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Abstract. A local partitioning algorithm finds a set with small conduc-
tance near a specified seed vertex. In this paper, we present a generaliza-
tion of a local partitioning algorithm for undirected graphs to strongly
connected directed graphs. In particular, we prove that by computing a
personalized PageRank vector in a directed graph, starting from a single
seed vertex within a set S that has conductance at most α, and by per-
forming a sweep over that vector, we can obtain a set of vertices S′ with
conductance ΦM (S′) = O(

√
α log |S|). Here, the conductance function

ΦM is defined in terms of the stationary distribution of a random walk
in the directed graph. In addition, we describe how this algorithm may
be applied to the PageRank Markov chain of an arbitrary directed graph,
which provides a way to partition directed graphs that are not strongly
connected.

1 Introduction

In directed networks like the world wide web, it is critical to develop algorithms
that utilize the additional information conveyed by the direction of the links. Algo-
rithms for web crawling, web mining, and search ranking, all depend heavily on the
directedness of the graph. For the problem of graph partitioning, it is extremely
challenging to develop algorithms that effectively utilize the directed links.

Spectral algorithms for graph partitioning have natural obstacles for gener-
alizations to directed graphs. Nonsymmetric matrices do not have a spectral
decomposition, meaning there does not necessarily exist an orthonormal basis of
eigenvectors. The stationary distribution for random walks on directed graphs
is no longer determined by the degree sequences. In the earlier work of Fill [7]
and Mihail [12], several generalizations for directed graphs were examined for
regular graphs. Lovász and Simonovits [11] established a bound for the mixing
rate of an asymmetric ergodic Markov chain in terms of its conductance. When
applied to the Markov chain of a random walk in a strongly connected directed
graph, their results can be used to identify a set of states of the Markov chain
with small conductance. Algorithms for finding sparse cuts, based on linear and
semidefinite programming and metric embeddings, have also been generalized to
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directed graphs [3,6]. A Cheeger inequality for directed graphs which relies on
the eigenvalues of a normalized Laplacian for directed graphs can also be used
to find cuts of small conductance [5].

This paper is concerned with a different type of partitioning algorithm, called
a local partitioning algorithm. A local partitioning algorithm finds a set with
small conductance near a specified seed vertex, and can produce such a cut by
examining only a small portion of the input graph. In a recent paper, the authors
introduced a local partitioning algorithm, for undirected graphs, that finds a cut
with small conductance by performing a sweep over a personalized PageRank
vector. Personalized PageRank traditionally has been applied and studied in
directed web graphs, so it is natural to ask whether this local partitioning algo-
rithm can be generalized to find sets with small conductance in a directed graph
by sweeping over a personalized PageRank vector computed in a directed graph.

In this paper, we generalize the basic local partitioning results from [1] to
strongly connected directed graphs. We prove that by computing a personal-
ized PageRank vector in a directed graph, and sorting the vertices of the graph
according to their probability in this vector divided by their probability in the
stationary distribution, we can identify a set with small conductance, where the
notion of conductance must be generalized appropriately. Directed graphs that
arise in practice are typically not strongly connected, and this generalized local
partitioning algorithm cannot be applied directly to such a graph. We address
this problem by describing how our algorithm may be applied to the PageRank
Markov chain of a directed graph, which is ergodic even when the underlying
graph is not strongly connected. When applied to the PageRank Markov chain,
the generalized local partitioning algorithm has a natural interpretation: we com-
pute a personalized PageRank vector with a single starting vertex, and a global
PageRank vector with a uniform starting vector, and sort the vertices of the
graph according to the ratio of their entries in the personalized PageRank vec-
tor and global PageRank vector. We prove that by sorting the vertices of the
graph according to this ratio, our algorithm finds a set with small conductance
in the PageRank Markov chain. We also show that the required computation
can be carried out efficiently.

The generalized local partitioning algorithm has advantages and disadvan-
tages when compared to the undirected algorithm. One advantage is that our
algorithm follows outlinks exclusively, and does not travel backwards over in-
links. This ensures that all the vertices in the resulting cut are reachable from
the starting vertex, and is particularly useful in settings where outlinks are more
easily accessible than inlinks. One disadvantage is that the appropriate general-
ization of conductance to directed graphs requires reweighting the edges of the
graph according to the amount of probability moving over them in the station-
ary distribution π of a random walk, which is more complicated in a directed
graph than in the undirected case. The generalized local partitioning algorithm
is guaranteed to find a cut for which the total weight of outlinks crossing the cut
is small, but this weight depends on π, and the cut may have a large number of
outlinks with small weight.
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Here is an outline of the paper. In the next section, we define the general-
izations of the key ingredients of the local partitioning algorithm from [1] to
strongly connected directed graphs, including personalized PageRank, conduc-
tance, sweeps, and the Lováasz-Simonovits potential function. In the main sec-
tion, we prove a generalization of our basic local partitioning results to strongly
connected directed graphs. We prove that that a sweep over a personalized
PageRank vector in the directed graph produces a set with small conductance.
In Section 6, we describe how to apply our algorithm to the PageRank matrix of
an arbitrary directed graph, which is always strongly connected. We will show
that our local algorithm can find sets with small conductance by computing per-
sonalized PageRank vectors in the original directed graph, provided we compute
two global PageRank vectors offline.

2 Preliminaries

Let G be a directed graph, consisting of a vertex set V and a set of directed
edges E, each of which is an ordered pair (u, v) of vertices from V . Let n be the
number of vertices, and m be the number of directed edges. We write dout(v) for
the out-degree of a vertex v.

The adjacency matrix A = A(G) is the n × n matrix where Ai,j = 1 if and
only if there is a directed edge (vi, vj), given some fixed ordering v1, . . . , vn of the
vertices. The out-degree matrix D = D(G) is the n × n diagonal matrix where
Di,i = dout(vi).

For a given directed graph, we will consider several different Markov chains.
For our purposes, a Markov chain M is the matrix of a random walk on a
weighted directed graph on the vertex set V . Equivalently, it is an n × n prob-
ability matrix, for which the sum of each row is 1. A Markov chain is said to
be ergodic if the corresponding random walk converges to a unique stationary
distribution. That is, if there exists a vector π that is nonzero at each ver-
tex, that satisfies π = πM , and such that for every vertex v in V , we have
limt→∞ 1vM

t = π. The vector π is the stationary distribution of M . We remark
that a Markov chain is ergodic if and only if it is a random walk on a graph that
is strongly connected and aperiodic. Efficient numerical methods for computing
the stationary distribution of an ergodic Markov chain M are described in [16].

Let p be a probability distribution on the vertices of V , and let M be a Markov
chain. For each set S ⊆ V , we define the sum of p over S to be

p(S) =
∑

u∈S

p(u),

For each edge (u, v), we define

p(u, v) = p(u)M(u, v).

This is the amount of probability that moves from u to v when a step of the
Markov chain is applied to the vector p. For each set A of directed edges, we
define
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p(A) =
∑

(u,v)∈A

p(u, v),

which is the total amount of probability moving over the set of directed edges.
This notation is overloaded, but it is unambiguous if the type of input is known.

2.1 Conductance and Sweeps

We now assume that the Markov chain M is ergodic with a unique stationary
distribution π, and define the generalizations to ergodic Markov chains of con-
ductance, of the sweep procedure for finding cuts with small conductance (which
is often used in spectral partitioning [4,15]), and of the potential function p[x]
(which was introduced by Lovàsz and Simonovits to bound the mixing rate of
random walks). In the case of ergodic Markov chains, all of these are normalized
by the stationary distribution π.

Given a set S of states, we define π̄(S) = min(π(S), 1 − π(S)) to be the
measure of the smaller side of the partition induced by S, and define the outgoing
edge border ∂(S) as follows,

∂(S) = {(u, v) ∈ E | u ∈ S and v ∈ S̄}.

Definition 1. Let M be an ergodic Markov chain, and let π be its unique sta-
tionary distribution. We define the M -conductance ΦM (S) of a set of vertices S
to be

ΦM (S) =
π(∂(S))

π̄(S)
.

Definition 2. Let M be an ergodic Markov chain with stationary distribution
π, and let p be a probability distribution on the vertices. Let v1, . . . , vn be an
ordering of the vertices such that

p(vi)
π(vi)

≥ p(vi+1)
π(vi+1)

.

For each integer j in {1, . . . , n}, we define Sp
j = {v1, . . . , vj} to be the set con-

taining the top j vertices in this ordering. We define ΦM (p) to be the smallest
M -conductance among the sets Sp

1 , . . . Sp
n,

ΦM (p) = min
j∈[1,n]

ΦM (Sp
j ).

The process of sorting the vertices according to this ordering and choosing the
set of smallest M-conductance is called a sweep.

Definition 3. Let M be an ergodic Markov chain with stationary distribution
π, and let p be a probability distribution on the vertices. We define p [x] to be the
unique function from [0, 1] to [0, 1] such that
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p
[
π(Sp

j )
]

= p(Sp
j ) for each j ∈ [0, n],

and such that p [x] is piecewise linear between these points.

Proposition 1. We have the following facts about the function p [x].

1. The function p [x] is concave.
2. For any set S of vertices,

p(S) ≤ p [π(S)] .

3. For any set of directed edges A, we have

p(A) ≤ p [π(A)] .

The facts in this proposition are proved in [11], and are not difficult to verify.

2.2 Global PageRank and Personalized PageRank

Definition 4. Given a Markov chain M , the PageRank vector prM (α, s), de-
fined by Brin and Page [13], is the unique solution of the linear system

prM (α, s) = αs + (1 − α)prM (α, s)M. (1)

Here, α is a constant in (0, 1] called the jump probability, s is a probability
distribution called the starting vector.

We will use the following basic facts about PageRank.

Proposition 2. For any Markov chain M , starting vector s, and jump proba-
bility α ∈ (0, 1], there is a unique vector prM (α, s) satisfying

prM (α, s) = αs + (1 − α)prM (α, s)M.

Proposition 3. For any Markov chain M and any fixed value of α in (0, 1],
there is a linear transformation Rα such that prM (α, s) = sRα. Furthermore,
Rα is given by the matrix

Rα = αI + α

∞∑

t=1

(1 − α)tM t. (2)

We omit the proofs, which may be found elsewhere.
We let ψ = 1

n1V be the uniform distribution. If a PageRank vector has ψ for its
starting vector, we call it a global PageRank vector. If a PageRank vector has for
its starting vector the indicator vector 1v, with all probability on a single vertex
v, we call it a personalized PageRank vector, and use the shorthand notation
prM (α, v) = prM (α, 1v).

There are a plenitude of algorithms for computing global PageRank and per-
sonalized PageRank, so we will treat the computation of PageRank as a primitive
operation. We assume we have the following two black-box algorithms,
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– GlobalPR(M, α) computes the global PageRank vector prM (α, ψ).
– LocalPR(M, α, v) computes the personalized PageRank vector prM (α, v).

We make the distinction between these two black boxes because personalized
PageRank can be computed more efficiently that global PageRank. One may use
for LocalPR any of the algorithms described by Jeh and Widom [10], Berkhin [2],
Sarlos [14], or Gleich [8], each of which can compute an approximation of the
personalized PageRank vector prM (α, v) by examining only a small fraction of
the input graph near v, provided that M is a sparse matrix. The global PageRank
can be computed efficiently in numerous ways, for example the Arnoldi method
described in [9], but requires performing a computation over the entire graph.
We will endeavor to use LocalPR instead of GlobalPR as much as possible.

3 Local Partitioning for Ergodic Markov Chains

We now state the main theorem of the paper, which shows that a sweep over
a personalized PageRank vector in an ergodic Markov chain M can produce a
set with small M -conductance. This is a natural generalization of the theorem
proved for undirected graphs in [1].

Theorem 1. Let M be an ergodic Markov chain with stationary distribution π.
Let S be a set of vertices such that π(S) ≤ 1

2 and ΦM (S) ≤ α/16, for some
constant α. If v is a vertex sampled from S according to the probability distri-
bution π(v)/π(S), then with probability at least 1/2, we have ΦM (prM (α, v)) =
O(

√
α log |S|).

The proof of the theorem is given at the end of this section. Here is the outline
of how we will proceed. Given a personalized PageRank vector p = prM (α, s) in
an ergodic Markov chain M, we place an upper bound on p[x] that depends on α
and Φ(p), and place a lower bound on p[π(S)] that depends on the conductance
of a certain set S near the starting vertex. These upper and lower bounds will be
combined to show that Φ(p) is small. We establish the upper and lower bounds
in the following lemmas.

Lemma 1. Let M be an ergodic Markov chain with stationary distribution π,
let p = prM (α, v) be a personalized PageRank vector in M , and let φ = ΦM (p)
be the smallest M-conductance found by the sweep over p. Then,

p[x] ≤ x + αt +
(
1 − φ2

72

)t √
x/π(v) for all x ∈ [0, 1] and all t ≥ 0.

Lemma 2. Let M be an ergodic Markov chain with stationary distribution π,
let S be a set of vertices, and let v be a vertex sampled from S according to the
probability distribution π(v)/π(S). With probability at least 3/4,

prM (α, v)(S) ≥ 1 − 4
ΦM (S)

α
.
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The proofs of these two lemmas are contained in the full version. We use them
now to derive the main theorem.

Proof (Proof of Theorem 1)
Let p = prM (α, v) and let φ = Φ(p). If v is sampled from S with probability
π(v)/π(S), Lemma 2 implies the following bound holds with probability at least
3/4,

prM (α, v)(S) ≥ 1 − 4
ΦM (S)

α
≥ 1 − 4

α/16
α

≥ 3/4. (3)

We will now show that with probability at least 3/4,

π(v)
π(S)

≥ 1
4|S| . (4)

To see this, consider the set of vertices S′ in S such that π(v) ≥ π(S)
4|S| . Clearly

π(S \ S′) < π(S)/4, which shows that π(S′) > (3/4)π(S).
The probability that the two events described in (3) and (4) both occur is at

least 1/2. We will assume for the rest of the proof that both events hold.
Lemma 1 gives us the following upper bound on prM (α, v)(S).

prM (α, v)(S) ≤ prM (α, v)[π(S)]

≤ (4/3)π(S) + αT +
(

1 − φ2

72

)T √
π(S)/π(v)

≤ (4/3)(1/2) + αT +
(

1 − φ2

72

)T √
4|S|.

If we let T = (72/φ2) ln 24
√

4|S|, then

prM (α, v)(S) ≤ 2/3 + αT + 1/24.

This contradicts our lower bound from (3) if α < 1/25T , so we have shown
that α ≥ 1/25T , which implies the following bound,

φ ≤
√

72 · 25 · α ln 24
√

4|S| = O(
√

α log |S|).

4 Partitioning a Strongly Connected Graph

In the next two sections we describe two possible approaches to partitioning
a directed graph. In this section, we describe the straightforward method that
applies only when the directed graph is strongly connected.

If the graph is strongly connected, then we may apply Theorem 1 to the lazy
random walk Markov chain W , which is defined to be

W = W(A) =
1
2
(I + AD−1).
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Here, D is the diagonal matrix whose nonzero elements are the out-degrees of
the vertices. The laziness of the walk ensures that W is ergodic whenever A is
strongly connected, which allows us to apply our main theorem to W .

To apply Theorem 1 to the lazy walk Markov chain W , we must compute and
perform a sweep over a personalized PageRank vector. When performing the
sweep, we must know the stationary distribution of W to sort the vertices into
the proper order. The stationary distribution needs to be computed only once,
and afterwards we can find numerous cuts by computing a single personalized
PageRank vector per cut. The necessary computation is summarized below.

Applying Theorem 1 to the lazy walk Markov chain of a strongly
connected graph.
We are given as input a strongly connected directed graph with lazy walk
matrix W . The following procedure may be used to apply Theorem 1 with
several different starting vertices and values of α. The offline preprocessing
must be done once, after which the local computation may be performed as
many times as desired.

Offline Preprocessing:

1. Compute the stationary distribution π of W .

Local computation:

1. Pick a starting vertex v and a value of α.
2. Compute p = prW(α, v), using LocalPR.
3. Sort the vertices in nonincreasing order of p(x)/π(x).
4. Let Sj be the set of the top j vertices in this ranking.
5. Compute the W-conductance of each set Sp

j , and output the set with
the smallest W-conductance.

5 Partitioning the PageRank Markov Chain

The majority of directed graphs that arise in practice are not strongly connected,
so we cannot directly apply the results of the previous section to such a graph. In
this section, we describe how Theorem 1 can be applied to the PageRank Markov
chain of an arbitrary graph, which is always ergodic. We show that the notion
of conductance associated with this Markov chain has a natural interpretation
in terms of PageRank. We describe how to find a large number of sets with
low conductance in the PageRank Markov chain by performing a small number
(two) of global PageRank computations as a preprocessing step, followed by any
desired number of local computations.

5.1 The PageRank Markov Chain

We now define the PageRank Markov chain Mβ = Mβ(A) in terms of the ad-
jacency matrix A of an arbitrary directed graph. To do so, we first modify the
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adjacency matrix by adding a self-loop to each vertex, to ensure that no ver-
tex has out-degree zero. This ensures the random walk matrix W = D−1A is
a Markov chain, where D is the diagonal matrix containing the modified out-
degrees after the self-loops have been added.

Let ψ = 1
n1V be the uniform distribution, and let β be a constant in [0, 1],

which we will call the global jump probability. Recall that the global PageRank
vector prW (β, ψ) is the unique solution of the linear system

prW (β, ψ) = βψ + (1 − β)prW (β, ψ)W. (5)

The PageRank Markov chain Mβ is defined to be

Mβ = βKψ + (1 − β)W,

where Kψ = 1T ψ is the dense rank-1 matrix obtained by taking the outer
product of ψ with the all-ones vector. The global PageRank vector prW (β, ψ) is
the stationary distribution of the PageRank Markov chain Mβ . In other words,
we have prW (β, ψ) = prW (β, ψ)Mβ. The PageRank Markov chain Mβ is ergodic
for any value of β ∈ (0, 1].

The notion of conductance associated with the PageRank Markov chain Mβ

has a natural interpretation in terms of the global PageRank vector prW (β, ψ).
To describe this, we will use the shorthand notation prβ = prW (β, ψ) for the
global PageRank, and Φβ(S) = ΦMβ

(S) for the Mβ-conductance. Then, for any
a set of vertices S, we have

Φβ(S) =
prβ(∂(S))

prβ(S)
.

This is the probability that if we choose a vertex from S with probability pro-
portional to its PageRank, and then take a single step in the PageRank Markov
chain Mβ, we end up at a vertex outside of S.

5.2 Computing Personalized PageRank in the PageRank Markov
Chain

To apply our local partitioning theorem to Mβ, we must compute a personalized
PageRank vector in the Markov chain Mβ . The personalized PageRank vector
prMβ

(α, s) is the unique solution of the linear system

prMβ
(α, s) = αs + (1 − α)prMβ

(α, s)Mβ .

Although this is a personalized PageRank vector, the Markov chain Mβ is dense
because of its global random jump, so it is not possible to compute prMβ

(α, s)
efficiently using LocalPR(Mβ , α, s). We will show that prMβ

(α, s) can be com-
puted efficiently in another way, by taking a linear combination of a personalized
PageRank vector and a global PageRank vector in the random walk Markov
chain W .
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We now present two interpretations of the PageRank vector prMβ
(α, s). By

definition, prMβ
(α, s) is a personalized PageRank vector in the Markov chain

Mβ. It can also be viewed as a PageRank vector in the random walk Markov
chain W . When viewed as a PageRank vector in W , its starting vector is a
linear combination of the uniform distribution ψ and the starting vector s, and
its jump probability is γ = α + β − αβ.

prMβ
(α, s) = αs + (1 − α)prβ(α, s)Mβ

= αs + (1 − α)βψ + (1 − α)(1 − β)prβ(α, s)W

= γ

(
α

γ
s +

(1 − α)β
γ

ψ

)
+ (1 − γ)prβ(α, s)W

= prW (γ, s′).

Here γ = α + β − αβ, and s′ = α
γ s + (1−α)β

γ ψ. Using the fact that a PageRank
vector is a linear function of its starting vector, we can write

prMβ
(α, s) = prW (γ,

α

γ
s +

(1 − α)β
ψ

)

=
α

γ
prW (γ, s) +

(1 − α)β
γ

prW (γ, ψ).

In summary, we have taken a personalized PageRank vector prMβ
(α, s) from

the PageRank Markov chain Mβ, and written it as a linear combination of two
PageRank vectors from the walk Markov chain W . One of these is a personalized
PageRank vector in W with starting vector s, and the other is a global PageRank
vector in W with starting distribution ψ.

5.3 Local Partitioning in the PageRank Markov Chain

By applying our main theorem to the PageRank Markov chain, we obtain the
following corollary, which shows a sweep over the PageRank vector prMβ

(α, v)
produces a set with small Mβ-conductance.

Corollary 1. Let S be a set of vertices such that prβ(S) ≤ 1
2 and Φβ(S) ≤ α/16,

for some constants α and β. If a vertex v is sampled from S according to the
probability distribution prβ(v)/prβ(S), then with probability at least 1/2 we have
Φβ(prMβ

(α, v)) = O(
√

α log |S|).

Proof. The corollary is immediate, by applying Theorem 1 to the ergodic Markov
chain Mβ.

To carry out the computation required by the corollary, we need to compute
the stationary distribution of Mβ, which is just the global PageRank vector
prW (β, ψ). For each cut we want to find, we also need to compute a personal-
ized PageRank vector prMβ

(α, v) in the Markov chain Mβ . This can be done by
computing prW (γ, v) and prW (γ, ψ), and then taking a linear combination of
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these two PageRank vectors, as described in the previous section. If we fix the
values of α and β, we can compute the two global PageRank vectors prW (β, ψ)
and prW (γ, ψ) ahead of time, and then compute a large number of personal-
ized PageRank vectors prW (γ, v) using LocalPR. This procedure is summarized
below.

Applying Corollary 1 to the PageRank Markov chain.
We are given as input the adjacency matrix A of a directed graph (not
necessarily strongly connected), the global jump probability β, and the
local jump probability α. The following procedure may be used to apply
Theorem 1 at several different starting vertices with these fixed values of α
and β. The offline preprocessing must be done once, after which the local
computation may be performed as many times as desired.

Offline Preprocessing:
We must compute two global PageRank vectors.

1. Let γ = α + β − αβ.
2. Let W = W (A) be the random walk matrix of A.
3. Compute the two global PageRank vectors prβ = prW (β, ψ) and prγ =

prW (γ, ψ) using the algorithm GlobalPR.

Local Computation:

1. Pick a starting vertex v.
2. Compute prW (γ, v), using LocalPR.
3. Obtain p = prMβ

(α, v) by taking a linear combination of prW (γ, v) and
prW (γ, ψ),

p = prMβ
(α, v) =

α

γ
prW (γ, v) +

(1 − α)β
γ

prW (γ, ψ).

4. Rank the vertices in nonincreasing order of p(x)/prβ(x).
5. Let Sj be the set of the top j vertices in this ranking.
6. Compute the β-conductances Φβ(Sj) for each set Sj , and output the set

with the smallest β-conductance.

6 Concluding Remarks

6.1 When Is Partitioning the PageRank Markov Effective?

Corollary 1 can be applied to partition the PageRank Markov chain of an ar-
bitrary directed graph, and to an arbitrary starting vertex. Because it may be
applied to any graph (even the empty graph), the approximation guarantee it
provides may become vacuous for some graphs and starting vertices. In this sec-
tion we will describe this concern in more detail, and give a positive result that
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describes when the approximation guarantee it provides is strong rather than
vacuous. We caution that this section contains high-level discussion rather than
rigorous proofs.

As we increase β, we increase the probability of the global jump, which ensures
that the β-conductance of every set in the graph is at least roughly β. If we
partition the PageRank Markov chain of a graph with no edges, every subset
of vertices will have conductance roughly β, so the approximation guarantee of
Corollary 1 will be vacuous (which is what we should expect when partitioning a
graph with no edges). On the other hand, if we partition the PageRank Markov
chain of an undirected graph, using a very small value of β, the best partitions of
the graph will have β-conductance larger than β, so the approximation guarantee
of Corollary 1 will give a meaningful result.

Loosely speaking, we claim that partitioning the PageRank Markov chain Mβ

gives interesting results exactly when there are interesting partitions of the graph
that have β-conductance larger than β. To provide evidence for this claim, we
separate the β-conductance Φβ(S) into two parts, the contribution Ψβ(S) from
real graph edges in W , and the contribution from the random jump. We define

Ψβ(S) =

∑
(u,v)∈S×S̄ prβ(u)W (u, v)

prβ(S)
.

Then, Φβ(S) and Ψβ(S) are related by the following equation.

Φβ(S) = (1 − β)Ψβ(S) + β
|S̄|
n

.

It is not hard to see that if a set S has β-conductance significantly larger than
β, our algorithm finds a set S′ for which Ψβ(S′) is nearly as small as Ψβ(S).
In particular, if S is a set of vertices for which Ψβ(S) = Ω(Φβ(S)), and S′ is a
set of vertices for which Φβ(S′) = O(

√
Φβ(S) log n), which is the conductance

guaranteed by Corollary 1, then we have

Ψβ(S′) = O(
√

Ψβ(S) log n).

6.2 Cuts from Approximate PageRank Vectors

For the case of undirected graphs, it has been proved that a cut with small con-
ductance can be found efficiently by sweeping over an approximate personalized
PageRank vector. This was proved in [1], and requires a careful error analysis.
We remark that a similar error analysis may be carried out for the directed case,
although we have not described such an analysis in this paper.
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