
Linear Algebra and its Applications 436 (2012) 99–111

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

On weighted directed graphs

R.B. Bapat a, D. Kalitab,1, S. Pati b,∗
a
Stat-Math Unit, Indian Statistical Institute Delhi, 7-SJSS Marg, New Delhi 110 016, India

b
Department of Mathematics, Indian Institute of Technology Guwahati, Assam 781 039, India

A R T I C L E I N F O A B S T R A C T

Article history:

Received 6 January 2011

Accepted 16 June 2011

Available online 18 July 2011

Submitted by S. Kirkland

AMS classification:

05C50

05C05

15A18

Keywords:

Laplacian matrix

Mixed graph

Weighted directed graph

3-Colored digraph

Edge singularity

Thestudyofamixedgraphand its Laplacianmatrixhavegainedquite

a bit of interest among the researchers. Mixed graphs are very im-

portant for the study of graph theory as they provide a setup where

one can have directed and undirected edges in the graph. In this

article we present a more general structure, namely the weighted

directed graphs and supply appropriate generalizations of several

existing results for mixed graphs related to singularity of the corre-

sponding Laplacian matrix. We also prove many new combinatorial

results relating the Laplacian matrix and the graph structure.
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1. Introduction

All our graphs are simple. All our directed graphs have simple underlying undirected graphs. We

denote the set of vertices and the set of edges of a graphG byV(G) and E(G), respectively. Amixed graph

is a graph with some directed and some undirected edges. Several researchers have studied different

aspects like coloring, balancing, matrix-tree type theorem, the spectral properties of the Laplacian

matrices of mixed graphs, see for example [1,2,13,14,11,3,8,9] and the references therein. Our aim in

this article is to present and study a more general class of graphs of which the set of mixed graphs is

a particular subset.

Let G be a mixed graph on vertices 1, . . . , n. We write ij ∈ E(G) to mean the existence of an

undirected edge between the vertices i and j. We write (i, j) ∈ E(G) to mean the existence of the
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directed edge from the vertex i to the vertex j. The adjacency matrix A(G) = [aij] of G is the matrix

with

aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ij ∈ E(G),

−1 if (i, j) ∈ E(G) or (j, i) ∈ E(G),

0 else,

where the word ‘or’ is used in the exclusive sense. The degree di of a vertex i in G is the number of

edges (both directed and undirected) incident with i. LetD(G) be the diagonal matrix with di as the ith

diagonal entry. Bapat, Grossman and Kulkarni [1] introduced the Laplacianmatrix L(G) = D(G)+A(G)
of a mixed graph G and supplied a generalization of the Matrix Tree Theorem for mixed graphs. They

also discussed the singularity of a mixed graph. Zhang and Li [13], and Zhang and Luo [14] presented

some upper bounds for the spectral radius and the second smallest eigenvalue of the Laplacianmatrix

of a mixed graph. Fan studied the Laplacian spectral integral variations of mixed graphs occurring

in one place in [5], largest eigenvalue and least eigenvalue of unicyclic mixed graphs in [6,7], the

eigenvectors corresponding to the smallest Laplacian eigenvalue of a mixed graph containing exactly

one nonsingular cycle in [8]. Tan and Fan [12] introduced the notion of edge singularity for mixed

graphs and proved some inequalities between the edge singularity and smallest Laplacian eigenvalue

of a mixed graph. Fan et al. [9] studied the first eigenvalue and the first eigenvectors of nonsingular

unicyclic mixed graphs.

Notice that the adjacency (Laplacian)matrix of amixed graph is indifferent about the orientation of

a directed edge; it only differentiates between the directed and undirected edges. Hence their eigen-

vectors are not expected to give us any information relating the orientations of edges. The adjacency

(resp. Laplacian) matrix of a mixed graphmay be viewed as the adjacency (resp. Laplacian) matrix of a

directed graph, where some of the edges have weight 1 and remaining have weight −1. Motivated by

this we focus on the edge weighted directed graphs, where the weights are some complex numbers of

absolute value 1with nonnegative imaginary part, that is, weights are chosen from the upper half part

of the unit circle on the complex plane. Henceforth, we shall understand that weights are complex

numbers of unit modulus with nonnegative imaginary part, unless otherwise specified.

Let G be a weighted directed graph on vertices 1, . . . , n. (Recall that the underlying undirected

graph of G is simple.) Let us denote the weight of the edge (i, j) by wij . Let wij denote the complex

conjugate of wij . The adjacency matrix A(G) = [aij] of G is a matrix with

aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wij if (i, j) ∈ E(G),

wji if (j, i) ∈ E(G),

0 otherwise.

Note that choosing theweights only fromthe ‘upperhalf part of theunit circle’ is not really a restriction:

if G has an edge (i, j) with a weight x + yi, then we may replace (i, j) by (j, i) with the weight x − yi,

where i = √−1.

The degree di of a vertex i in a weighted directed graph G is the number of edges incident with i. It

may be viewed as the sum of the absolute values of the weights of the edges incident with the vertex

i.

Definition 1. Let G be a weighted directed graph. We define the Laplacian matrix L(G) of G as the

matrix D(G) − A(G), where D(G) is the diagonal matrix with di as the ith diagonal entry.

1. Notice that if weight of each edge in G is 1, then our definition of L(G) coincides with the usual

Laplacian matrix of an unweighted undirected graph. This has motivated us to use D(G) − A(G)
rather than D(G) + A(G) for the Laplacian matrix.
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2. If weights of the edges in G are±1, then (viewing the edges of weight 1 as directed and the
edges of weight −1 as undirected) our definition of L(G) coincides with the Laplacianmatrix

as defined in [1].

3. If theweight of the edges inG are−1, then our definition of L(G) coincideswith thewell studied

signless Laplacian (see for example, Cvetkovic et al. [4]) of an undirected graph G.

Note thatwith this setup, the Laplacianmatrix of aweighted directed graph is positive semidefinite.

The justification is as follows. The vertex edge incidence matrix M = M(G) = [mi,e] of G is a matrix

with rows labeled by the vertices and columns labeled by the edges in G satisfying

mi,e =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if e = (i, j) for some vertex j,

−wji if e = (j, i) for some vertex j,

0 otherwise.

Since L(G) = MM∗, it is a positive semidefinite matrix. In particular, if the edges of the weighted

directed graph G have weights ±1, then M(G) coincides with the vertex edge incidence matrix of a

mixed graph.

Example 1. Consider the weighted directed graphs G and H shown below. Weights of the edges are

written beside them. Their vertex edge incidencematrices are also supplied. Observe that in the graph

G if we view the edges having weight 1 as directed and the edges having weight −1 as undirected,

then M(G) is the same as the vertex edge incidence matrix of a mixed graph.

Let G be a weighted directed graph on vertices 1, . . . , n. Note that for any x ∈ C
n, and for any edge

e = (i, j), we have (M∗x)e = xi − wijxj . It follows that

x∗L(G)x = (M∗x)∗(M∗x) = ∑
(i,j)∈E(G)

|xi − wijxj|2. (1)

A i1-ik-walk W in a weighted directed graph G is a sequence W : i1, i2, . . . , ik of vertices such that,

for 1 ≤ p ≤ k − 1, we have either (ip, ip+1) ∈ E(G) or (ip+1, ip) ∈ E(G). If e = (ip, ip+1) ∈ E(G),
then we say e is directed along the walk, otherwise we say e is directed opposite to the walk. We call

wW = ai1i2ai2i3 · · · aik−1ik the weight of the walk W , where aij are entries of A(G).
We call a connected weighted directed graph singular (resp. nonsingular) if its corresponding

Laplacian matrix is singular (resp. nonsingular).
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The organization of the article is as follows. In Section 2, we give several characterizations of sin-

gularity for the more general class of weighted directed graphs. This provides a better combinatorial

insight. Many results in this section generalize the known results in the literature. We introduce the

concept ofD-similarity here.We provide a characterization of the connectedweighted directed graphs

which are D-similar to mixed graphs, which is new of its kind.

In Section 3, we introduce and study the edge singularity for weighted directed graphs and pro-

vide the appropriate generalizations of some of the known results for mixed graphs. The problem of

characterizing mixed graphs with a fixed edge singularity has never been addressed. We provide a

combinatorial characterization of connectedweighted directed graphs having a fixed edge singularity.

In Section 4,we consider the directed graphswith edges having colors red, blue, or green.We assign

each red edge the weight 1, each blue edge the weight −1 and each green edge the weight i. We call

this graph a 3-colored digraph. Note that this class is a very small subclass of the weighted directed

graphs and is still a larger class than the mixed graphs. We provide some more characterizations of

singularity for connected 3-colored digraphs in this section.

The study of spectral properties of the Laplacian and the adjacencymatrices of a weighted directed

graph is not included in this document.

2. D-similarity and singularity in weighted directed graphs

It was first observed in [1], that unlike the Laplacian matrix of an undirected graph, the Laplacian

matrix of a mixed graph is sometimes nonsingular. Several characterizations of singularity for mixed

graphs were provided in [1]. It is natural to ask for similar characterization of singularity for the

weighted directed graphs. In this section, we provide some characterizations of the singular weighted

directed graphs.

Example 2. Consider the weighted directed graph G shown below. Observe that W1 : 1, 4, 5, 6 and

W2 : 1, 4, 6 are two different 1-6-walks in G with the weights wW1
= 1√

2
− i 1√

2
and wW2

= i,

respectively. Clearly wW1
�= wW2

.

In view of Example 2 above, a natural question is the following: Does there exist a weighted
directed graph G such that each u-v-walk in G has the same weight, for each fixed u, v ∈ V(G) ?

The answer to this question is in the affirmative, for example,we consider aweighteddirected graph

Gwith all the edges having weight 1. Note that such a weighted directed graph is always singular. So it

is natural to ask the following question : Does there exist a nonsingular weighted directed graph
H such that each u-v-walk in H has the same weight, for each fixed u, v ∈ V(H)?

Let G be a connected weighted directed graph on vertices 1, . . . , n. Assume that weight of any

1-i-walk is the same. By nwe denote the vector of size n defined by n1 = 1 and ni = conjugate of the

weight of a 1-i-walk which is the same as the weight of a i-1-walk. The following result answers the

previous question in the negative.
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Lemma 1. Let G be a connected weighted directed graph on vertices 1, . . . , n. Then L(G) is singular if and
only if the weight of any 1-i-walk is the same. Furthermore, when L(G) is singular, 0 is a simple eigenvalue

with an eigenvector n.

Proof. Suppose that L(G) is singular. Let x �= 0 be a null vector. Then from (1), we have xu = wuvxv,

whenever (u, v) is an edge. Note that, if xu = 0, then for each neighbor w of u, we have xw = 0. As

G is connected, this implies that x = 0. Hence the eigenvalue 0 has multiplicity one. Let W be any

1-i-walk. Using (1), we have x1 = wWxi. Hence each 1-i-walk has the same weight and x = x1n.

Conversely, suppose that the weight of any 1-i-walk is the same. Note that if (i, j) ∈ E(G), then
nj = wijni. Using (1), we have

n∗L(G)n = ∑
(i,j)∈E(G)

|ni − wijnj|2 = 0.

Therefore ‖M∗n‖2 = 0 and L(G)n = MM∗n = 0. So L(G) is singular. �

It follows that the class of singular connected weighted directed graphs is same as the class of

connected weighted directed graphs G having the property that each u-v-walk in G has the same

weight, for each fixed u, v ∈ V(G).

Example 3. The graph in the following picture is a weighted directed graph. Here the blue colored

edges have a weight −1 which can be given any direction and the green colored edges have a weight

i. Note that the graph is nonsingular and the smallest eigenvalue has multiplicity 5.

Let G be a weighted directed graph on vertices 1, . . . , n and D be a diagonal matrix with |dii| = 1,

for each i. Then D∗L(G)D is the Laplacian matrix of another weighted directed graph which we denote

by DG. If (i, j) ∈ E(G) has aweightwij , then it has theweight diiwijdjj in
DG. LetH andG be twoweighted

directed graphs on vertices 1, . . . , n.We sayH is D-similar to G, if there exists a diagonalmatrixD (with

|dii| = 1, for each i) such that H = DG.

The following result tells that a singular connected weighted directed graph is nothing but an

unweighted undirected graph allowing D-similarity.

Lemma 2. Let G be a connected weighted directed graph on vertices 1, . . . , n. Then L(G) is singular if and
only if G is D-similar to an unweighted undirected graph.

Proof. Suppose that L(G) is singular. By Lemma 1, the vector n is well defined. Take D to be the

diagonal matrix with dii = ni, for each i. We have (D∗L(G)D)ij = ni lij nj . If (i, j) ∈ E(G), then
lij = −wij = −ni/nj , so that ni lij nj = −1. If (j, i) ∈ E(G), then lij = −wji = −nj/ni, so that

ni lij nj = −1. Furthermore lii = di, so that ni lii ni = di. The converse is trivial. �

Remark 3. Notice that when G is a singular mixed graph, the vector n is the vector with entries 1 or

−1. Hence in this case the diagonal matrix D in Lemma 2 is nothing but a signature matrix.

The following result is a characterization of singularity of weighted directed cycles. It will be used

to give another characterization of a nonsingular weighted directed graph.
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Lemma 4. Let C be a weighted directed graph on vertices 1, . . . , n whose underlying undirected graph is

a cycle. Then C is singular if and only if wC = 1.

Proof. If C is singular then by Lemma 1, we have 1 = wC . Conversely letwC = 1 andW1 be a 1-i-path,

i �= 1. Let W2 be the other 1-i-path. Denote by W3 the i-1 path obtained by tracing back W2. Then

1 = wC = wW1
wW3

, which implies that wW1
= 1/wW3

= wW2
. Hence by Lemma 1, C is singular. �

Throughout this article a cycle C in a weighted directed graph is said to be nonsingular if its weight

wC �= 1. Otherwise we call it a singular cycle.

Remark 5. Notice that if we consider mixed graphs, then a cycle C is singular if and only if wC = 1,

that is there are an even number of undirected edges (viewing the edges of weight −1 as undirected)

on the cycle. That is the cycle is nonsingular if and only if it has an odd number undirected edges. So

the previous lemma generalizes Lemma 1 of [1].

The following result gives another characterization of singularity of a connected weighted directed

graph.

Lemma 6. Let G be a connected weighted directed graph on vertices 1, . . . , n. Then L(G) is singular if and
only if there exist a partition V(G) = V1 ∪ · · · ∪ Vk such that the following conditions are satisfied.

(i) There are distinct complex numbers wi of unit modulus associated to each Vi, for i = 1, . . . , k.
(ii) Any edge between Vi and Vj, i < j is either directed from Vi to Vj with a weight wiwj �= 1 or is

directed from Vj to Vi with a weight wiwj �= 1.

(iii) Each edge within Vi has a weight 1, for i = 1 . . . , k.

Proof. Suppose that L(G) is singular. By Lemma 1, 0 is a simple eigenvalue and n is a null vector of

L(G). Let Vi = {j ∈ V(G) : nj = ni}. Let u ∈ Vi, v ∈ Vj , i < j such that (u, v) is an edge. If wuv = 1,

then nu = nv, which is not possible. Since nu = ni and nv = nj , we must have wuv = ninj �= 1, by

Lemma 1 and the definition of n. Similarly, if (v, u) is an edge, then we must have wvu = njni �= 1.

So to each Vi we associate the complex number wi = ni. By the definition of n, it is easy to see that

edges within Vi have weights 1.

Conversely, suppose thatV(G) = V1∪· · ·∪Vk , and (i)–(iii) are satisfied. LetDbe thediagonalmatrix

with the diagonal entries duu = wi, if u ∈ Vi. Note that (D∗L(G)D)uv = duuluvdvv. If (u, v) ∈ E(G) has
a weight 1, then (as the edges of weight 1 appear only inside a Vi) both u, v ∈ Vi, for some i, where

1 ≤ i ≤ k. In that case duu = dvv and luv = −1, so that duuluvdvv = −1. If (u, v) ∈ E(G) has a

weight other than 1, then u ∈ Vi, v ∈ Vj , for some i �= j. In that case we have wuv = wiwj , by (ii). Thus

duuluvdvv = wi(−wiwj)wj = −1. Furthermore, duuluuduu = luu. Noting thatD
∗L(G)D is Hermitian,we

see that D∗L(G)D is the Laplacian matrix of the underlying unweighted undirected graph of G. Hence

L(G) is singular, by Lemma 2. �

Remark 7. Notice that if we have mixed graph in Lemma 6, then we have only two types of weights.

Hence a connected mixed graph is singular if and only if there exist a partition V(G) = V1 ∪ V2 such

that edges inside Vi have weights 1 and edges between V1 and V2 have weights −1.

The following theorem which is a summary of the previous discussions is a generalization of The-

orem 4 of [1].

Theorem 8. Let G be a connected weighted directed graph. Then the following are equivalent.

(a) G is singular.

(b) There is a diagonalmatrix Dwith diagonal entries of unitmodulus such thatD∗L(G)D is the Laplacian

matrix of the underlying unweighted undirected graph.

(c) Each cycle C in G has weight wC = 1.
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(d) There exist a partition V(G) = V1 ∪ · · · ∪ Vk such that the following conditions are satisfied.

(i) There are distinct complex numbers wi of unit modulus associated to each Vi, for i = 1, . . . , k.
(ii) Any edge between Vi and Vj, i < j is either directed from Vi to Vj with a weight wiwj �= 1 or is

directed from Vj to Vi with a weight wiwj �= 1.

(iii) Each edge within Vi has a weight 1, for i = 1 . . . , k.

Proof. (a) ⇔ (b) Follows from Lemma 2.

(b) ⇔(c) Suppose that there is a diagonal matrix D with diagonal entries of unit modulus such

that D∗L(G)D is the Laplacian matrix of the underlying unweighted undirected graph. Let DG be the

underlying unweighted undirected graph of G. If (i, j) ∈ E(G) has a weight wij , then it has the weight

diiwijdjj in
DG. So the weight of a cycle C in G remains the same in DG. Note that each cycle in DG has

weight 1. Hence the result holds.

Conversely suppose that each cycle C in G has weight wC = 1. Let T be a weighted directed span-

ning tree of G. Take D to be the diagonal matrix with d11 = 1 and dii = weight of the i-1-path in T ,

for i �= 1. Consider the graph DG whose Laplacian matrix is D∗L(G)D. Note that (D∗L(G)D)ij = diilijdjj .

If (i, j) ∈ E(T) has weight wij , then djj = wijdii. In that case, weight of the edge (i, j) is 1 in DG. If

(i, j) ∈ E(G) − E(T), then G contains a cycle, say C formed by the edge (i, j) and the unique i-j-path,

say P in T . Since weight of an edge e ∈ E(T) changes to the weight 1 in DG, we see that weight of

the path P is 1 in DG. Note that the weight of a cycle in G remains the same in DG. Hence weight of

the edge (i, j) in DG must be 1, as wC = 1. Thus DG is the underlying unweighted undirected graph

of G.

(b)⇔(d). Follows from Lemma 6. �

The following result is an immediate consequence.

Corollary 9. Let G be a connected weighted directed graph. Then G is nonsingular if and only if it contains

a nonsingular cycle. In particular, a weighted directed tree is always singular.

Example 4. The graph in the following picture is a weighted directed graph. Note that there are two

cycles and both of them have weight 1. Hence the graph is singular. Indeed one can check that

n =
[
1, − 1√

2
+ i√

2
, i, −i, −i, −1, i, −i, −1, −i

]

is a null vector.

Observe that in the above picture, if we take the directed edge (9, 8) instead of (8, 9), then the weight

of the cycle [8, 10, 9, 8] becomes −1. Hence by Corollary 9, the graph is nonsingular.

Note that by Lemma 2, a connected weighted directed graph is singular if and only if it is D-similar

to an unweighted undirected graph. The following is a natural question: which connected weighted
directed graphs are D-similar to mixed graphs? The following result characterizes those graphs.

Theorem 10. Let G be a connected weighted directed graph. Then G is D-similar to a mixed graph if and

only if G does not contain a cycle of non-real weight.
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Proof. Suppose that G does not contain a cycle of non-real weight. Then each of the cycle contained

in G has a weight ±1, as the weights of the edges have absolute value 1. Let T be a weighted directed

spanning tree ofG. By Corollary 9, T is singular. By Lemma2, there is a diagonalmatrixD, such that DT is

an unweighted undirected tree. Consider the graph DG for this D. So the weight of an edge (i, j) ∈ E(T)
changes to 1 in DG. If (i, j) ∈ E(G) − E(T), then G contains a cycle, say C formed by the edge (i, j) and
the unique i-j-path, say P in T . Since weight of an edge e ∈ E(T) changes to 1 in DG, we see that the

weight of the path P is 1 in DG. Note that the weight of a cycle in G remains the same in DG. Thus the

weight of the edge (i, j) in DG is either 1 or −1, as wC = ±1. Hence the graph DG is a mixed graph.

Conversely, suppose that G is D-similar to a mixed graph H. So L(H) = D∗L(G)D and H=DG. As the

weight of a cycle is the same in both G and DG, we see that the weights of the cycles are real. �

3. Edge singularity of weighted directed graphs

Theedge singularity of amixedgraphwas studied in [12].Wecontinue the samestudy in the context

of weighted directed graphs. The edge singularity εs(G) of a weighted directed graph is the minimum

number of edges whose removal results a weighted directed graph containing no nonsingular cycles

or cycles with weight different from 1 (by Lemma 4). That is, all components of the resulting graph are

singular.

The following result is very fundamental in nature and it relates the edge singularity with connec-

tivity.

Lemma 11. Let G be a connected weighted directed graph on vertices 1, . . . , n. Let F be a set of εs(G)
edges in G such that G − F does not contain a cycle of weight different from 1. Then G − F is connected.

Proof. If G is singular, then the result holds obviously. Suppose that G is nonsingular and G − F is

disconnected. Let G1, G2, . . . Gr, (r � 2) be the components of G− F . As the graph G is connected, we

can choose r − 1 edges e1, e2, . . . er−1 from F such that the graph

H := G1 ∪ G2 ∪ . . . Gr + {e1, e2, . . . er−1}

is connected. So each edge e1, . . . , er−1 must be a bridge in H. By Corollary 9, as Gi’s do not contain

nonsingular cycles, we see thatH does not contain a nonsingular cycle. ThusH is singular, by Corollary

9. Hence εs(G) � |F| − (r − 1) < |F|, a contradiction. �

The following result generalizes Theorem 2.1 of [12] obtained by Tan and Fan for mixed graphs.

Lemma 12. Let G be a connected weighted directed graph on vertices 1, . . . , n with m edges. Then 0 �
εs(G) � m − n + 1. In particular, εs(G) = m − n + 1 if and only if all the cycles contained in G are

nonsingular.

Proof. Clearly, εs(G) � 0. Let T be a spanning tree of G. By Corollary 9, T is singular. Thus removal of

the m − n + 1 edges which are not in T from the graph G makes the resulting graph singular. Hence

εs(G) � m − n + 1.

Suppose that εs(G) = m − n + 1 and G contains a singular cycle C. Let H be the unicyclic span-

ning subgraph of G containing the cycle C. By Corollary 9, H is singular. Thus by deleting the m − n

edges from G we obtain a singular weighted directed graph. Hence εs(G) � m − n < m − n + 1, a
contradiction.

Conversely, suppose that each of the cycles contained in G are nonsingular and εs(G) < m− n+ 1.

Let F be a set of εs(G) edges in G such that the graph G − F has each component singular. By

Lemma 11, G − F is a connected graph and |E(G − F)| = m − εs(G) > n − 1. Thus G − F

contains a cycle, and by the assumption this cycle is nonsingular, a contradiction. Hence the result

holds. �
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We have two natural questions.

(a) Given a nonnegative integer k, is it possible to find a graph G with εs(G) = k?
(b) Given n,m and an integer 0 ≤ k ≤ m−n+1, does there exist a graph G with n vertices,

m edges for which εs(G) = k?

The following example will answer the first question.

Example 5. Let k be a given nonnegative integer. Consider the weighted directed star H on 2k + 1

vertices with all the edges having aweight 1. Let 1, . . . , 2k be the pendent vertices and v be the vertex

of degree 2k of the star H. We construct the weighted directed graph G from H by inserting the new

directed edges (j, j + 1) with an weight i, for j = 1, 3, . . . , 2k − 1. Notice that G contains k cycles

of length 3 formed by the vertices v, j and j + 1, for each j = 1, 3, . . . , 2k − 1. Let F be any set of

edges in G with |F| < k. Then G − F contains at least one cycle of the form [v, j0, j0 + 1, v], for some

j0 ∈ {1, 3, . . . , 2k − 1}. Hence εs(G) = k. For k = 6, our graph G is shown below.

Let m, n be any given positive integers with m �
(
n

2

)
. Assume that 0 � k � m − n + 1. Consider

the weighted directed path Pn on n vertices with each edge having a weight 1. Let w = e
i 2π
2p , where

p ≥ k. Construct a weighted directed graph obtained from Pn by inserting m − n + 1 new directed

edges ei. To k of these edges assign weights w2ri , where 0 ≤ ri ≤ p − 1 are distinct, i = 1, . . . , k.
Assign a weight 1 to the remaining edges. Denote the class of all such graphs by P(n;m; k).
Example 6. Here we give an example of a graph in P(11; 17; 4). It is obtained from the path P11 by

adding the dotted edges. We choose p = 9 and w = e
i 2π
29 . The undirected edges have weights 1.

In the next result we prove that edge singularity of any graph in P(n;m; k) is k.
Lemma 13. Let G ∈ P(n;m; k). Then εs(G) = k.

Proof. Let C be a cycle in G which contains l edges of weight different from 1. Then the weight of C is

wC = wK , where K = ∑l
i=1 ±2ri and 0 � ri � p− 1 are distinct for i = 1, . . . , l. Since 0 < |K| < 2p
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andw = e
i 2π
2p ,wesee thatwC = wK �= 1.Thusanycycle inGwhichcontainsanedgeofweightdifferent

from1 is nonsingular by Lemma4.Weshall use induction to showthatεs(G) = k. For k = 1,G contains

exactly one edge say, e having aweightw2r1 and emust be contained in a nonsingular cycle ofG. Hence

εs(G) = 1. Assume that any graphH ∈ P(n;m; k0), k0 < k has εs(H) = k0. LetG ∈ P(n;m; k), k > 1.

Let F = {e1, . . . , ek} be the set of edges in G such that ei has a weight w2ri , for i = 1, . . . , k. Since
each of the remainingm− k edges in G has anweight 1, G− F does not contain a nonsingular cycle, by

Theorem8.Notice further that,G−F is connected. Thus εs(G) � k. If possible, suppose that εs(G) < k.

Let F ′ be a set of edges in G such that |F ′| = εs(G) and G − F ′ does not contain a nonsingular cycle.

Claim. F ′ ∩ F = ∅. Suppose that our claim is not true. Put r = |F ∩ F ′|. Consider G − (F ∩ F ′).
Observe that εs(G− (F ∩F ′)) � εs(G)− r < k− r. But, as the graph G− (F ∩F ′) ∈ P(n;m− r; k− r),
by induction hypothesis, εs(G − (F ∩ F ′)) = k − r. This is a contradiction. Hence our claim is valid.

Recall that G − F ′ does not contain a nonsingular cycle. By the observation given in the beginning

of the proof we see that each edge ei ∈ F must be a bridge in G− F ′. As |F| = k, we see that G− F ′ − F

has at least k + 1 components. On the other hand, as the graph G − F is connected and as |F ′| < k,

the graph G − F − F ′ can have at most k components. This is a contradiction. Hence εs(G) = k. Our

proof is complete. �

Remark 14.

(a) Lemma 13 answers the question raised in this section in the affirmative.

(b) In Lemma 13, we only used the fact that the graphs in P(n;m; k) are created from a connected

graph. So the statement of the lemmawill remain true for graphs in T(n;m; k)which are created

from a tree T in a similar way.

Thegraphs inP(n;m; k)maybeviewedassomegraphsobtained fromaconnectedundirectedgraph

by adding k edges of weight different from 1. So a natural question is the following: is it true that
each connected weighted directed graph G with εs(G) = k can be created from a connected
unweighted undirected graph by adding k directed edges of weight different from 1?

The answer is in the affirmative as shown below.

Theorem 15. Let G be a connected weighted directed graph on n vertices with εs(G) = k. Then there is

a diagonal matrix D with diagonal entries of unit modulus such that G is D-similar to a graph H, where H

is obtained from a connected unweighted undirected graph by adding k directed edges of weights different

from 1.

Proof. Let F be a set of edges in G such that |F| = εs(G) and G − F has each component singular. By

Lemma 11, the graph G− F is connected. Let D be the diagonal matrix with ith diagonal entry dii = ni,

where n is the null vector of G − F . By Lemma 2, G − F is D-similar to the unweighted undirected

graph H0 := DG − DF , where DF is the set of edges in DG corresponding to F . Note that H0 is connected

as G − F is connected. As εs(G) = εs(DG), we see that edges in DF must have weights other than 1.

Put H=DG. Then the graph G is D-similar to H which can be obtained from the connected unweighted

graph H0 by adding the k directed edges contained in DF . �

4. 3-Colored digraphs and their singularity

Let G be a directed graph with edges having colors red, blue, or green. We assign each red edge

the weight 1, each blue edge the weight −1 and each green edge the weight i. We call this graph a

3-colored digraph.Notice that this notion naturally generalizes the notion of amixed graph but ismuch

restricted in comparison to the weighted directed graph.

In the Theorem 8 of Section 2, we have given some characterizations of a singular connected

weighted directed graph. In this section we supply an additional characterization of singularity of

a connected 3-colored digraph. Further information on the structure of a singular connected 3-colored

digraph is obtained.
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V1 V2

V3V4

Fig. 1. The structure of a singular 3-colored digraph.

Remark 16. In particular, if a 3-colored digraph G does not contain a green edge, then G is nothing but

a mixed graph. In that case an edge with color red corresponds to a directed edge and an edge with

color blue corresponds to an undirected edge.

Let G be a 3-colored digraph on vertices 1, . . . , n. Note that, if (i, j) ∈ E(G) has a color red or blue,

then aij = aji = 1 or − 1, respectively, where aij is the ijth entry of the adjacency matrix A(G). So
the adjacency (Laplacian) matrix of a 3-colored digraph is indifferent about the orientations of the red

and blue colored edges. In view of this fact, we write ij ∈ E(G) to mean the existence of a red or a blue

colored edge between the vertices i and j in G. We write (i, j) ∈ E(G) to mean the existence of the

green colored edge directed from the vertex i to the vertex j in G.

The following theorem characterizes the structure of a singular connected 3-colored digraph. It

generalizes the result about the structure of a singular mixed graph obtained by Bapat, Grossman and

Kulkarni in [1].

Theorem 17. Let G be a connected 3-colored digraph on vertices 1, . . . , n. Then G is singular if and only

if there exist a partition V(G) = V1 ∪ V2 ∪ V3 ∪ V4 such that the following conditions are satisfied.

(i) Edges between V1 and V3 are blue. Edges between V2 and V4 are blue.

(ii) Edges between Vi and Vi+1 are green and are directed from Vi to Vi+1, for each i ∈ Z4.

(iii) Edges within Vi are red, i ∈ Z4. (See Fig. 1.)

Proof. Suppose that G is singular. By Lemma 1, 0 is a simple eigenvalue and n is a null vector of L(G).
Note that entries of n are from {±1, ±i}. Let V1, V2, V3, V4 be the set of those vertices of G which

corresponds to the entries 1, −i, −1 and i, respectively in n. Let u ∈ V1, v ∈ V3 such that e is an edge

in Gwith u and v as the end vertices. Since nu = 1 and nv = −1, wemust have the weightwuv = −1,

by Lemma 1 and the definition of n. Hence any edge connecting V1 and V3 must be blue. Similarly

any edge connecting V2 and V4 must be blue. Similarly edges connecting Vi and Vi+1 must be green,

directed from Vi to Vi+1, for each i ∈ Z4. It is easy to see that edges within Vi must be red.

Conversely, suppose that V(G) = V1 ∪ V2 ∪ V3 ∪ V4, and (i)–(iii) are satisfied. We associate

the complex numbers 1, −i, −1 and i to V1, V2, V3 and V4, respectively. Thus by Theorem 8(d), G is

singular. �
Remark 18. (a) Notice that in Theorem 17, some of the Vi’s could be empty. For example, taking G

an unweighted undirected graph, we have V(G) = V1. Hence the structure of a connected singular

3-colored digraph naturally extends that of the unweighted undirected graph.

(b) Notice further that, as a mixed graph does not have green edges, the components V2 and V4 in

Theorem 17 are empty. Hence the structure of a connected singular mixed graph is as shown in the

following picture.

(c) Observe that if we consider all edges blue (edgeweights−1), then L(G) is the signless Laplacian.
As we do not have red edges and green edges, we see the following well known result: the signless

Laplacian of a connected undirected graph is singular if and only if the graph is bipartite.
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The following theorem says that a singular 3-colored digraph is D-similar to a 3-colored digraph

with all the edges having color red.

Theorem 19. Let G be a connected 3-colored digraph on vertices 1, . . . , n. Then G is singular if and only if

there is a diagonalmatrix Dwith diagonal entries from the set {±1, ±i} such that D∗L(G)D is the Laplacian

matrix of the 3-colored digraph DG with all the edges having color red.

Proof. Using Lemma 2 and the information about the entries of D, the proof easily follows. �

Remark 20. Notice that in the case of mixed graphs we do not have green edges. Hence a singular

mixed graph has a null vector n with entries ±1. In that case the diagonal matrix D in Theorem 19 is

nothing but a signature matrix. Thus Theorem 19 is a generalization of Theorem 4 (iii) of [1].

Let C = [1, . . . , k, 1] be a cycle contained in a 3-colored digraph G on vertices 1, . . . , n. Let nb(C)
denote the number of blue edges in C. Let n+

g (C) and n−
g (C) denote the number of green edges in C

which are directed along the cycle and the number of green edges in C which are directed opposite

to the cycle, respectively. The following result is crucial for another characterization of singularity for

3-colored digraphs which is done next.

Lemma 21. Let G be a 3-colored digraph on vertices 1, . . . , n whose underlying undirected graph is a

cycle C. Then G is singular if and only if

(a) either nb(C) is even and n+
g (C) − n−

g (C) ≡ 0 (mod 4),

(b) or nb(C) is odd and n+
g (C) − n−

g (C) ≡ 2 (mod 4).

Proof. Using Lemma 4, L(G) is singular if and only if

1 = wC = (−1)nb(C)i
n+
g (C)(−i)n

−
g (C) = (−1)nb(C)i

n+
g (C)−n−

g (C),

which implies the result. �

Remark 22. Note that Theorem17, Theorem19 and Lemma21 together naturally generalizes Theorem

4 of [1].

The following theorem gives a characterization of connected nonsingular 3-colored digraphs.

Theorem 23. Let G be a connected 3-colored digraph on vertices 1, . . . , n. Then G is nonsingular if and

only if G has a cycle C = [1, . . . , k, 1] satisfying one of the following conditions:

(a) n+
g (C) − n−

g (C) ≡ 1 (mod 2),

(b) nb(C) is even and n+
g (C) − n−

g (C) ≡ 2 (mod 4),

(c) nb(C) is odd and n+
g (C) − n−

g (C) ≡ 0 (mod 4).

Proof. Suppose that G is nonsingular. By Corollary 9, G contains a nonsingular cycle, say C. Hence by

Lemma 21, it follows that the cycle C satisfies one of the conditions (a), (b) or (c).

Conversely, suppose that G contains a cycle C satisfying one of the conditions (a), (b) or (c). Then

by Lemma 21, the cycle C is nonsingular. Hence G is nonsingular, by Corollary 9. �

Remark 24. Notice that in the case ofmixed graphswe do not have green edges. Hence amixed graph

on vertices 1, . . . , n whose underlying undirected graph is a cycle is nonsingular if and only if nb(C)
is odd. Thus in view of remark 16, Theorem 23 is a generalization of Lemma 1 of [1].
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