi& ggaph

2003) and (Wilkinson and Huberman, 2004) present data mrive IS then clustered by &lustering by Separation approach, where

approaches that perform hierarchical clustering of netejoutili-
zing different affinity measures and edge weights to idgmddes
and edges at the boundary of network clusters. Wilkinsoralet.
(Wilkinson and Huberman, 2004) followed the work by (Ginaard
Newman, 2002) (GN algorithm) to subdivide disease-spenific
works into meaningful gene communities. The GN algorithamtst
with a fully connected network, and successively removesesd
between compact network clusters. Another approach isiskec
by (Pereira-Leal et al., 2004), which uses the TribeMCL roéth
(Enright et al., 2002) to find functional modules in proteaiterac-
tion networks. They applied the concept of a ‘stochastic 'fkat
alternates between expansion and inflation phases, cahsirfigw
to dissipate within clusters, while eliminating it betweelnsters.
There is a body of research that deals with the delimitatiomet-
work clusters from a set of seed nodes that corresponds tiog-p
knowledge about a the clusters of interest. Bader and Hdgaee(f

a greedy algorithm iteratively removes edges until thetehssare
formed.

The work in (Weston et al., 2004) is of particular interest to
us, as it presents a protein ranking algorithm that utiliaesevi-
dence propagation approach similar to ours. The work eteptbe
entire network structure of affinities among proteins in quesce
database, by performing a diffusion operation on a precoethu
weighted network.

In this work, we follow a related approach for detecting net-
work clusters by taking a closer look at spectral graph theor
This approach was shown to provide an efficient and fundaatignt
sound framework for data analysis and statistical clustgi$hi and
Malik, 2000). In such schemes multidimensional data is yaeal
by forming a graph of interactions/distances between tha ele-
ments, such as nodes in a molecular interaction networkst@skt
can then be clustered by studying the spectral propertigeafraph
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Laplacian and computing the so-called diffusion distarmes the
data manifold (Coifman et al., 2005b).

We present a semi-supervised approach for delineatingctipes
of protein clusters given a few samples nodes (seed prteitisn
it. We call this approachlirected diffusion, as we direct our analy-
sis towards a particular cluster instead of analyzing theeedata
set. Our approach is based on propagating the diffusion fram
seeds, using a Markov matrix and identifying the targettelts
boundaries by the discontinuities in the diffusion valukest M
be a Markov matrix, thep;,, = (pn)" - M defines a Markov
random walk, while in this work we propagate the diffusiofues
¢n+1 = M - ¢, ande,, is not a probability.

The proposed scheme differs from the prior results cited/@bo
in several aspects. Compared to unsupervised approach&igtv
and Domany, 1996; Blatt et al., 1997; Bader, 2003), our aggro
utilizes prior knowledge and does not require the analybithe
entire dataset, which in the case of interaction networkightn
prove computationally prohibitive due to their size. Congohto

schemes that use Markov random walks, such as the work by Hare
and Koren in (Harel and Koren, 2001b,a), our approach pmpag b

tes diffusions that are shown to have particular analypcaperties
useful for clustering. In contrast, in (Harel and Koren, 20@),
the random walk is used to derive a set of coordinates andltike c
stering is conducted via a general purpose graph theomteEnse.

In (Weston et al., 2004) the authors propagate diffusiomslai to
us, but their scheme provides only ranking and not clusjetiast,
using a random sampling procedure, our approach naturatiglies
noisy seeds. This issue was not addressed in prior workssaviizhi
for processing experimental data that is prone to errors.

2 DIFFUSION BASED DATA ANALYSIS

Graph based diffusion (Coifman et al., 2005b) is an apprdach
analyzing the geometrical properties of data networksesgmted
as graphs. It is particularly appropriate for data sets \itpair-
wise similarity function between the data points. Its fogaint is
to agglomerate the local interactions of the differenttesgi(data
points) in order to obtain a global or semi-global embedding

Suppose we have a data st = {z1,...,zr} and a non-
negative and symmetric similarity measuréz;, z;). This results
in a symmetric graph, whose nodes are the data poinEswith the
symmetric affinity matrix? = {w(x;, z;)}. Forz; € E, we form
the L x L matrix M with entries

w(xs, ;)

el
2 w(@i, x;)

Asm(z;) > 0andy > m(z;, ;) = 1, the matrixM can be
viewed as the transition matrix of a random walk (Markov chai

m(m’h I]‘) =

on the data seE. The diffusion framework is based on the idea

thatthe behavior of this random walk provides some insight on the
structure of the data set. Although the construction of this Markov
chain might seem artificial, it can reveal useful informatabout
the organization of the data. Consider a random walker lirayen

the graph of the data, jumping from node to node at randomh Eac

time he intends to move, he chooses a destination at randoon-ac
ding tom(z;, z;). Therefore, frome;, he is more likely to jump to

z; if the affinity between these nodes is high, and more geryerall

he will follow paths along which nodes are highly similar ¢me
sense defined by). The walker will tend to be trapped in a certain

number of regions or wells for a long time, with some rare jsmp
between these wells. From this observation, it is naturalefine
acluster in the data seF to be a region where the random walker
tends to spend a lot of time. In contrastgions of transitions, or
bottlenecks, constitute the boundaries of these clusters.

In unsupervised schemes, the random walk is initiated ifall
the samples at once, and we can compare two peiaisdz in E,
by comparing the behaviors of two random walks starting ahd
z respectively. Lep, (x,y) denote the probability of being in at
time ¢ when starting atz, then the comparison of the distributions
pn(z,-) andp, (z, -) can be used for measuring a notion of distance
betweenr and z denoted as thdiffusion distance (Coifman et al.,
2005b,a)

DHe.) = ¥ gisoen) —pi) . @)

yeE

whered(y) is the degree of the node

In contrast, in this work, we compacéffusions rather than pro-
abilities. The pointsc and z in E' are compared by considering
the diffusionse,, (v, ) and¢,(y, z), wherey € S, S C E, is the
point where the diffusion is initiated. In a biological cert, E can

be the set of proteins represented by an interaction netawdkS
might be the cellcycle pathway. This allows us to focus owalysis

on S and avoid the computation of the eigenfunctions of the Mar-
kov matrix M in Eq. 1. These eigenfunctions are global and embed
the entire graph. Therefore, if one only wants to study thghie
borhoods of the se$, a large number of these eigenfunctions are
needed to achieve the desired resolution. In addition, tmepa-
tational complexity of computing them might prove prohilstfor
large networks.

In order to identify the se$ we utilize the analysis given in (Kel-
ler, Keller), where it was shown that, (y, -) is discontinuous across
the boundary of5, and this discontinuity is followed by a saddle-
like structure corresponding to the clustgr In the next section
we describe how to utilize these notions to derive an unsigest
clustering scheme applicable to proteins networks arglysi

3 EVIDENCE PROPAGATION VIA DIRECTED
DIFFUSION

Directed diffusion is a mean to identify the membersSofwhen
only a subset of theny, C S is known. We call these proteins
seeds. For instance, if the dataset is a collectionfoproteins, then
S can be a subset of proteins that participate in a commondiiolo
cal pathway (e.g. cell cycle). For that we start by propaggthe
diffusions initiated from sef,, using Algorithm 1.

Algorithm 1 Computing the probability,,
1. Let ¢o be the indicator vector that is zero outsifle and 1 on
So. nmax IS a predefined number of time steps.
2: for n = 110 nmas do

3 Computed, = (¢n_1)" M

4:  Define¢n by ¢n(x) = pu(z) if z ¢ So andgy,(z) = 1 if
z € So.

5: end for

6: Returng,, wheren = nmax.




Applying Algorithm 1 results in a vector of diffusions,, in
which high values correspond to nodes with high affinity te set
S. In order to cluster the elements 6f we utilize the property of
¢r, discussed in (Keller, Keller), where it was shown thatwill be
discontinuous across the boundary of theSetlenoteddS. Thus,
nodes{x;} € E that are outside of will have smaller diffusion
values¢,,, and we denote the value of, at the discontinuity point
T*. The setS can be then clustered by

zeS ifon(z)>T"
x ¢S otherwise.

Let N(¢n > T) = |¢n > T'| be the number of samples with diffu-
sion values larger thah, then in order to identify the discontinuity
T*, we utilize the observation tha¥ (¢,, > T') is a monotonically
decreasing function ¢f and is discontinuous (with respect’d at
T*. Thus, we aim to find the largest discontinuity N\(¢,, > T')
and the saddle point following it. Note that(¢,, > T') is a robust
measure as it is computed over the entirefsethis is summarized
in Algorithm 2.

Algorithm 2 Computing the threshold™
1: Apply Algorithm 1 and computé.,.
2: ComputeN (¢n >T) = | > T|for0 < T < 1.
3: Identify the largest discontinuity

ON(¢pn>T
Tmax = arg max ‘ %‘ .

4: Look for T*, the first saddle point o}‘w‘

5 such that
T* > Tmax-

3.1 Random sampling in diffusion space

In practice,S, might contain erroneous seefs such thatS, =
Sy U S, butSy ¢ SandS; € S. A straightforward implemen-
tation of Algorithm 1 can not distinguish between true anidea
seeds, as the diffusion values of the seeds are a-priory se0t
Thus, In order to analyze the seeds themselves, we intraaltene-

dom sampling scheme to account for the existence of erreneou

seeds. We randomly choose a subsefgfand propagate from it
using Algorithm 1. This is repeateld times and we denote the ran-
domly chosen subseff, and the corresponding diffusion vector
¢%. After K such iterations, we averadepy, } over k and denote
the resultp,, (x). For each iteratiork, we do not average over the

samplesS that were used as seeds. This corresponds to only con;,

sideringsecondary evidence for the seeds. Assumifft}| >> |Sy],
the affinity is likely to spread faster withifi; than withinS, and
on (St) > ¢n (Sy) .This approach is described in Algorithm 3.

4 RESULTS AND DISCUSSION

The effectiveness of the directed diffusion was experignveri-
fied by analyzing the cluster boundaries of the cell cycle0(10
proteins), apoptosis (80 proteins) and TGF-beta (69 pis}ei
pathways. These are known biological pathways that were ase
ground-truth.

Our analysis is based on a protein-protein interaction oetw
constructed using the Human Reference Protein Database@HR
(Peri et al., 2003). This network provides hand-curatedrattion

Algorithm 3 Random sampling
1: Given the set of seeds,, the random sampling ratioand the
number of random iterations’.
2: for k =1to K do
3:  Choose arandom s&f C S, made ofr - |S,| elements and
define the functioQ” (z) such that

Apply Algorithm 1 usingS(‘f as seeds and denote the result
o

end for

: Compute the weighted average

> () Q" (v)

k=1..K

>

1 zeS8t
0 otherwise

Q" (z)

»

o a

Pn (z) =

@)
Q* ()

k K

data for several thousand human proteins, and is based aifrdat
the scientific literature. Where possible, it provides exit data-
base references for the listed proteins; we discarded HR®ixe
without such references, as we were unable to uniquely ifgtlent
the corresponding proteins. The resulting human proteierac-
tion network consisted of 5537 nodes and is a binary netwara/
nodes are either connected or not. Within this network, watified
protein nodes that belong to the cell cycle, apoptosis aree ttiffe-
rent signaling pathways (Notch, TGF-beta and phosphatidsitol
signaling pathways). For that, we used the KEGG curatedyzsth
repository (Kanehisa et al., 2004) to obtain the correspangene
identifiers.

In terms of Section 3F is the entire set of 5537 proteins encoded
by the network. In each experiment we analyzed a single @athw
that acted as the sét In order to derive the set of seeds, we
randomly chose0% of the samples it and applied the iterative
random sampling described in Algorithm 3 using the randomsa
ling ratior = 50%. We used 150 random walk steps in Algorithm
1, and the entire experiment was repeated 200 times (i.ehesec
200 different sets,,).

For each protein we computed the diffusions according tp#fe
Algorithm 3 and ranked the proteins according to the dedicey
order of their average diffusions,, (z). Thus, proteins with high
&», () values are ranked low. This allows us to verify the validity o
Algorithm 1 as a similarity propagation measure, as low inagkre
expected to correspond to samples related to the seeds tmhya
of interest. For a successful diffusion propagation, weeekphe
proteins inS to have low rankings. Indeed, the rankings of the
apoptosis, cell cycle and TGF-beta pathways (shown in Higs.
3a, respectively), are all considerably lower than the ireggkof the
other pathways. In contrast, we applied the same proceduarean-
dom set of seeds, and the resulting rankings shown in Figaréa,
uniformly spread over the range of 1500-3500.

This exemplifies that proteins clusters with low ranking ao¢
formed by random seeds, and it is evident that the rankingg (a




Yosi Keller! and Stephane Lafon?

7000 - 1w 1
O Apoptosis
+ Cellcycle
6000 Notch 0.8
50000 Phosphatidylinositol« * « . -« ] w0’ G>.)
« Tgfbeta- ey - =
)] . *r N = =
g - . " @D 06
= A Do_
c =&
a 2 s [}
o . =z 5 0.4
N s S —~
3 ; =
o 10"
: OO 0.2
T
260. 360 400 o o1 o0z o3 04 0s 06 07 08 09 1 Oo 0.‘2 014 01'6_ 0:8 1
Seed ldx Levelset False Positives
@ (b) (c)

Fig. 1. Analysis results for the Apoptosis pathway that containp®@@eins. The diffusions were initiated using 20% (16 saspbf the proteins(a) The
ranking of the probabilitieg,, of five protein pathways high-to-low. The Apoptosis progefblack circles) show the lowest rankings and highest fitibes.
(b) We detect the largest discontinuity ¢, and the saddle point is detectedZat = 0.5 and overlayed on the ROC curve (n). This choice of7™*
corresponds to an accurate classification of the Apopt@dhsyay. In addition, the ROC curve has an area of 0.942.

diffusion values) of the random seeds are indistinguighfibimthe 5 CONCLUSIONS

rest of the network. _ This work discusses the application of directed diffusiothie ana-

Next, we tested the clustering component of our scheme shat ijysis of protein interaction data. We presented a task drayproach
described in Algorithm 2. For each pathway we computed the €0 1o protein clustering within large interactions networky, propa-
responding functio#%‘ and depict it in Figs. 1b-3b. For gating the diffusion locally using a given set of seed praeiThis

each of them, we look for the saddle pdifit, which follows the lar-  enables the detection of protein cluster boundaries, aidga ran-
gest maxima o* 8N(3;>T) ‘ Note that the left-most discontinuity dom sampling approach) overcomes the presence of correufsse

« . . We demonstrated the applicability of our approach by applyt
atT™ = 0 corresponds to disconnected nodes/proteins.

Inord he classificati RO to a protein interaction network. To conclude, we believa tlie

norderto asses the classification accuracy we corr.Iput. provided compelling evidence that directed diffusion iseéficient

curve (Fawcett, Fawcett) for each pathway, shown in Figs3clc evidence propagation and

by choosing a set of thresholdg;}, uniformly spread over the

interval [0..1] . For each threshold we identify the nodes for which

On > _T,L- as belonging to the pathway of interest, using the K_EGGa ACKNOWLEDGMENTS
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Fig. 2. Analysis results for the Cell Cycle pathway that contain® pfoteins. The diffusions were initiated using 20% (20 sas)pof the proteins(a)
Ranking of the probabilities,, of five protein pathways high-to-low. The Apoptosis prosefblack circles) show the lowest rankings and highest fitibies.
(b) We detect the largest discontinuity ¢, and the saddle point is detectedZ&t = 0.525 and overlayed on the ROC curve (n). This choice ofT™*
corresponds to an accurate classification of the Apoptagisaay. In addition, the ROC curve has an area of 0.937.
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Fig. 3. Analysis results for the TGF-beta pathway that containsréems. The diffusions were initiated using 20% (13 sars)té the proteins(a) Ranking
of the probabilitiesp,, of five protein pathways high-to-low. The Apoptosis progefhlack circles) show the lowest rankings and highest fritibes. (b) We
detect the largest discontinuity ifi, and the saddle point is detectedZ&t = 0.46 and overlayed on the ROC curve(a). This choice of7™* corresponds
to an accurate classification of the Apoptosis pathway. tfitae, the ROC curve has an area of 0.883.
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Fig. 4. Analysis results for the a randomly chosen set of seeds io@mga84 proteins. The diffusions were initiated using 2023 §amples) of the proteins.
(a) Ranking of the probabilitie®,, of five protein pathways high-to-low. The random seeds areasprandomly and not characterized by low rankings as
the actual pathwaygb) The saddle point following largest discontinuity is ovggd in (c), but does not correspond to an accurate classificationAs
expected, the ROC curve corresponds to the output of a ractimsifier and has an area of 0.55




Yosi Keller! and Stephane Lafon?

[
[
-
[
o
[

== real seeds =real seeds ==real seeds
===random seeds ===random seeds ===random seeds

i
i

i

[ Q Q
> 0.9 I ' 0.9
209 < g
o o o
Q 0 0.8 0 0.8
Q0.8 o o
s So7 So7
© 0.7 - o
5 506 506
c c c
£06 Los | Los I
0.5 0.4 0.4
04 : : : : 03 03 : : : :
0 20 40 60 80 100 20 40 60 80 100 40 60 80 100
Percentage of seeds Percentage of seeds Percentage of seeds

@ (b) ©

Fig. 5. ROC results for(a) apoptosis(b) cell cycle and(c) TGF-beta. In all three cases, the average ROC curve of teetdi diffusion classifier, is well
above the average ROC curve computed using random seedavédiagie ROC area achieved by the directed diffusion is iottier of 90%.
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