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Abstract

Data fusion and the analysis of high-dimensional multisensor data, are fundamental tasks

in many research diciplines. In this work we propose a unified embedding scheme for multi

sensory data, which is based on the recently introduced diffusion framework. Our scheme is

purely data-driven and assumes no a-priory knowledge of the underlying statistical or deter-

ministic models of the different data sources. Our approach is based on embedding separately

each of the input channels and combining the resulting diffusion coordinates. In particular,

as different sensors samples similar phenomena with different sampling densities, we apply

the density invariant Laplace-Beltrami embedding. This is a fundamental issue in multisensor

acquisition and processing, overlooked in prior approaches. In order to verify the efficiency

of our approach, we apply it to multisensory statistical learning and clustering applications,

such as spoken-digit recognition and multi-cue image segmentation. For both applications we

experimentally show that using the unified multisensor embedding, allow better performance

than the one achieved by any single sensor.

1 Introduction

The first task performed by any data processing system is data acquisition or sampling, in which

measurements are collected through a number of sensors. In this work, we refer to asensoras any

information stream produced by an acquisition device or, more generally, any descriptor used to
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represent some form of data. Single-sensor systems, which process data coming from a unique in-

formation channel, have been successfully used in various context ranging from object recognition

(e.g. Sonar) to the medical area (e.g. blood pressure sensors). However, it was early recognized

that these systems typically suffer from incompleteness due to the fact that a single sensor is almost

never sufficient to capture all of the relevant information related to a phenomenon. For instance,

in medical imaging different sensors, such as X-Ray, CT, MRI and others, capture different phys-

ical properties. This issue was further studied in the context of remote-sensing (SAR, FLIR, IR

and optical sensors). In particular, different sensors are subject to different limitations restricting

their usability. For example, in remote sensing, optical sensors have significantly better resolution

and lower SNR than Radar based SAR sensors, yet SAR sensors are immune to atmospheric con-

ditions and can be used in any weather conditions. The multisensor approach allows to resolve

ambiguities and reduce uncertainties that may arise in some situations, such as object recognition.

For example, consider the work by Kidron et. al. [1] who detected image pixels within a video

sequence that were related to the creation of sound, given the visual and audio data. Using only the

visual data was insufficient as some of the motions in a scene were unrelated to the sound creation.

Note also that many living species rely heavily on a multisensor approach (most humans can

see, hear, taste...). In particular, the fusion of audio-visual cues was shown to enhance perception

[2, 3]. Last, it is often more cost-efficient to combine a variety of cheap sensors rather than to deal

with an expensive single sensor.

The use of high-dimensional multisensor signals requires several tasks. First, the signals have

to be embedded in a low-dimensional space that recovers the underlying manifold. When the dif-

ferent data sources are not synchronized and have to be aligned, this manifold can also be used

for alignment [4]. In particular, as different sensors might sample the same phenomenon with dif-

ferent densities, the alignment requires density-invariant embeddings. In contrast, most eigenmap

representations [5, 6, 7, 8] depend on the density of the points on the underlying manifold, and

might be inapplicable for multisensor data integration.

A second task is the alignment and synchronization of different multisensor sources. This was

extensively studied in the remote sensing and medical imaging communities. In such applications,

2



due to the different physical characteristics of various imaging sensors, the relationship between

the intensities of matching pixels is often complex and unknown a priori. The common approach to

multisensor image alignment is to compute canonical representations of image features, which are

invariant to the dissimilarity between the different sensors and capture the essence of the image.

Theses representations include geometrical primitives such as feature points, contours and corners

[9, 10, 11].

Graph theoretical schemes were also applied to this problem. A general purpose approach

to high-dimensional data embedding and alignment was presented by Ham et. al [12]. Given

a set of corresponding points in the different input channels, a constrained formulation of the

graph Laplacian embedding is derived. First, they add a term fixing the embedding coordinates of

corresponding points to predefined values. Both sets are then embedded separately, where certain

samples in each set are mapped to the same embedding coordinates. Second, they describe a dual

embedding scheme, where the constrained embeddings of both sets are computed simultaneously,

and the embeddings of certain points in both datasets are constrained to be identical.

Kidron et.al [1] applied canonical correlation analysis to multisensor event detection. Their

approach uses a parametric form of the covariance matrices to compute maximally correlated one-

dimensional embeddings of the audio and video input signals. A sparsity constraint was applied to

regularize the otherwise underconstrained embedding problem, where the constraint corresponds

to the sparsity of the detected events.

There is also a large body of literature in engineering related to multisensor integration. These

approaches can be classified into three categories [13]. First, some techniques are based on physical

models of the data, as in the case of Kalman filtering. Another category corresponds to methods

employing a parametric model of the data or the sensors. For instance this is the case of Bayesian

inference, of the Dempster-Shafer method or Neural Networks. Such techniques often exhibit

high sensitivity to the accuracy of these models [14]. The third group consists of cognitive-based

methods, which aim at mimicking human inference. One of the main tools is fuzzy logic. But

there again, one needs to specify subjective membership functions. It therefore appears that many

of these techniques rely on prior information.
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A problem related to data fusion is the fusion of multiple partitionings [15]. The focal point

there is to fuse together differentpartitionings, rather than different datasourcesas in the general

data fusing problem. This approach boils down to embedding the data in a one-dimensional space

(the partitioning index). As this is not a metric space, a distance metric can not be defined and the

work in [15] uses the co-association matrix as a binary similarity measure.

A related problem was recently studied within the computer vision community in the context

of multi-cue image segmentation. These works are of particular interest, as (similar to our ap-

proach) they are based on spectral embeddings [16]. In [17] Yu presents a segmentation scheme

that integrates edges detected at multiple scales. These were shown to provide complementary seg-

mentation cues. Given the affinity matrices computed using the edges at each scale, a simultaneous

segmentation is computed using a novel criterion called average cuts. Other works [18, 19], deal

with the fusion of a single multiscale cue in images and can be applied directly to multisensor data

In this work we derive a unified low-dimensional representation, given a set of different input

channels related to a particular phenomenon. We assume that the input signals are aligned and

derive a unified representation of them, useful for statistical learning tasks and data partitioning.

We compute a unified low-dimensional representation and show that it combines the information

encoded in the different signals, thus, improving the parametrization and analysis of complex

phenomena. We start by computing low-dimensional embeddings of each of the input signals

using the diffusion framework [20, 21] and for that utilize the Laplace-Beltrami density invariant

scheme [22]. The proposed scheme was first applied to statistical learning by recognizing spoken

digits using audio and visual cues. We compare the results to our previous work in visual-only

lip-reading [4], and show improved accuracy. Then, we turn our attention to multi-cue image

segmentation, where the multisensor data is related to different image cues: RGB, contours and

texture. Compared to prior works, the proposed approach does not require any deterministic model

of the data or its statistics (covariance matrices etc.), and the recovered structures are purely data-

driven. In particular, we resolve the density-dependence issue of the embeddings that was largely

overlooked in prior works.

This paper is organized as follows: We describe the foundations of the diffusion based embed-
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dings and introduce the unified, fused multisensor embedding in Section 2. Our scheme is then

experimentally verified in Section 3, while concluding remarks and future extensions are discussed

in Section 4.

2 Multi-sensor integration

In this section we present the proposed data fusion scheme. We start by describing low-dimensional

spectral embeddings and then extend them to derive the density-invariant Laplace-Beltrami embed-

ding. A more detailed description can be found in [4], and the mathematical foundations are given

in [22]. Given a setΩ = {x1, ..., xn} of data points, we start by constructing a weighted sym-

metric graph where each data pointxi corresponds to a node. Two nodesxi andxj are connected

by an edge with weightw(xi, xj) = w(xj, xi) reflecting the degree of similarity (or affinity) be-

tween these two points. The weight functionw(·, ·) describes the first-order interaction between

the data points and its choice is application-driven. For instance, in applications where a dis-

tanced(·, ·) already exists on the data, it is custom to weight the edge betweenxi and xj by

w(xi, xj) = exp(−d(xi, xj)
2/ε), whereε > 0 is a scale parameter, while other weight functions

can also be used.

Following a classical construction in spectral graph theory [23] and manifold learning [24],

namely the normalized graph Laplacian, we now create a random walk on the data setΩ by forming

the kernel

p1(xi, xj) =
w(xi, xj)

d(xi)
,

whered(xi) =
∑

xk∈Ω w(xi, xk) is the degree of nodexi. As we have thatp1(xi, xj) ≥ 0 and
∑

j∈Ω p1(xi, xj) = 1, the quantityp1(xi, xj) can be interpreted as the probability of a random

walker to jump fromxi toxj in a single time step [23, 25]. LetP be then×n matrix of transition of

this Markov chain, then taking powers of this matrix amounts to running the chain forward in time.

Let pt(·, ·) be the kernel corresponding to thetth power of the matrixP . Then,pt(·, ·) describes

the probabilities of transition int time steps. The essential point of the diffusion framework is the

idea that running the chain forward will revealintrinsic geometric structuresin the data set, and
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taking powers of the matrixP is equivalent to integrating the local geometry of the data at different

scales.

An equivalent way to look at powers ofP is to make use of its eigenvectors and eigenvalues:

it can be showed that there exists a sequence1 = λ0 ≥ |λ1| ≥ |λ2| ≥ ... of eigenvalues and a

collection{ψ0, ψ1, ψ2, ...} of (right) eigenvectors forP :

Pψl = λlψl .

These eigenvalues and eigenvectors provide embedding coordinates for the setΩ. The data points

can be mapped into a Euclidean space via the embedding

Ψt : x 7−→ 〈
λt

1ψ1(x), . . . , λt
m(t)ψm(t)(x)

〉
, (2.1)

wheret ≥ 0. Discussions regarding the numberm(t) of diffusion coordinates to employ and

concerning the connection with the so-called diffusion distance are provided in [22, 26, 27].

Next, we address the issue of obtaining a density-invariant embedding. The focal point is

to compute an embedding that reflects only the geometry of the data and is insensitive to the

sampling density of the points. Classical eigenmap methods [5, 6, 7, 28], provide an embedding

that combines the information of both the density and geometry, and the embedding coordinates

heavily depend on the density of the data points. In order to remove the influence of the distribution

of the data points, we renormalize the Gaussian edge weightswε(·, ·) with an estimate of the

density. This is summarized in Algorithm 1 that was first introduced and analyzed in [22].

Next we describe the data fusion scheme, where, for the sake of clarity, we direct our discussion

to the case of two input channels, while it can be easily extended to an arbitrary number of them.

Suppose one has two sets of measurements related to a particular phenomenonΩ = {x1, ..., xn}.
Denote these sets of measurementsΩ1 = {y1

1, ..., y
1
n} andΩ2 = {y2

1, ..., y
2
n}, respectively, where

y1
i andy2

i are high-dimensional measurements. We aim to fuseΩ1 andΩ2 by computing a unified

low-dimensional representation̂Ω = {z1, ..., zn}. Note that we assume thatΩ1andΩ2 are aligned,

meaning thaty1
i andy2

i relate to the same instancexi ∈ Ω. When this assumption is invalid, one

has to apply a multi-sensor alignment scheme [12] prior to applying the fusion procedure.

We start by computing the Laplace-Beltrami embeddings ofΩ1 andΩ2 denotedΦm1
1 = {φ1

1, ..., φ
1
n)}

andΦm2
2 = {φ2

1, ..., φ
2
n}, respectively, wheremi is the dimensionality of each embedding. Thus,φ1

i
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Algorithm 1 Approximation of the Laplace-Beltrami diffusion

1: Start with a rotation-invariant kernelwε(xi, xj) = h
(
‖xi−xj‖2

ε

)
.

2: Let

qε(xi) ,
∑
xj∈Ω

wε(xi, xj) ,

and form the new kernel

w̃ε(xi, xj) =
wε(xi, xj)

qε(xi)qε(xj)
. (2.2)

3: Apply the normalized graph Laplacian construction to this kernel,i.e.,set

dε(x) =
∑
z∈Ω

w̃ε(xi, xj) ,

and define the anisotropic transition kernel

pε(xi, xj) =
w̃ε(xi, xj)

dε(xi)
.

andφ2
i are of vectors dimensionsm1 andm2, respectively. In order to combine these embeddings

into a unified representation̂Ω, we formΩ̂ = {z1, ..., zn} where

zi = {φ1
i , φ

2
i }, (2.3)

andzi is of dimensionm + m2. In general, givenK input sources we have

zi = {φ1
i , . . . , φ

K
i }. (2.4)

This boils down to combining the embedding coordinates corresponding to each samplexi over

the different input channels{Ωi}.
In essence, our scheme is the embedding analogue of boosting [29], where instead of adaptively

integrating the output of several classifiers, we combine different embeddings. In particular, one

can consider an equivalent to theAdaBoostscheme [29] for semi-supervised classification, where

Eq. 2.4 can be replaced with

ẑi = {a1φ1
i , . . . , a

KφK
i }, (2.5)
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{
a1, . . . , aK

}
being the weights per embedding. In that sense, the embeddingszi can be considered

as different features, and one can apply a standard implementation ofAdaBoostto Eq. 2.4. Yet,

in this work, the focal point is to derive general-purpose coordinates regardless of a particular

application. The scheme is summarized in Algorithm 2.

Algorithm 2 Multisensor embedding

1: Starting withK input sourcesΩk = {yk
1 , ..., y

k
n}, k = 1...K.

2: Compute the Laplace-Beltrami embeddings of{Ωk}, denotedΦmk
k , wheremk is the dimen-

sionality of the embedding of thek’th input channel.

3: Compute the unified coordinates setΩ̂ = {z1, ..., zn} by appending the embeddings of each

input sensor

zi = {φ1
i , . . . , φ

K
i }, i = 1...n, k = 1...K.

3 Experimental results

The proposed scheme was experimentally verified by applying it to two tasks. First, we extend

our former results in visual-only lip-reading [4] to audio-visual data. The audio-visual inputs

are integrated using the multisensor fusion scheme given in Section 2 and used for spoken-digit

recognition. We show that the fused multi-sensor representation provides better recognition rates.

Second, we integrate several image cues (texture, RGB values, contours etc.) and show that using

them in conjugation improves the segmentation results.

3.1 Spoken-digit recognition

We start by providing a short description of the experimental setup. We follow the statistical learn-

ing scheme used in [4], where the classifier was constructed in two steps. First we parameterized

the embedding manifold using a large number of unlabeled samples. The embedding is then ex-

tended, using the Geometric Harmonics [4, 30], to a small set of labeled examples to create a set
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of signaturesin the embedding coordinates. Then, given a test sample, we embed it by extending

the manifold embedding, and find the nearest signature in the embedding space.

To this end, we recorded several grayscale movies depicting the lips of a subject reading a text

in English and retained both the video sequence and the audio track. Each video frame was cropped

into a rectangular of size140× 110 around the lips and was viewed as a point inR140×110. As far

as the audio data was concerned, the sound signal was broken up into overlapping time-windows

centered at the beginning of each video frame.

The video was sampled at 25 frames per second, so we divided the audio into overlapping

windows of a duration of 8ms. The overlap was of 4ms, thus, each video frame corresponded to

a particular (unique) audio window. In order to reduce the influence of this splitting, each audio

window was multiplied by a bell-shaped function, and we then computed the DCT of the result.

Last, we considered the logarithm of the magnitude of this function as being the audio features.

In terms of Section 2 and Algorithm 2, the setΩ1 is the audio samples, whileΩ2 is the set of

video frames. Note that in this applicationsΩ1 andΩ2 are naturally aligned and contain the same

number of points.

The first data set (audio and visual) consisted of 6000 video frames (and as many audio win-

dows), corresponding to the speaker reading a press article. We will refer to this data as “text data”.

Next, we asked the subject to repeat each digit “zero”, “one”, ... , “nine” 40 times. This was used

to construct a small vocabulary of words later employed for training and testing a simple classi-

fier. Each spoken digit corresponded to a sequence of frames in the video data, and a sequence

of time-windows for the audio data. We will refer to this data as “digit data”. We proceeded as

follows for each channel: first, the data points corresponding to the text data were used to learn the

geometry of speech data as we formed a graph with Gaussian weightsexp(
‖xi−xj‖2

ε
) on the edges,

for an appropriately chosen scaleε > 0. We then renormalized the Gaussian weights using the

Laplace-Beltrami normalization described in Algorithm 1. In order to obtain a low-dimensional

parametrization we computed the diffusion coordinates on this new graph. Therefore we ended up

with two embeddings,Φm1
1 andΦm2

1 , corresponding to the audio and visual data.

The next step involved the digits data. We computed the diffusion coordinates for all of the
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samples in the digits data, by applying the Geometric Harmonics scheme [4, 30] and extending the

diffusion coordinates computed on the text data.

In order to train a classifier for digit identification, we randomly selected 20 sequences of each

digit, the remaining sequences being used as a test set. Each digit word can now be viewed as a
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Figure 1: The visual data in the first 3 diffusion coordinates. We also represented a trajectory

corresponding to an instance of the word “one”.

set of points in the diffusion space, and the word recognition problem now amounts to identifying

the most similar set in the diffusion space (see Fig. 1). We can now build a classifier based on

comparing a new set of points to a collection of labeled sets in the training set. In order to compare

sets in the diffusion space we used the symmetric Hausdorff distance between two setsΓ1 andΓ2,

defined as

dH(Γ1, Γ2) = max

{
max
x2∈Γ2

min
x1∈Γ1

{‖x1 − x2‖}, max
x1∈Γ1

min
x2∈Γ2

{‖x1 − x2‖}
}

. (3.1)

As the Hausdorff distance overlooks the difference in dynamics betweenΓ1 andΓ2, it is robust to

sampling rate changes. This is essential in speech recognition, where even the same speaker, might

pronounce the same words at different speeds.

The recognition rates of this classifier for the visual-only data were already reported in [4],

where 15 eigenvectors were used for embedding. Hence, we re-ran this experiment with 10 eigen-
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vectors, and the results are shown in Table 1. Similarly, the classification rates corresponding to

the audio-only data, and 10 eigenvectors are presented in Table 2.

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.90 0 0 0.01 0 0 0.08 0 0 0

one 0 0.99 0 0 0 0 0 0 0.01 0

two 0.04 0.01 0.90 0.03 0.02 0 0 0 0 0

three 0 0 0.01 0.94 0 0 0.01 0.02 0.01 0

four 0.01 0 0 0.05 0.93 0 0 0 0 0

five 0 0 0 0 0 0.81 0.01 0.16 0 0.01

six 0.07 0 0 0.01 0 0 0.87 0.03 0.01 0.01

seven 0.03 0 0 0.04 0 0.07 0.05 0.74 0.04 0.02

eight 0 0 0 0 0.02 0.03 0 0.03 0.75 0.16

nine 0 0 0 0 0 0 0 0.04 0.14 0.82

Table 1: Digits recognition rates for a classifier based on the visual-only data. The results are

averaged over 50 random trials and the data was embedded onto a 10 dimensional diffusion space.

Each row depicts the classification rate of a given digit over then the 10 possible classes (digits).

In order to illustrate the advantage of combining both data channels using the proposed multi-

sensor integration scheme, we present the results obtained using Algorithm 2 (see Table 3). More

precisely, we appended the first 5 eigenvectors of the audio data with the top 5 eigenvectors of

the video data, and then constructed a new 10 dimensional representation of the data. Finally, as

before, a classifier was trained and tested on the unified embedding. A summary of the recognition

rates of the different schemes and features is reported in Table 4.

Clearly, the proposed multisensor approach outperformed the single-channel classifiers, exem-

plifying the achieved synergy. More precisely, it seems to get the best of the predictive powers of

the audio and visual classifiers. In fact, this is a straight consequence of the concatenation of the

audio and visual diffusion features. For instance, the digit “one” is successfully classified using the

visual channel. As suggested in [4], typical frame sequences corresponding to the word “one” con-
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“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.75 0 0.04 0 0.01 0.01 0.06 0.08 0.05 0

one 0 0.94 0 0 0 0.03 0 0 0 0.02

two 0.02 0 0.87 0.04 0.01 0 0.01 0 0.03 0.02

three 0.01 0 0.03 0.90 0.02 0.01 0 0 0.01 0.01

four 0.01 0 0 0.02 0.96 0 0 0 0 0.01

five 0.01 0.01 0 0.06 0 0.86 0 0.01 0.01 0.03

six 0 0 0 0 0.01 0 0.93 0.05 0 0

seven 0.05 0 0 0 0 0 0.14 0.81 0.01 0

eight 0.02 0 0.04 0.02 0 0.02 0 0.07 0.80 0.03

nine 0 0.01 0 0.01 0.01 0.04 0 0 0.01 0.92

Table 2: Digits recognition rates for a classifier based on the audio-only data. The results are

averaged over 50 random trials and the data was embedded onto a 10 dimensional diffusion space.

Each row depicts the classification rate of a given digit over then the 10 possible classes (digits).

tain pictures with an open mouth and no visible teeth. This type of frame almost never appears in

the other digit sequences. As a consequence, trajectories for the word “one” will be well separated

from other digit trajectories in the visual diffusion space. In contrasts, for the audio-only features,

the separation is slightly less evident, and there is some confusion with “five” and “nine”. When

appending cues, the separation remains high. Notice also that these accurate results were obtained

despite the fact that we used only 5 eigenvectors from each channel in the combined scheme, and

not 10 as in the single channel results (Tables 1 and 2).

3.2 Image segmentation

The sensor fusion scheme was also applied to multi-cue image segmentation. As features we used

combinations of Interleaving Contours (IC) [31], theL2 metric between RGB values and Gabor

filters based texture descriptors [32]. The Gabor filters used 3 scales and 8 orientations. For each

12



“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

zero 0.90 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.00 0.00

one 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

two 0.00 0.00 0.96 0.01 0.02 0.00 0.00 0.00 0.00 0.00

three 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01

four 0.00 0.00 0.00 0.04 0.96 0.00 0.00 0.00 0.00 0.00

five 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.02 0.01

six 0.06 0.00 0.00 0.00 0.00 0.00 0.90 0.04 0.00 0.00

seven 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.93 0.00 0.00

eight 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.95 0.03

nine 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.96

Table 3: Classification results for the scheme combining both channels, over 50 random trials. The

combined graph was built from a feature representation of the data based on appending the first 5

eigenvectors of the audio channel with the first 5 eigenvectors of the video stream.

pixel, the metrics were computed in an area of5 × 5 around it. Such that given a featuref(i, j)

computed over the imageI, the distance between the pixelsI (i, j) andI (i1, j1) with respect to

the feature is given by

D (I (i, j) , I (i1, j1)) =




‖f(i, j)− f(i1, j1)‖L2

√
(i− i1)2 + (j − j1)2 ≤ 2

∞ otherwise
. (3.2)

Equation 3.2 is used to sparsify the affinity matrix ofI, otherwise, its eigenvectors computation

become computationally exhaustive for common image sizes. Applying Eq. 3.2 might create

spurious additional parametrizations related to the spatial coordinates. For instance, consider the

vertical and horizontal lines in all of the segmentations in Fig. 2. We refrained from using the

Nyström Method [33], that would have resolved this issue, in order to simplify the testing proce-

dure and as this phenomenon is well understood.

For every input image, we computed several embeddings and the integrated representation was

computed by the procedure described in Section 2. We emphasize, that for each image, the same
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Channel type “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

Audio 0.75 0.94 0.87 0.90 0.96 0.86 0.93 0.81 0.80 0.92

Visual 0.90 0.99 0.90 0.94 0.93 0.81 0.87 0.74 0.75 0.82

Combined 0.90 0.99 0.96 0.99 0.96 0.97 0.90 0.93 0.95 0.96

Table 4: A summary of the classification accuracy of the spoken digits dataset, using different cues

and embedding schemes. The audio-visual data combined using the proposed scheme outperforms

the single-channel classifiers.

embedding vectors were used both for the single and multi-cue segmentations. In all of the simula-

tions we used 5 eigenvectors from each feature. For all images we present the segmentation results

of applying k-means clustering to each of the original embeddings and the fused coordinates. This

follows the Modified-NCut (MNCut) image segmentation scheme [34]. The scheme was imple-

mented in Matlab and used the built-in kmeans and SVD implementations. Note that the regular

Graph-Laplacian was used for the segmentation and not the density-invariant Laplace-Beltrami.
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Figure 2: Applying the proposed scheme to theTiger image. (a) Segmentation computed using

the Interleaving contours edge based features. (b) Segmentation results based onL2 differences in

RGB values. (c) Using the fused coordinates we achieve a visually better pleasing result.

Figure 2 depicts the segmentation results of theTiger image taken from the Berkeley segmen-

tation database. The images were segmented using the IC and RGB features and the results are

shown Figs. 2a and 2b, respectively. The segmentation in Fig. 2c exemplifies that using the fused

coordinates provided better results than using just one of the cues (IC and RGB).
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Figure 3: Applying the proposed scheme to theLizard image. (a) Segmentation achieved using the

texture features. Note the over segmentation in the are behind the Lizard’s head. (b) Segmentation

results based onL2 differences in RGB values. Note the over-segmentation above the Lizard’s leg.

(c) Using the fused coordinates we achieve a visually better pleasing result.

Different features were used in Fig. 3. The IC feature is inappropriate for analyzing highly-

textured images, as it results in over-segmentation. Thus, we used the RGB and texture features.

The texture based segmentation (Fig. 3a) results in over-segmentation of the lizard’s body, while

overlooking the cut between the front and background rocks on the left side of the image. Similarly,

using the RGB descriptor also results in over-segmentation. In contrast, the combined segmenta-

tion is better eye pleasing.

Finally, we applied the fusion scheme to multi-scale image segmentation. The different image

scales (shown in Figs. 4a-4c) were generated by a Gaussian kernel, the IC feature was computed in

each scale, and the multi-scale embeddings were fused using the proposed scheme. This resulted in

a segmentation that combined the salient cluster boundaries in the image over the different scales,

allowing to overlook some of the spurious single-scale segmentations, such as the left eye in Fig. 4a

and the throat area in 4b. In [17] a multiscale segmentation was computed via the computation of

an “average cut”. There, the single-scale Markov matrices were fused, rather than the embedding

vectors. In our scheme, there is no difference between a multiscale fusion and the fusion of any

combination of the other cues.

To conclude, by fusing the different image features, we were able to achieve better segmenta-

tion results. In essence, this approach resembles biological vision systems by combining different

cues and emphasizing salient multi-features edges. The scheme is flexible and once the embed-
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(g) Fused coordinates re-

sults

Figure 4: Applying the multisensor embedding to multiscale image segmentation. The Interleaving

contours edge based feature was applied to each of the image in the first row ((a)-(c)). The second

row depicts the corresponding segmentation results. (g) show the improved segmentation achieved

using the fused coordinates.

dings of each feature are computed, one can combine the embeddings in any possible way without

having to recompute them.

4 Conclusions and future work

In this work we presented a unified multisensor data embedding scheme, based on the diffusion

framework. The fusion was achieved by combining the embeddings of different input channels. We

applied the scheme to audio-visual lip reading and image segmentation that are typical examples

of multisensor pattern recognition and classification. In both cases, the results achieved by using

fused coordinates prevailed over those of the single sensor.

We embedded each data source separately and then appended the embeddings to produce the

fused representation. Although this approach is straightforward and allows to combine different

channels easily, it is possible that different channels are correlated. Then, one can find a lower
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dimensional representation by considering the unified coordinates as the features of a signal and

re-embedding them to further reduce the dimensionality.

The image segmentation results, suggest that in certain applications, one can utilize a variety of

features in different resolution scales. Thus, due to the large number of possible input channels, it

might be beneficial to compute adaptive weights that maximize a certain criterion. For instance, in

semi-supervised classification problems, one can train the weights of the combined representation

for optimal classification over a training set by using theAdaBoostalgorithm.
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