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normalized Laplace operator for undirected graphs is used to char-

acterize directed acyclic graphs.Moreover, we identify certain struc-

tural properties of the underlying graph with extremal eigenvalues

of the normalized Laplace operator.We prove comparison theorems

that establish a relationship between the eigenvalues of directed

graphs and certain undirected graphs. This relationship is used to

derive eigenvalue estimates for directed graphs. Finally we intro-

duce the concept of neighborhood graphs for directed graphs and

use it to obtain further eigenvalue estimates.
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1. Introduction

For undirected graphs with nonnegative weights, the normalized graph Laplace operator � is a

well studied object, see e.g. the monograph [8]. In addition to its mathematical importance, the spec-

trum of the normalized Laplace operator has various applications in chemistry and physics. However,

it is not always sufficient to study the normalized Laplace operator for undirected graphs with non-

negative weights. In many biological applications, one naturally has to consider directed graphs with

positive and negative weights [3]. For instance, in a neuronal network only the presynaptic neuron

influences the postsynaptic one, but not vice versa. Furthermore, the synapses can be of inhibitory or

excitatory type. Inhibitory and excitatory synapses enhance or suppress, respectively, the activity of

the postsynaptic neuron and thus the directionality of the synapses and the existence of excitatory

and inhibitory synapses crucially influence the dynamics in neuronal networks [3]. Hence, a realistic

model of a neuronal network has to be a directed graph with positive and negative weights in which
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the neurons correspond to the vertices and the excitatory and inhibitory synaptic connections are

modeled by directed edges with positive and negative weights, respectively.

In contrast to undirected graphs not much is known about normalized Laplace operators for di-

rected graphs. In [9] Chung studied a normalized Laplace operator for strongly connected directed

graphs with nonnegative weights. This Laplace operator is defined as a self-adjoint operator using the

transition probability operator and the Perron vector. 1 For our purposes, however, this definition of

the normalized Laplace operator is not suitable since by the above considerations we are particularly

interested in graphs that are neither strongly connected nor have nonnegative weights. In this article,

we define a novel normalized Laplace operator that can in particular be defined for directed graphs

that are neither strongly connected nor have nonnegative weights. In contrast to Chung’s normalized

Laplace operator our normalized Laplace operator is in general neither self-adjoint nor nonnegative.

Moreover, our definition of the normalized Laplace operator is motivated by the observation that it

has already found applications in the field of complex networks, see [2,3].

The paper is organized as follows. In Section 2 we define the normalized Laplace operator for di-

rectedgraphsand inSections3and4wederive its basic spectral properties. In Section5wecharacterize

directed acyclic graphs by means of their spectrum. Extremal eigenvalues of the Laplace operator are

studied in Sections 6 and 7. In Section 8 we prove several eigenvalues estimates for the normalized

Laplace operator. Finally in Section 9 we introduce the concept of neighborhood graphs and use it to

derive further eigenvalue estimates.

2. Preliminaries

Unless stated otherwise,we consider finite simple loopless graphs. Let� = (V, E,w)be aweighted

directed graphonn verticeswhereV denotes the vertex set, E denotes the edge set, andw : V×V → R
is the associated weight function of the graph. For a directed edge e = (i, j) ∈ E, we say that there is

an edge from i to j. The weight of e = (i, j) is given by wji
2 and we use the convention that wji = 0 if

and only if e = (i, j) /∈ E. The graph � = (V, E,w) is an undirected weighted graph if the associated

weight function w is symmetric, i.e. satisfies wij = wji for all i and j. Furthermore, � is a graph with

nonnegative weights if the associated weight function w satisfies wij � 0 for all i and j. For ease

of notation, let G denote the class of weighted directed graphs �. Furthermore, let Gu, G+ and Gu+
denote the class ofweightedundirectedgraphs, the class ofweighteddirectedgraphswithnonnegative

weights and the class of weighted undirected graphs with nonnegative weights, respectively. The in-

degree and the out-degree of vertex i are given by dini := ∑
j wij and douti := ∑

j wji, respectively. A

graph is said to be balanced if dini = douti for all i ∈ V . Since every undirected graph is balanced, the

two notions coincide for undirected graphs. Thus, we simply refer to the degree di of an undirected

graph. A graph � is said to have a spanning tree if there exists a vertex from which all other vertices

can be reached following directed edges. A directed graph � is weakly connected if replacing all of its

directed edges with undirected edges produces a connected (undirected) graph. A directed graph � is

strongly connected if for any pair of distinct vertices i and j there exists a path from i to j and a path

from j to i. An undirected graph is weakly connected if and only if it is strongly connected. Hence, we

do not distinguish between weakly and strongly connected undirected graphs. We simply say that the

undirected graph is connected if it is weakly (strongly) connected.

Definition 2.1. Let C(V) denote the space of complex valued functions on V . The normalized graph

Laplace operator for directed graphs � ∈ G is defined as

� : C(V) → C(V),

1 A similar construction is used in [22] to study the algebraic connectivity of the Laplace operator L = D−W defined on directed

graphs.
2 We use this convention instead of denoting the weight of the edge e = (i, j) by wij , since it is more appropriate if one studies

dynamical systems defined on graphs, see for example [2].
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�v(i) =
⎧⎪⎨⎪⎩

v(i) − 1

dini

∑
j wijv(j) if dini �= 0.

0 else.
(1)

If dini �= 0 for all i ∈ V , then � is given by

� = I − D−1W,

where D : C(V) → C(V) is the multiplication operator defined by

Dv(i) = dini v(i) (2)

andW : C(V) → C(V) is the weighted adjacency operator

Wv(i) = ∑
j∈V

wijv(j).

When restricted to undirected graphs with nonnegative weights, Definition 2.1 reduces to the well-

known definition of the normalized Laplace operator for undirected graphswith nonnegativeweights,

c.f. [16].

The choice of normalizing by the in-degree is to some extend arbitrary. One could also consider the

operator

� : C(V) → C(V),

�v(i) =
⎧⎪⎨⎪⎩

v(i) − 1

douti

∑
j wjiv(j) if douti �= 0.

0 else.
(3)

Note however, that both operators � and � are equivalent to each other in the sense that �(�) =
�(�), where � is the graph that is obtained from � by reversing all edges.

Since we consider a normalized graph Laplace operator, i.e. we normalize the edge weights w.r.t.

the in-degree, vertices with zero in-degree are of particular interest and need a special treatment. We

define the following:

Definition 2.2. We say that vertex i is in-isolated or simply isolated if wij = 0 for all j ∈ V . Similarly,

vertex i is said to be in-quasi-isolated or simply quasi-isolated if dini = ∑
j wij = 0.

Note that every isolatedvertex isquasi-isolatedbutnotviceversa. Thesedefinitions canbeextended

to induced subgraphs:

Definition 2.3. Let � = (V, E,w) ∈ G be a graph and �′ = (V ′, E′,w′) be an induced subgraph of

�, i.e. V ′ ⊆ V , E′ = E ∩ (V ′ × V ′) ⊆ E, andw′ : V ′ × V ′ → R,w′ := w|E′ . We say that �′ is isolated if

wij = 0 for all i ∈ V ′ and j /∈ V ′. Similarly,�′ is said to be quasi-isolated if
∑

j∈V\V ′ wij = 0 for all i ∈ V ′.

We do not exclude the case where V ′ = V . Thus, in particular, every graph � is isolated.

It is useful to introduce the reduced Laplace operator �R.

Definition 2.4. LetVR ⊆ V be the subset of all vertices that are not quasi-isolated. The reduced Laplace

operator �R : C(VR) → C(VR) is defined as

�Rv(i) = v(i) − 1

dini

∑
j∈VR

wijv(j) i ∈ VR, (4)

where dini is the in-degree of vertex i in �.
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As above �R can be written in the form �R = IR − D
−1
R WR where IR is the identity operator on VR.

It is easy to see that the spectrum of � consists of the eigenvalues of �R and |V \ VR| times the

eigenvalue 0, i.e.

spec(�) = (|V \ VR| times the eigenvalue 0) ∪ spec(�R). (5)

We remark here that �R can be considered as a Dirichlet Laplace operator. The Dirichlet Laplace

operator for directed graphs is defined as in the case of undirected graphs, see e.g. [13]. Let� ⊆ V and

denote by C(�) the space of complex valued functions v : � → C. The Dirichlet Laplace operator ��

on C(�) is defined as follows: First extend v to the whole of V by setting v = 0 outside � and then

��v = (�v)|�,

i.e. for any i ∈ � we have

��v(i) = v(i) − 1

dini

∑
j∈V

wijv(j) = v(i) − 1

dini

∑
j∈�

wijv(j)

since v(j) = 0 for all j ∈ V \ �. Hence, �R = �� if we set � = VR.

As already mentioned in the introduction, we are particularly interested in graphs that are not

strongly connected. However, every graph that is not strongly connected can uniquely be decomposed

into its strongly connected components [6]. Using this decomposition, the Laplace operator � can be

represented in the Frobenius normal form [6], i.e. either � is strongly connected or there exists an

integer z > 1 s.t.

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�1 �12 · · · �1z

0 �2 · · · �2z

...
...

. . .
...

0 0 · · · �z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

where�1, . . . , �z are squarematrices corresponding to the strongly connected components�1, . . . ,
�z of�. In the following, the vertex set of�k is denoted by Vk . Then the off-diagonal elements of�k are

of the form
wij

dini
for all i, j ∈ Vk ifd

in
i �= 0andzerootherwise and thediagonal elements are either zero (if

the in-degree of the corresponding vertex is equal to zero) or one (if the in-degree of the corresponding

vertex is non-zero). If Vk does not contain a quasi-isolated vertex, then �k is irreducible. Furthermore,

the submatrices �kl , 1 � k < l � z are determined by the connectivity structure between different

strongly connected components. For example, �kl contains all elements of the form
wij

dini
for all i ∈ Vk

and all j ∈ Vl . A simple consequence of (6) is that

spec(�) =
z⋃

i=1

spec(�i). (7)

Note that �i, i = 1, . . . , z, is a matrix representation of the Dirichlet Laplace operator of the strongly

connected component �i, i.e. �i = �� for � = Vi. To sum up our discussion, the spectrum of the

Laplace operator of a directed graph is the union of the spectra of the Dirichlet Laplace operators of its

strongly connected components �i.

We conclude this section by introducing the operator P := I − �. We have

P : C(V) → C(V),

Pv(i) =
⎧⎪⎨⎪⎩

1

dini

∑
j wijv(j) if dini �= 0.

v(i) else.
(8)
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For technical reasons, it is sometimes convenient to study P instead of �. Clearly, the eigenvalues of

� and P are related to each other by

λ(�) = 1 − λ(P), (9)

i.e. if λ is an eigenvalue of P then 1 − λ is an eigenvalue of �. When restricted to graphs � ∈ G+,

P(�) is equal to the transition probability operator of the reversal graph �. Furthermore, we define

the reduced operator PR = IR − �R = D
−1
R WR.

3. Basic properties of the spectrum

In this section, we collect basic spectral properties of the Laplace operator �.

Proposition 3.1. Let � ∈ G then following assertions hold:

(i) The Laplace operator � has always an eigenvalue λ0 = 0 and the corresponding eigenfunction is

given by the constant function.

(ii) The eigenvalues of � appear in complex conjugate pairs.

(iii) The eigenvalues of � satisfy

n−1∑
i=0

λi =
n−1∑
i=0

	(λi) = |VR|.

(iv) The spectrum of � is invariant under multiplying all weights of the form wij for some fixed i and

j = 1, . . . , n by a non-zero constant c.

(v) The spectrum of � is invariant under multiplying all weights by a non-zero constant c.

(vi) The Laplace operator spectrum of a graph is the union of the Laplace operator spectra of its weakly

connected components.

Proof.

(i) This follows immediately from the definition of � since

�v(i) =
⎧⎪⎨⎪⎩

1

dini

∑
j wij(v(i) − v(j)) if dini �= 0.

0 else.

(ii) Since � can be represented as a real matrix, the characteristic polynomial is given by

det(� − λI) = a0 + a1λ + · · · + an−1λ
n−1,

with ai ∈ R for all i = 0, 1, . . . , n − 1. Consequently, det(� − λI) = 0 if and only if det

(� − λI) = 0.

(iii) Theequality
∑n−1

i=0 λi = ∑n−1
i=0 	(λi) follows from (ii). By considering the traceof�, oneobtains∑n−1

i=0 λi = |VR|.
(iv), (v) and (vi) follow directly from the definition of �. �

From Proposition 3.1(v) it follows that it is equivalent to study the spectrum of graphs with non-

negative or nonpositive weights. Moreover, because of Proposition 3.1(vi), we will restrict ourselves

to weakly connected graphs in the following.

Proposition 3.2. The spectrum of � satisfies

spec(�) ⊆ D(1, r1) ∪ {0} ⊆ D(1, r2) ∪ {0} ⊆ D(1, r) ∪ {0},
where D(c, r) denotes the disk in the complex plane centered at c with radius r and
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r1 := max
p=1,...,z

max
i∈VR,p

∑
j∈VR,p

|wij|
|dini | ,

r2 := max
i∈VR

∑
j∈VR

|wij|
|dini | ,

and

r := max
i∈V

r(i), (10)

where r(i) =
∑

j∈V |wij|
|dini | . Here, VR,1, . . . , VR,z are the strongly connected components of the induced sub-

graph �R whose vertex set is given by VR. We use the convention that r1, r2 and r are equal to zero if

dini = 0.

Proof. Clearly, r1 � r2 � r and the proof follows from Gersgorin’s circle theorem (see e.g. [15]) and

(5)–(7). �

For undirected graphs with nonnegative weights Proposition 3.2 reduces to the well-known result

[8], that all eigenvalues of � are contained in the interval [0, 2].
The radius r in Proposition 3.2 has the following properties: r � 1 if and only if VR �= ∅ and r = 0

if and only if VR = ∅.
Lemma 3.1. Let � be a graph without quasi-isolated vertices and let r(i) = r = 1 for all i ∈ V. Then

there exists a graph �+ ∈ G+ that is isospectral to �.

Proof. Since r = 1 it follows from the definition of r that for every vertex i ∈ V the sign sgn(wij) is

the same for all j ∈ V . By Proposition 3.1(iv) the graph �+ ∈ G+ that is obtained from � by replacing

the associated weight function w by its absolute value |w| is isospectral to �. �

In the following, �+ is called the associated positive graph of �.

Corollary 3.1. For graphs � ∈ G the non-zero eigenvalues satisfy

1 − r � min
i:λi �=0

	(λi) � |VR|
n − m0

� max
i:λi �=0

	(λi) � 1 + r, (11)

where m0 denotes the multiplicity of the eigenvalue zero. In particular, we have

1 � max
i:λi �=0

	(λi).

Proof. This estimate follows from Propositions 3.1(iii) and 3.2. The last statement follows from the

observation that n − m0 � |VR|. �

Later, in Corollary 7.4, we characterize all graphs for which maxi:λi �=0 	(λi) = 1 + r. Similarly, in

Corollary 7.7, we characterize all graphs for which mini:λi �=0 	(λi) = 1 − r, provided that r > 1.

For graphs with nonnegative weights, Proposition 3.2 can be further improved.

Proposition 3.3. Let � ∈ G+, then all eigenvalues of the Laplace operator � are contained in the shaded

region in Fig. 1.

Proof. This follows from the results in [11], see [19] for further discussion. �

We close this section by considering the following example.
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Fig. 1. For a graph � ∈ G+ with n vertices, all eigenvalues of � are contained in the shaded region.

(a) (b)

Fig. 2. (a) The eigenvalues of � are 1.45 ± 0.46i, 1.10, 0. (b) The eigenvalues of � are 1.65, 1.18 ± 0.86i, 0.

Example 1. In [8] it is shown that the smallest nontrivial eigenvalue λ1 of non-complete undirected

graphs � ∈ Gu+ with nonnegative weights satisfies λ1 � 1. It is tempting to conjecture that

mini �=0 	(λi) � 1 for all non-complete undirected graphs with positive and negative weights and

for all non-complete directed graphs with nonnegative weights. However, the two examples in Fig. 2

show that this is, in general, not true. For both, the non-complete graph �1 ∈ Gu in Fig. 2(a) and the

non-complete graph �2 ∈ G+ in Fig. 2(b) we have mini �=0 	(λi) > 1. Thus, there exist non-complete

graphs �1 ∈ Gu and �2 ∈ G+ for which the smallest non-zero real part of the eigenvalues is larger

than the smallest non-zero eigenvalue of all non-complete graphs � ∈ Gu+. This observation has

interesting consequences for the synchronization of coupled oscillators, see [1].

4. Spectrum of � and isolated components of �

We have the following simple observation:

Lemma 4.1. Consider a graph � ∈ G and let �i, 1 � i � r be its strongly connected components.

Furthermore, let the Laplace operator � be represented in Frobenius normal form (6). Then we have:

(i) If �i is isolated, then �ij = 0 for all j > i.

(ii) If �i is quasi-isolated, then the row sums of �i,(i+1) . . . �ir add up to zero.

Moreover, if � ∈ G+ then

(iii) �i is isolated if and only if �ij = 0 for all j > i.

(iv) �i is quasi-isolated if and only if the row sums of �i,(i+1) . . . �ir add up to zero.
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Lemma4.2. Everygraph� ∈ G containsat least one isolated strongly connected component. Furthermore,

� ∈ G contains exactly one isolated strongly connected component if and only if � contains a spanning

tree.

Proof. This follows immediately from the Frobenius normal form of �. �

In particular, every undirected graph � ∈ Gu is strongly connected and isolated.

In general, it is not true that the spectrum of an induced subgraph �′ of � is contained in the

spectrum of the whole �, i.e. spec(�(�′)) � spec(�(�)). However, we have the following result:

Proposition 4.1. Let � ∈ G and �′ be an induced subgraph of �. If one of the following conditions is

satisfied

(i) �′ consists of 1 � p � r strongly connected components of � and is quasi-isolated,

(ii) �′ is isolated,

then

spec(�(�′)) ⊆ spec(�(�)).

Proof.

(i) First, assume that �′ is quasi-isolated and consists of p strongly connected components of �.

Without loss of generality we assume that �′ = ∪p
i=1�i. Since �′ is quasi-isolated we have for

all vertices i ∈ V ′:

dini = ∑
j∈V

wij = ∑
j∈V ′

wij +
∑

j∈V\V ′
wij = ∑

j∈V ′
wij

Thus, the in-degree of each vertex i ∈ V ′ is not affected by the vertices in V \ V ′. Using (6) and

(7) we obtain

spec(�(�′)) =
p⋃

i=1

spec(�i) ⊆
r⋃

i=1

spec(�i) = spec(�(�)).

(ii) Now assume that �′ is isolated. Observe that each isolated induced subgraph �′ of � has to

consist of p, 1 � p � r strongly connected components of�. Thus, the second assertion follows

from the first one. �

We will make use of the following theorem by Taussky [20].

Theorem 4.1 [20]. A complex n× nmatrix A is non-singular if A is irreducible and |Aii| � ∑
j �=i |Aij|with

equality in at most n − 1 cases.

Lemma 4.3. Let � ∈ G+ be a graph with nonnegative weights and let �i , 1 � i � r be its strongly

connected components. Furthermore, let � be represented in Frobenius normal form. Then, zero is an

eigenvalue (in fact a simple eigenvalue) of �i if and only if �i is isolated.

Proof. Weobserve that since� ∈ G+, it follows that dinj �= 0 for all j ∈ �i and hence�i is irreducible.

First assume that�i is not isolated. Assume further that�i consists ofmore than one vertex. Then there

exists a vertex k ∈ Vi s.t. wkl �= 0 for some l /∈ Vi. For vertex k we have

|(�i)kk| = 1 >

∑
j∈Vi

|wkj|∑
j∈V |wkj| = ∑

j∈Vi

|wkj|
|dink | = ∑

j∈Vi

|(�i)kj|.
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For all other j ∈ Vi we have

|(�i)jj| = 1 �
∑
l∈Vi

|wjl|
|dinj | = ∑

l∈Vi

|(�i)jl|

and hence by Theorem 4.1, 0 is not an eigenvalue of �i. If �i consists of one vertex, then 1 is the only

eigenvalue of �i and hence 0 is not an eigenvalue of �i.

Now we assume that �i is isolated and consists of more than one vertex. We consider the operator

Pi := Ii − �i, where Ii is the identity operator on �i. Since all row sums of Pi are equal to one, it

follows that the spectral radius ρ of Pi is equal to one. Moreover, since � ∈ G+, it follows that Pi is

nonnegative and irreducible. The Perron–Frobenius theorem implies thatρ = 1 is a simple eigenvalue

of Pi and hence, by (9), 0 is a simple eigenvalue of�i. If�i is an isolated vertex, then clearly 0 is a simple

eigenvalue of �i. �

Theorem 4.2. For a graph � ∈ G+ the following four statements are equivalent:

(i) The multiplicity m1(P) of the eigenvalue one of P is equal to k.

(ii) The multiplicity m0(�) of the eigenvalue zero of the Laplace operator � is equal to k.

(iii) There exist k isolated strongly connected components in �.

(iv) The minimum number of directed trees needed to span the whole graph is equal to k.

Proof. (i) ⇔ (ii) follows from (9). (ii) ⇔ (iii) follows from Lemma 4.3 and (7). (iii) ⇔ (iv) follows

from the Frobenius normal form and Lemma 4.1 (iii). �

A similar result was obtained for the algebraic graph Laplace operator L = D − W in [21]. In the

presence of negative weights, Theorem 4.2 is not true anymore. However, for general graphs � ∈ G
we have the following:

Corollary 4.1. For a graph � ∈ G we have:

(i) m1(P) = m0(�).
(ii) The number of isolated strongly connected components in � is equal to the minimum number of

directed trees needed to span �.

(iii) The number of isolated strongly connected components in � is less or equal to the multiplicity of the

eigenvalue zero of �.

Proof. The first two statements follows exactly in the same way as in Theorem 4.2, since the proof is

not affected by the presence of negative weights. The third assertion follows from the observation that

for every isolated strongly connected component�i the Laplace operator�i has at least one eigenvalue

equal to zero. This observation follows immediately from Propositions 4.1 and 3.1(i). �

5. Directed acyclic graphs

Definition 5.1. A directed cycle is a cycle with all edges being oriented in the same direction. A vertex

is a cyclic vertex if it is contained in at least one directed cycle. A graph is an directed acyclic graph if

none of its vertices are cyclic. The class of all directed acyclic graphs is denoted by Gac.

Note that a directed acyclic graph is not necessarily a directed tree, because we do not exclude the

existence of topological cycles in the graph. If � is represented in the Frobenius normal form, then we

immediately obtain the following:

Lemma 5.1. The following three statements are equivalent:
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(i) � ∈ Gac is a directed acyclic graph.

(ii) Every strongly connected component of � consists of exactly one vertex.

(iii) � represented in Frobenius normal form is upper triangular.

Theorem 5.1.

(i) If � ∈ Gac is a directed acyclic graph, then spec(�) ⊆ {0, 1}. Furthermore, m0(�) = |V \ VR| and
m1(�) = |VR|.

(ii) � ∈ G+ and spec(�) ⊆ {0, 1} if and only if � ∈ Gac,+.

Proof. The first part follows immediately from Lemma 5.1, the definition of �, and (7). Thus, we only

have to prove that if� ∈ G+ and spec(�) ⊆ {0, 1} then� ∈ Gac,+. Assume the converse, i.e. assume

that � ∈ G+ and spec(�) ⊆ {0, 1} but � /∈ Gac,+. Then, by Lemma 5.1 there exists a strongly

connected component�i in� consisting of at least two vertices. First, assume that�i is isolated. Then,

by Lemma 4.3 exactly one eigenvalue of �i is equal to zero. Using Proposition 4.1 and Corollary 3.1 we

conclude that there exists an eigenvalue λ ∈ spec(�) s.t.	(λ) � ni
ni−1

> 1where ni = |Vi| > 1. This

is the desired contradiction. Nowassume that�i is not isolated. By Lemma4.3, all eigenvalues of�i are

non-zero. Since� ∈ G+,Pi is nonnegative and irreducible. ThePerron–Frobenius theorem implies that

the spectral radius ρ of Pi is positive and is an eigenvalue of Pi. By (9), 1−ρ is an eigenvalue of�i that

satisfies 1 > 1−ρ > 0. Hence, we have a contradiction to the assumption that spec(�) ⊆ {0, 1}. �

Corollary 5.1. If k eigenvalues of � are not equal to 0 or 1, then there exists at least k cyclic vertices in the

graph.

6. Extremal eigenvalues

In this section, we study eigenvalues λ of � that satisfy |1 − λ| = r, i.e. eigenvalues that are

boundary points of the disc D(1, r) in Proposition 3.2.

Definition 6.1. Let � ∈ G and �′ be an induced subgraph of �. The induced subgraph �′ is said to be

maximal if all vertices i ∈ V ′ satisfy

r(i) = max
l

r(l) = r,

where as before

r(i) :=
∑

j∈V |wij|
|dini | .

Note that, if we exclude isolated vertices, then every graph with nonnegative weights � ∈ G+ is

maximal. Thus, in particular, every connected graph � ∈ Gu+ is maximal.

Proposition 6.1. Let λ �= 0 be an eigenvalue of� that satisfies |1−λ| = r. Then� possesses a maximal,

isolated, strongly connected component that consists of at least two vertices.

Before we prove Proposition 6.1, we consider the following lemma.

Lemma 6.1. Let λ �= 1, be an eigenvalue of P that satisfies |λ| = r. Then λ is an eigenvalue of the Dirichlet

operator Pk that corresponds to the strongly connected component �k for some k. Furthermore, �k consists

of at least two vertices and the corresponding eigenfunction u for λ satisfies |u(i)| = const for all i ∈ Vk.

Proof. From (6) and (7) it follow that λ is an eigenvalue of Pk for some 1 � k � z. Since we assume

that λ �= 1 it follows that VR �= ∅ and hence r � 1. This in turn implies that �k consists of at least two
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vertices because otherwise by Theorem 5.1 and (9), Pk has only one eigenvalue which is either equal

to zero or one. So we only have to prove that |u(i)| = const for all i ∈ Vk .

Assume that |u| is not constant on Vk . Since�k is strongly connected, there exists two vertices i, j in
Vk that satisfy wij �= 0 and |u(j)| < |u(i)| = maxl∈Vk |u(l)|. Again, since λ �= 1 it follows that i ∈ VR

and hence we have

|Pku(i)| =
∣∣∣∣∣∣ 1

dini

∑
l∈Vk

wilu(l)

∣∣∣∣∣∣ � 1

|dini |
∑
l∈Vk

|wil||u(l)|

< r(i)max
l∈Vk

|u(l)| � r max
l∈Vk

|u(l)|.

On the other hand we have

|Pku(i)| = |λ||u(i)| = r max
l∈Vk

|u(l)|. (12)

This is a contradiction to the last equation. �

Now we prove Proposition 6.1.

Proof. For simplicity, we consider P instead of �. Formulated in terms of P we have to show the

following: Let λ �= 1 be an eigenvalue of P that satisfies |λ| = r then � possesses an isolated,

maximal, strongly connected component consisting of at least two vertices. As in the proof of Lemma

6.1 one can show that λ is an eigenvalue of the operator Pk that corresponds to a strongly connected

component �k consisting of at least two vertices.

First we show that all vertices in �k are not quasi-isolated. Assume that at least one vertex, say

vertex l, in �k is quasi-isolated. Then

Pku(l) = u(l) = λu(l).

Since λ �= 1 it follows that u(l) = 0. Thus, we have |u(l)| < maxj∈Vk |u(j)| which is a contradiction to

Lemma 6.1.

Now we prove that �k is isolated. Assume that �k is not isolated, then there exists a vertex i ∈ Vk

and a neighbor j /∈ Vk of i. Thus, we have for the vertex i that

|Pku(i)| =
∣∣∣∣∣∣ 1

dini

∑
l∈Vk

wilu(l)

∣∣∣∣∣∣ � 1

|dini |
∑
l∈Vk

|wil||u(l)|

<
1

|dini |
∑
l∈V

|wil|max
l∈Vk

|u(l)| = r(i)max
l∈Vk

|u(l)|

� r max
l∈Vk

|u(l)|.

On the other hand, we have

|Pku(i)| = |λ||u(i)| = r|u(i)|. (13)

Comparing these two equations yields

|u(i)| < max
l∈Vk

|u(l)|.

Again, this is a contradiction to Lemma 6.1.

Finally, we have to prove that the strongly connected component �k is maximal. Assume that �k

not maximal. Then there exists a vertex, say i ∈ Vk , such that r(i) < r. We conclude that
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|Pku(i)| =
∣∣∣∣∣∣ 1

dini

∑
l∈Vk

wilu(l)

∣∣∣∣∣∣ � 1

|dini |
∑
l∈Vk

|wil||u(l)|

� 1

|dini |
∑
l∈V

|wil|max
l∈Vk

|u(l)| = r(i)max
l∈Vk

|u(l)| < r max
l∈Vk

|u(l)|.

Togetherwith (13) this implies that |u(i)|<maxl∈Vk |u(l)|. Again, this is acontradiction toLemma6.1. �

In Proposition 6.1 we have to exclude the eigenvalue λ = 0. However, if we assume that all vertices

are not quasi-isolated, Proposition 6.1 also holds for λ = 0.

Proposition 6.2. Let� ∈ G and assume that all vertices are not quasi-isolated. Ifλ = 0 is an eigenvalue of

� that satisfies |1−λ| = r, then there exists amaximal, isolated, strongly connected component consisting

of at least two vertices in �.

Proof. Since V = VR we have for all i ∈ V that r(i) � 1. By assumption, we have 1 = r and hence

r(i) = 1 for all i ∈ V . This implies that every strongly connected component in � is maximal. By

Lemma 4.2 every graph contains an isolated strongly connected component. Since λ = 0 and we

exclude quasi-isolated vertices it follows that there exists an isolated maximal strongly connected

component in � that consists of at least two vertices. �

7. k-Partite graphs and anti-k-partite graphs

7.1. k-Partite graphs

Definition 7.1. � ∈ G is k-partite, k � 2, if dini �= 0 for all i ∈ V and the vertex set V consists

of k nonempty subsets V1, . . . , Vk such that the following holds: There are only edges from vertices

j ∈ Vq−1 to vertices i ∈ Vq, q = 1, . . . , k, if
wij

dini
> 0 and if k is even from vertices j ∈ Vq+l to vertices

i ∈ Vq, q = 1, . . . , k, if
wij

dini
< 0 where l = k

2
− 1 ∈ N and we identify Vk+1 with V1.

The condition l = k
2

− 1 ∈ N implies that, in a k-partite graph, there can only exists weights

satisfying
wij

dini
< 0 if k is even. The special choice of l ensures that the distance between different

neighbors of one particular vertex, say vertex i, is a multiple of k
2
. If the distance of two neighbors s, t

of i is an odd multiple of k
2
, then s, t belong to different subsets and

wis

wit
< 0. If the distance between

s, t is an even multiple of k
2
, then s, t belong to the same subset and

wis

wit
> 0.

Theorem 7.1. � ∈ G contains a k-partite isolated maximal strongly connected component if and only if

1 − re±2π i 1
k are eigenvalues of �.

Proof. Again, for technical reasons, we consider P instead of �. Since the eigenvalues appear in com-

plex conjugate pairs (Proposition 3.1(ii)), it is sufficient to show that re2π i 1
k is an eigenvalue of P.

Assume that � contains a k-partite isolated maximal strongly connected component �p. We claim

that the function

u1(j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e2π i k
k

e2π i k−1
k

...

e2π i 1
k

if j ∈ Vp,1

if j ∈ Vp,2

...

if j ∈ Vp,k,
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where Vp,1, . . . , Vp,k is a k-partite decomposition of Vp, is an eigenfunction for the eigenvalue re2π i 1
k

of Pp. For any j ∈ Vp,q, 1 � q � k, we have

Ppu
1(j) = 1

dinj

∑
t∈Vp

wjtu
1(t)

= 1

dinj

⎛⎝ ∑
t∈Vp,q−1

wjtu
1(t) + ∑

t∈Vp,q+l

wjtu
1(t)

⎞⎠

= 1

dinj

⎛⎝ ∑
t∈Vp,q−1

wjte
2π i 1

k u1(j) + ∑
t∈Vp,q+l

wjte
−π ie2π i 1

k u1(j)

⎞⎠
= 1

|dinj |
∑

t∈Vp,q−1

|wjt|e2π i 1
k u1(j) − 1

|dinj |
∑

t∈Vp,q+l

|wjt|e−π ie2π i 1
k u1(j)

= 1

|dinj |
∑
t∈Vp

|wjt|e2π i 1
k u1(j) = 1

|dinj |
∑
t∈V

|wjt|e2π i 1
k u1(j)

= r(j)e2π i 1
k u1(j) = re2π i 1

k u1(j),

where we used that the k-partite component �p is isolated and maximal. We conclude that re2π i 1
k is

an eigenvalue of Pp and, by Proposition 4.1, re2π i 1
k is an eigenvalue of P.

Now assume that re2π i 1
k is an eigenvalue of P. Since |re2π i 1

k | = r and re2π i 1
k �= 1, Proposition

6.1 implies that � contains an isolated maximal strongly connected component �p and re2π i 1
k is an

eigenvalue of the corresponding Dirichlet operator Pp. We only have to prove that �p is k-partite.

Let u ∈ C(Vp) be an eigenfunction for the eigenvalue re2π i 1
k . On the one hand, since �p is maximal

and isolated, all j ∈ Vp satisfy

Ppu(j) = re2π i 1
k u(j) = 1

|dinj |
∑
t∈V

|wjt|e2π i 1
k u(j) (14)

= 1

|dinj |
∑
t∈Vp

|wjt|e2π i 1
k u(j). (15)

On the other hand

Ppu(j) = 1

dinj

∑
t∈Vp

wjtu(t). (16)

Comparing these two equations yields

∑
t∈Vp

|wjt|
|dinj | = ∑

t∈Vp

wjt

dinj

u(t)

u(j)
e−2π i 1

k . (17)

Lemma 6.1 implies that the eigenfunction u satisfies |u(t)| = |u(j)| for all j, t ∈ Vp. Thus,
u(t)
u(j)

e−2π i 1
k

is a complex number whose absolute value is equal to one. Since we consider only real weights, we

have equality in (17) if

u(j) = e−2π i 1
k u(t), (18)
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whenever
wjt

dinj
> 0 and

u(j) = −e−2π i 1
k u(t) = e−π ie−2π i 1

k u(t),

whenever
wjt

dinj
< 0.

First, assume that
wij

dini
> 0 for all edges in �p. If t is a neighbor of j then the eigenfunction has to

satisfy Eq. (18). Since�p is strongly connectedwe can uniquely assign to each vertex i a value u(i) such

that every k-th vertex in a directed path has the same value since
(
e−2π i 1

k

)k = 1. Now decompose the

vertex set into k nonempty subsets s.t. all vertices with the same u-value belong to the same subset of

Vp. This yields a k-partite decomposition of �p.

If there also exist edges s.t.
wij

dini
< 0 is satisfied, then the crucial observation is that if

wjt

dinj
< 0 for

some j and t then there has to exist another neighbor s of j s.t.
wjs

dinj
> 0. We conclude that every vertex

j has at least one neighbor s such that
wjs

dinj
> 0. Thus, there exist k different u-values and we can find a

k-partite decomposition of Vp similarly as in the case studied before. �

Even if we do not require that the k-partite component is maximal we have:

Corollary 7.1. Let � ∈ G contain a k-partite isolated strongly connected component �p, and let r(j) = c

for all j ∈ Vp and some constant c. Then 1 − ce±2π i 1
k are eigenvalues of �.

Theorem 7.1 can be used to characterize the graph � ∈ G+ whose spectrum contains the distin-

guished eigenvalues 1 − e±2π i 1
n in Fig. 1. As a special case of Theorem 7.1 we obtain:

Corollary 7.2. Let � ∈ G+ be a graph with n vertices. Then, 1 − e±2π i 1
n is an eigenvalue of �(�) iff � is

a directed cycle.

Definition 7.2. The associated positive graph �+ ∈ G+ of a graph � ∈ G is obtained from � by re-

placing everyweightwij by its absolute value |wij|. The eigenvalues of�+ aredenotedbyλ+
0 , . . . , λ+

n−1

and the Laplace operator defined on the graph �+ is denoted by �+.

Clearly, a graph � ∈ G+ with nonnegative weights coincides with its associated positive graph,

i.e. � = �+.

Remark. It is also possible to define the associated negative graph �− of a graph � that is obtained

from � by replacing every weight wij by −|wij|. Note however, that by Proposition 3.1(v) the graphs

�− and �+ are isospectral. Thus, we will only consider �+ in the following.

Theorem 7.2. Let � ∈ G be a k-partite graph and r(j) = r for all j ∈ V. Then, the spectra of �+ and �

satisfy the following relation: λ+ ∈ spec(�+) iff 1 − re±2π i 1
k (1 − λ+) ∈ spec(�).

Proof. Let the function u satisfy �+u = λ+u. We define a new function v in the following way:

v(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e2π i 1
k u(j) if j ∈ V1

e2π i 2
k u(j) if j ∈ V2

...

e2π i k
k u(j) if j ∈ Vk,

(19)
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where V1, . . . , Vk is a k-partite decomposition of V . We show that v is an eigenfunction for � and the

corresponding eigenvalue is given by (1 − re−2π i 1
k (1 − λ+)). For any j ∈ Vq and 1 � q � k, we have

�v(j) = v(j) − 1

dinj

∑
t∈Vq−1

wjtv(t) − 1

dinj

∑
t∈Vq+l

wjtv(t)

= e2π i
q
k u(j) − 1

|dinj |
∑

t∈Vq−1

|wjt|e2π i
q−1
k u(t) + 1

|dinj |
∑

t∈Vq+l

|wjt|eπ ie2π i
q−1
k u(t)

= e2π i
q
k u(j) − 1

|dinj |
∑
t∈V

|wjt|e2π i
q−1
k u(t)

= e2π i
q
k u(j) − re2π i

q−1
k u(j) + re2π i

q−1
k

(
u(j) − 1∑

t∈V |wjt|
∑

t∈V
|wjt|u(t)

)
︸ ︷︷ ︸

=�+u(j)=λ+u(j)

= (1 − re−2π i 1
k (1 − λ+))v(j).

Since the edge weights are real, � can be represented as a real matrix and hence v is an eigenfunction

for the eigenvalue 1 − re2π i 1
k (1 − λ+)).

The other direction follows in a similar way. To be more precise, for an eigenfunction v of � we

define the function u by

u(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e2π i 1
k v(j) if j ∈ V1

e2π i 2
k v(j) if j ∈ V2

...

e2π i k
k v(j) if j ∈ Vk.

(20)

As above, one can show that u is an eigenfunction for �+ and corresponding eigenvalue 1− 1
r
e−2π i 1

k

(1−λ). �

Note that in Theorem 7.2 we do not assume that � is strongly connected. However, if we assume in

addition that � is strongly connected, then we have the following result:

Corollary 7.3. Let � ∈ G be a strongly connected graph, and r(j) = r for all j ∈ V. Then, � is k-partite if

and only if the spectra of�+ and� satisfy the following:λ+ is an eigenvalue of�+ iff1−re±2π i 1
k (1−λ+)

is an eigenvalue of �.

Proof. One direction follows from Theorem 7.2. The other direction follows from the observation that

zero is an eigenvalue of �+ and thus 1− re±2π i 1
k is an eigenvalue of �. Since � is strongly connected,

it follows from Theorem 7.1 that the whole graph is k-partite. �

Moreover, a k-partite graph has the following eigenvalues:

Proposition 7.1. Let � ∈ G be a k-partite graph and r(l) = r for all l ∈ V. Then, 1 − re2π i m
k ∈ spec(�)

for 1 � m � k − 1 and m odd. If, in addition,
wjt

dinj
> 0 for all j, t ∈ V, then 1 − e2π i m

k ∈ spec(�) for all

0 � m � k − 1.
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Proof. In order to prove that 1− re2π i m
k is an eigenvalue of �, it is sufficient to show that re2π i m

k is an

eigenvalue of P. Consider the functions

um(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e2π i mk
k if j ∈ V1

e2π i
m(k−1)

k if j ∈ V2

...

e2π i m1
k if j ∈ Vk,

(21)

for m = 0, 1, . . . , k − 1. One easily checks that these functions are linearly independent if k > 2.

For all j ∈ Vq, q = 1, . . . , k, and 0 � m � k − 1 we have

Pum(j) = 1

dinj

∑
t∈Vq−1

wjtu
m(t) + 1

dinj

∑
t∈Vq+l

wjtu
m(t)

= 1

|dinj |
∑

t∈Vq−1

|wjt|e2π i m
k um(j) − 1

|dinj |
∑

t∈Vq+l

|wjt|e−2π i ml
k um(j)

= 1

|dinj |
∑

t∈Vq−1

|wjt|e2π i m
k um(j) − 1

|dinj |
∑

t∈Vq+l

|wjt|e2π i m
k e−π imum(j). (22)

Ifm is odd, then e−π im = −1 and thus

Pum(j) = 1

|dinj |
∑

t∈Vq−1∪Vq+l

|wjt|e2π i m
k um(j)

= 1

|dinj |
∑
t∈V

|wjt|e2π i m
k um(j)

= re2π i m
k um(j).

Hence, 1 − re2π i m
k for 1 � m � k − 1 andm odd is an eigenvalue of �.

If in addition
wjt

dinj
> 0 for all j and t in V , then r = 1 and there are only edges from vertices in Vq−1

to vertices in Vq. Thus, the second term on the r.h.s. of (22) vanishes and we can conclude that

Pum(j) = 1

|dinj |
∑

t∈Vq−1

|wjt|e2π i m
k um(j) = 1

|dinj |
∑
t∈V

|wjt|e2π i m
k um(j)

= re2π i m
k um(j) = e2π i m

k um(j).

This shows that 1 − e2π i m
k for allm = 0, . . . , k − 1 is an eigenvalue of �. �

7.2. Anti-k-partite graphs

In this section, we study graphs that are closely related to k-partite graphs. We call those graphs

anti-k-partite graphs since they have the same topological structure as k-partite graphs but compared

to k-partite graphs, the normalized weights
wij

dini
in anti-k-partite graphs have always the opposite sign.

Definition 7.3. � ∈ G is anti-k-partite, for k � 2 and k even, if dini �= 0 for all i ∈ V and the vertex set

V consists of k nonempty subsets V1, . . . , Vk such that the following holds: There are only edges from
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vertices j ∈ Vq−1 to vertices i ∈ Vq if
wij

dini
< 0 or from vertices j ∈ Vq+l to vertices i ∈ Vq if

wij

dini
> 0

where l = k
2

− 1 ∈ N and we identify Vk+1 with V1.

In contrast to k-partite graphs, anti-k-partite graphs can only be defined if k is even. This follows

from the observation that every vertex i has at least one neighbor j such that
wij

dini
> 0. Hence, every

vertex i ∈ Vq has at least one neighbor in Vq+l for q = 1, . . . , k. Since we require that l = k
2

− 1 ∈ N,

it follows that k has to be even.

We mention the following simple observation without proof:

Proposition 7.2. Let � ∈ G+ be an anti-k-partite graph and k = 2 + 4m, where m = 0, 1, . . .. Then, �

is disconnected and if m � 1 � consists of two k
2
-partite connected components.

Theorem7.3. Let� ∈ G contain an anti-k-partitemaximal, isolated, strongly connected component, then

1 + re±2π i 1
k ∈ spec(�). Furthermore, if 1 + re±2π i 1

k ∈ spec(�) and one of the following two conditions

is satisfied

(i) k = 4m for m = 1, 2, . . .
(ii) k = 2 + 4m for m = 0, 1, . . . and r > 1,

then � contains an anti-k-partite isolated maximal strongly connected component.

Proof. Assume that� contains an anti-k-partitemaximal, isolated, strongly connected component. In

exactly the same way as in Theorem 7.1 one can show that 1 + re±2π i 1
k is an eigenvalue of �. We will

omit the details here. Now let 1+ re±2π i 1
k be an eigenvalue of�. Note that 1+ re±2π i 1

k �= 0 and thus,

by Proposition 6.1, � contains an maximal, isolated, strongly connected component �p. Furthermore,

we have that 1 + re±2π i 1
k is an eigenvalue of �p. By a reasoning similar to the one in the proof of

Theorem 7.1 it follows that the corresponding eigenfunction for �p satisfies

u(j) = −e2π i 1
k u(t) (23)

whenever
wjt

dinj
> 0 and

u(j) = e2π i 1
k u(t) (24)

whenever
wjt

dinj
< 0. Now assume that k = 4m and

wtj

dint
> 0 for all t, j ∈ Vp.

Since �p is strongly connected, k = 4m, and neighbors have to satisfy Eq. (23), we can uniquely

assign to every vertex an u-value such that every k-th vertex in a directed path has the same u-value.

Now decompose the vertex set into k nonempty subsets such that all vertices with the same u-value

belong to the same subset. This yields an anti-k-partite decomposition of �p.

If there also exists edges s.t.
wjt

dinj
< 0 is satisfied then, again, the crucial observation is that if

wjt

dinj
< 0

for some j and t then there also has to exist another neighbor s of j s.t.
wjs

dinj
> 0. Thus, there exist k

different u-values. Similar to above, we can find an anti-k-partite decomposition of Vp.

If k = 2 + 4m, m = 0, 1, . . . , the situation is different. If
wjt

dinj
> 0 for all j and t, then r = 1. In

this case, we cannot conclude that there exists an anti-k-partite component since already every k
2
-th

vertex in a directed path has the same u-value, i.e. (−1)
k
2 (e2π i 1

k )
k
2 = 1 for k = 2+ 4m,m = 0, 1, . . ..

Thus, we crucially need that r > 1. In this case, every vertex i has at least one neighbor j such that
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wij

dini
< 0. By (24) it follows that there has to exist k different u-values. Thus, we can obtain an anti-

k-partite component of �p in the same way as before. �

A simple example that shows that the assumption r > 1 is necessary if k = 2 + 4m in the last

theorem. If 1 − r = 0 is an eigenvalue of �, then this does not imply that there exists a 2-partite

isolated maximal strongly connected component in �.

The next theorem shows that there also exists a relationship between the spectrum of an anti-

k-partite graph and its associated positive graph.

Theorem 7.4. Let � ∈ G be an anti-k-partite graph and r(l) = r for all l ∈ V. Then, λ+ ∈ spec(�+) iff

1 + re±2π i 1
k (1 − λ+) ∈ spec(�).

We omit the proof of this theorem because it is the same as the proof of Theorem 7.2.

The next proposition is the corresponding result to Proposition 7.1 in the case of anti-k-partite

graphs.

Proposition 7.3. Let � ∈ G be an anti-k-partite graph, s.t. r(l) = r for all l ∈ V, then 1 + re2π i m
k ∈

spec(�) for 0 � m � k − 1, if m is odd. If in addition
wij

dini
> 0 for all i, j ∈ V then 1 − e2π i m

k ∈ spec(�)

for 0 � m � k − 1, m even and 1 + e2π i m
k ∈ spec(�) for 0 � m � k − 1, m odd.

Proposition 7.4. Let� ∈ G be a strongly connected graph and r(l) = r for all l ∈ V. Assume that k = 4m,

m = 1, 2, . . .. Then, � is k-partite iff � is anti-k-partite.

Proof. Assume that � is k-partite. By Proposition 7.1, 1 − re2π i l
k ∈ spec(�) for 0 � l � k − 1 and l

odd. Since k is of the form k = 4m, k
2
+1 is odd, and sowe have 1− re2π i

k
2

+1

k = 1+ re2π i 1
k ∈ spec(�).

From Theorem 7.3, it follows that � is anti-k-partite. The other direction follows in the same way by

using Proposition 7.3 and Theorem 7.1. �

This proposition shows that if k = 4m, m = 1, 2, . . . then a k-partite decomposition can be

obtained from an anti-k-partite one, and vice versa, by relabeling the vertex sets Vk .

7.3. Special cases: bipartite and anti-bipartite graphs

7.3.1. Bipartite graphs

As a special case of k-partite graphs we obtain:

Definition 7.4. A graph � ∈ G is bipartite (or 2-partite), if dini �= 0 for all i ∈ V and the vertex set V

can be decomposed into two nonempty subsets V1, V2 such that for neighbors i and j
wij

dini
> 0 if i and j

belong to different subsets and
wij

dini
< 0 if i and j belong to the same subset.

In the case of undirected graphs with nonnegative weights, Definition 7.4 reduces to the usual

definition of a bipartite graph.

Corollary 7.4. A graph � ∈ G contains a maximal, isolated, bipartite strongly connected component if

and only if 1 + r is an eigenvalue of �.

Using Corollary 3.1 we can reformulate this as follows:

Corollary 7.5. The spectrum of � contains the largest possible real eigenvalue if and only if the graph

� ∈ G contains a maximal, isolated, bipartite strongly connected component.
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For undirected graphs with nonnegative weights, Corollary 7.4 reduces to the well-known result

that � is bipartite if and only if 2 is an eigenvalue of �.

Corollary 7.6. Let � ∈ G be a bipartite graph and r(l) = r for all l ∈ V. Then, λ+ ∈ spec(�+) iff

1 + r(1 − λ+) ∈ spec(�).

In particular, if � ∈ G+ is strongly connected, then � is bipartite if and only if with λ also 2 − λ is

an eigenvalue of �, i.e. the real parts of the eigenvalues are symmetric about one.

7.3.2. Anti-bipartite graphs

As a special case of anti-k-partite graphs we obtain:

Definition 7.5. A graph � ∈ G is anti-bipartite, if dini �= 0 for all i ∈ V and the vertex set V can be

decomposed into two nonempty subsets such that for neighbors i and j,
wij

dini
< 0 if i and j belong to

different subsets and
wij

dini
> 0 if i and j belong to the same subset.

Lemma 7.1. � ∈ G+ is anti-bipartite if and only if the graph � is disconnected and dini �= 0 for all i.

Proof. One direction follows from Proposition 7.2.

Now assume that the graph � ∈ G+ is disconnected and dini �= 0 for all i. Then there exists at

least two connected components such that
wij

dini
> 0 for all neighbors i and j. Distribute the connected

components (there exist maybe more than two) into two nonempty subsets V1 and V2. This is an

anti-bipartite decomposition of the graph. �

Corollary 7.7. Let r > 1, then 1− r is an eigenvalue of� if and only if the graph contains an anti-bipartite

maximal isolated strongly connected component.

Using Corollary 3.1 we can reformulate this as follows:

Corollary 7.8. Assume that r > 1 is satisfied. The spectrum of � contains the smallest possible real

eigenvalue if and only if the graph � ∈ G contains a maximal, isolated, anti-bipartite strongly connected

component.

Example 2. Consider the graph in Fig. 3. It is easy to calculate the spectrum of this graph by using the

results derived in this section. First, note that the graph in Fig. 3 is bipartite and anti-bipartite. Since

r(i) = 3 for all i, we have 1 ± 3 ∈ spec(�). Zero is always an eigenvalue of �. The last eigenvalue is

equal to 2 since
∑

i λi = |VR| = 4. So we have determined all eigenvalues of the graph in Fig. 3.

Fig. 3. Eigenvalues of � are 4, 2, 0, −2.
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8. Bounds for the real and imaginary parts of the eigenvalues

In this section, we will derive several bounds for the real and imaginary parts of the eigenvalues

of a directed graph. In the following, we also allow loops in the graph. This slight generalization is

particularly important in the next section where we introduce the neighborhood graph technique. It

is straightforward to generalize the Laplace operator � to graphs with loops. The normalized graph

Laplace operator for directed graphs with loops is defined as:

� : C(V) → C(V),

�v(i) =
⎧⎪⎨⎪⎩

v(i) − 1

dini

∑
j wijv(j) if dini �= 0

0 else.
(25)

The only difference to graphs without loops is that now wii is not always equal to zero. As for graphs

without loops we define P = I − �. Furthermore, we say that vertex i is in-isolated or simply isolated

if wij = 0 for all j ∈ V . Similarly, vertex i is said to be in-quasi-isolated or simply quasi-isolated if

dini = 0. In particular, an isolated vertex cannot have a loop. As before, VR := {i ∈ V : dini �= 0} is the
set of all vertices that are not quasi-isolated.

8.1. Comparison theorems

In this section, we show that the real parts of the eigenvalues of a directed graph can be controlled

by the eigenvalues of certain undirected graphs. Together with well-known estimates for undirected

graphs these comparison results yield estimates the realparts of the eigenvalues of a directed graph.

We need the following definition:

Definition 8.1. Let � ∈ G be given. The underlying graph U(�) ∈ Gu of � is obtained from � by

replacing each directed edge by an undirected edge of the same weight. In U(�) we identify multiple

edges between two vertices with one single edge. The weight of this single edge is equal to the sum

of the weights of the multiple edges. Furthermore, every loop in � is replace by a loop of twice the

weight in U(�).

Note that the correspondence between directed graphs and their underlying graphs is not one to

one. Indeed, many directed graphs can have the same underlying graph.

We recall the well-known concept of majorization:

Definition 8.2. Let a ∈ Rn and b ∈ Rn be given. If the entries of a and b are arranged in increasing3

order, then b majorizes a, in symbols a ≺ b, if

k∑
i=1

ai �
k∑

i=1

bi k = 1, . . . , n − 1 (26)

and

n∑
i=1

ai =
n∑

i=1

bi. (27)

We will need the following two results:

3 The definition of majorization is not unique in the literature. Here, we follow the convention in [15]. In other books, see e.g. [18],

majorization is defined for vectors arranged in decreasing order. Reversing the order of the elements has the following consequence:

If a and b are two real vectors whose entries are arranged in increasing order, and A and B denote the vectors with the same entries

arranged in decreasing order, then a ≺ b if and only if B ≺ A.
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Lemma 8.1 (Rado, see e.g. [14, p. 63] or [18]). If x ≺ y on Rn and a ≺ b on Rm then (x, a) ≺ (y, b) on
Rn+m, where (x, a) is the vector composed of the components of x and a arranged in increasing order, and

similarly for (y, b).

In particular, Lemma 8.1 shows that the majorization property is preserved if we append the same

entries to both x and y (choose a = b in Lemma 8.1).

In the sequel, let the symmetric part of a matrixM be denoted by S(M) := 1
2
(M + M). We make

use of a classical result by Fan [12]:

Lemma 8.2. Let λ(S(M)) and	[λ(M)] denote the column vectors whose components are the eigenvalues

of S(M) and the real parts of the eigenvalues ofM, respectively. If the components ofλ(S(M)) and	[λ(M)]
are arranged in increasing order, then for every matrix M we have

λ(S(M)) ≺ 	[λ(M)].
Using Definitions 8.1 and 8.2 we state the following comparison result.

Theorem 8.1. If � ∈ G is balanced, then

λ(�(U(�))) ≺ 	[λ(�(�))],
i.e. the eigenvalues of the underlying graph U(�) are majorized by the real parts of the eigenvalues of �.

Proof. Recall the definition of the reduced Laplace operator�R = IR −D
−1
R WR in Eq. (4). It is straight-

forward to generalize �R for graphs with loops. Here however, instead of �R we consider the reduced

normalized Laplace operator LR := IR − D
−1/2
R WRD

−1/2
R . In the sequel, we will study matrix repre-

sentations of �R and LR that will also be denoted by �R and LR. Since D
1/2
R is non-singular and

�R = D
−1/2
R LRD

1/2
R ,

it follows that LR and �R are similar and hence have the same spectrum. We claim that the reduced

Laplace operator LR satisfies

S(LR(�)) = LR(U(�)).

Since � is balanced, the degrees of the vertices satisfy

2dini (�) = di(U(�)). (28)

Thus, in particular, the number of quasi-isolated vertices inU(�) and� is the same and so thematrices

S(LR(�)) and LR(U(�)) have the same dimension.

By definition, the diagonal elements satisfy

S(LR(�))ii = 1 − wii√
dini (�)dini (�)

and

LR(U(�))ii = 1 − 2wii√
di(U(�))di(U(�))

= 1 − 2wii√
2dini (�)2dini (�)

= 1 − wii√
dini (�)dini (�)

by (28). For the off-diagonal elements, we have

S(LR(�))ij = −1/2

⎛⎝ wij√
dini (�)dinj (�)

+ wji√
dinj (�)dini (�)

⎞⎠



4214 F. Bauer / Linear Algebra and its Applications 436 (2012) 4193–4222

and

LR(U(�))ij = − wij + wji√
di(U(�))dj(U(�))

= −1/2
wij + wji√

dini (�)dinj (�)
,

where we used (28). This proves our claim. Now it follows that

λ(�R(U(�))) = λ(LR(U(�))) = λ(S(LR(�))) ≺ 	(λ(LR(�))) = 	(λ(�R(�))),

where we used Lemma 8.2 and the fact that LR and �R have the same spectrum. By (5), the spectrum

of�(�) (�(U(�))) consists of all eigenvalues of�R(�) (�R(U(�))) and |V \ VR| times the eigenvalue

zero. From (28) it follows that the number of quasi-isolated vertices is the same in U(�) and �. Hence

Lemma 8.1 implies

λ(�(U(�))) ≺ 	[λ(�(�))]. �

Theorem 8.1 is used in [1] to compare the synchronizability of directed and undirected networks

of coupled phase oscillators.

In particular Theorem 8.1 implies:

Corollary 8.1. For a balanced graph � ∈ G we have

min
i �=0

λi(�(U(�))) � min
i �=0

	(λi(�(�)))

and

max
i

	(λi(�(�))) � max
i

λi(�(U(�))),

where λ0 = 0 is the eigenvalue corresponding to the constant function.

Corollary 8.1 can now be used to derive explicit bounds for the real parts of the eigenvalues of a

balanced directed graph by utilizing eigenvalue estimates for undirected graphs. For that reason, we

recall the definition of the Cheeger constant and the dual Cheeger constant of an undirected graph.

Definition 8.3. For an undirected graph the Cheeger constant h is defined in the following way [7]:

h := min
W�V

|E(W,W)|
min{vol(W), vol(W)} , (29)

whereW andW = V \W yield a partition of the vertex set V andW,W are both nonempty. Here the

volume of W is given by vol(W) := ∑
i∈W di. Furthermore, E(W,W) ⊆ E is the subset of all edges

with one vertex inW and one vertex inW , and |E(W,W)| := ∑
k∈W,l∈W wkl is the sum of the weights

of all edges in E(W,W). Similarly, the dual Cheeger constant h is defined as follows [4]: For a partition

V1, V2, V3 of the vertex set V where V1 and V2 are both nonempty, we define

h := max
V1,V2

2|E(V1, V2)|
vol(V1) + vol(V2)

. (30)

Although, it seems that h does not depend on V3, h is well-defined. In order to see this we note that

for a partition V1, V2 and V3 of V , the volume of Vi can also be written in the form
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vol(Vi) =
3∑

j=1

|E(Vi, Vj)| (31)

Consequently, h is given by

h = max
V1,V2

2|E(V1, V2)|∑3
j=1 |E(V1, Vj)| + ∑3

j=1 |E(V2, Vj)| (32)

and hence depends on V3.

It is well known that the Cheeger and the dual Cheeger constant control the eigenvalues of undi-

rected graphs with nonnegative weights.

Lemma 8.3. For an undirected graph with nonnegative weights � ∈ Gu+ we have:

(i) [7] The smallest nontrivial eigenvalue λ1 satisfies

1 −
√
1 − h2 � λ1 � 2h.

(ii) [4] The largest eigenvalue λn−1 satisfies

2h � λn−1 � 1 +
√
1 − (1 − h)2.

Combining Lemma 8.3 with Corollary 8.1 we obtain:

Theorem 8.2. Let � ∈ G+ be a balanced graph, then

0 � 1 −
√
1 − h2(U(�)) � min

i �=0
	(λi(�(�)))

and

max
i

	(λi(�(�))) � 1 +
√
1 − (1 − h(U(�)))2 � 2,

where h(U(�)) and h(U(�)) are the Cheeger constant and the dual Cheeger constant of the underlying

graph U(�).

Proof. Corollary8.1 implies thatmini �=0 λi(�(U(�))) � mini �=0 	(λi(�(�)))andmaxi 	(λi(�(�)))

� maxi λi(�(U(�))). SinceU(�) ∈ Gu+, we can use the estimates in Lemma 8.3 to control the eigen-

values of �(U(�)). This completes the proof. �

Theorem 8.2 allows us to interpret the smallest nontrivial realpart and the largest realpart of the

eigenvalues of a balanced directed graph � ∈ G+ in the following way: If the smallest nontrivial

realpart of a balanced directed graph is small, then it is easy to cut the graph into two large pieces

and if the largest realpart is close to 2 then the graph is close to a bipartite one. We illustrate this by

considering the following example.

Example 3. We consider the directed cycle Cn of length n. Since Cn is a n-partite graph its eigenvalues

are given by 1 − e2π i k
n for k = 0, 1, . . . , n − 1. This implies that mini �=0 	(λi) = 1 − cos( 2π

n
) → 0

as n → ∞ and maxi 	(λi) = 2 if n is even and maxi 	(λi) = 1 − cos( n−1
n

π) → 2 if n is odd as

n → ∞. Since Cn is balanced, Theorem 8.2 implies that it is easy to cut Cn into two large pieces (if n is

sufficiently large) and Cn is bipartite if n is even and close to a bipartite graph if n is sufficiently large
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and odd. Indeed, Cn is bipartite if n is even, close to a bipartite graph if n is odd, and we only have to

remove two edges in order to cut Cn into two large pieces.

Of course, any other eigenvalue estimate than the Cheeger estimate and the dual Cheeger esti-

mate leads to similar estimates as in Theorem 8.2. In particular, one can control, mini �=0 	(λi(�(�)))
and maxi 	(λi(�(�))) in terms of the diameter [8,17], the Olliver–Ricci curvature [5] or arguments

involving canonical paths [10].

Now we derive a second comparison theorem that leads to further eigenvalue estimates. Instead

of using the underlying graph U(�), we use in the following a different undirected graph �̃ to control

the eigenvalues of directed graphs.

We say that the operator P = I − � is irreducible if its matrix representations are irreducible. It is

easy to see [15] that P is irreducible if the graph� is strongly connected andVR = V , i.e. dini �= 0 for all i.

If we restrict ourselves to strongly connected graphs with nonnegative weights, the Perron–Frobenius

Theorem [15] implies that there exists a positive function φ (i.e. φ(i) > 0 for all i ∈ V) that satisfies∑
j

wji

dinj
φ(j) = ρφ(i) = φ(i) ∀i, (33)

where ρ = 1 is the spectral radius of P. The function φ is sometimes called the Perron vector of P and

is used in the following construction.

Definition 8.4. Let � = (V, E) ∈ G+ be a strongly connected graph. The graph �̃ = (V, Ẽ) ∈ Gu+
is obtained from � by replacing every weight wij by

w̃ij = wij

dini
φ(i) + wji

dinj
φ(j).

Since the weights of the edges are nonnegative and the function φ is positive, �̃ ∈ Gu+ is an

undirected graph with nonnegative weights. The degree d̃i of any vertex i ∈ V in the new graph �̃ is

given by

d̃i = ∑
j

w̃ij = ∑
j

wij

dini
φ(i) + ∑

j

wji

dinj
φ(j) = 2φ(i), (34)

where we used the definition of the in-degree dini and (33).

Theorem 8.3. Let � ∈ G+ be an strongly connected graph, then

min
i �=0

λi(�(�̃)) � min
i �=0

	(λi(�(�))) � max
i

	(λi(�(�))) � max
i

λi(�(�̃)).

Proof. For ease of notation we set �̃ = �(�̃) and λ̃i = λi(�(�̃)). We consider the inner product for

functions f , g ∈ C(Ṽ),

(f , g) = ∑
i

d̃if (i)g(i),

where f (i) denotes complex conjugation. Using (34), we obtain the following identity:

(f , �̃f ) = ∑
i

d̃if (i)[f (i) − 1

d̃i

∑
j

w̃ijf (j)]

= (f , f ) − ∑
i,j

wij

dini
φ(i)f (i)f (j) − ∑

i,j

wji

dinj
φ(j)f (i)f (j)
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= (f , f ) − ∑
i

d̃i

2
f (i)

∑
j

wij

dini
f (j) − ∑

j

d̃j

2
f (j)

∑
i

wji

dinj
f (i)

= (f , f ) − 1

2
(f , Pf ) − 1

2
(f , Pf )

Let uk and γk, k = 0, . . . , n−1 be the eigenfunctions and the corresponding eigenvalues of P.Without

loss of generality, we assume that u0 is given by the constant function 1 = (1, . . . , 1) and γ0 = 1.

Suppose for the moment that (uk, 1) = (uk, u0) = 0 for all k �= 0. Since �̃ ∈ Gu+ we can use the

usual variational characterization of the eigenvalues. For all k �= 0 we have

λ̃1 = inf
f⊥1

(f , �̃f )

(f , f )
� (uk, �̃uk)

(uk, uk)

= (uk, uk)

(uk, uk)
− 1

2

(uk, Puk)

(uk, uk)
− 1

2

(uk, Puk)

(uk, uk)

= 1 − 1

2
γk − 1

2
γk = 1 − 	(γk) = 	(λk),

where we used the fact that if uk is an eigenfunction for the eigenvalue γk then ūk is an eigenfunction

for the eigenvalue γ̄k . Similarly, we obtain for the largest eigenvalue λ̃n−1

λ̃n−1 = sup
f �=0

(f , �̃f )

(f , f )
� (uk, �̃uk)

(uk, uk)
= 	(λk)

for all k. Therefore, it only remains to show that (uk, 1) = 0 for all k �= 0. The Perron–Frobenius

Theorem implies that ρ = γ0 = 1 is a simple eigenvalue of P and hence γk < 1 for all k �= 0. Using

(33) and (34) we obtain

(uk, 1) = ∑
i

d̃iuk(i)

= ∑
i

2φ(i)uk(i)

= ∑
i

2
∑
j

wji

dinj
φ(j)uk(i)

= 2
∑
j

φ(j)
∑
i

wji

dinj
uk(i)

= 2
∑
j

φ(j)γkuk(j)

This implies that

(2 − 2γk)
∑
i

φ(i)uk(i) = 0.

Since γk < 1 if k �= 0, we conclude that
∑

i φ(i)uk(i) = 0 and hence (uk, 1) = 0. This completes the

proof. �

By combining Lemma 8.3 with Theorem 8.3, we immediately obtain the following eigenvalue esti-

mates:
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Theorem 8.4. Let � ∈ G+ be a strongly connected graph, then

0 � 1−
√
1 − h2(�̃) � min

i �=0
	(λi(�(�))) � max

i
	(λi(�(�))) � 1+

√
1 − (1 − h(�̃))2 � 2,

where h(�̃) and h(�̃) are the Cheeger constant and the dual Cheeger constant of the graph �̃.

Remark. The estimates in Theorem8.1 are in particular true for graphswith bothpositive andnegative

weights. In contrast, the estimates in Theorem 8.3 only hold for graphs with nonnegative weights.

However, the assumption in Theorem 8.3 that the graph is strongly connected is weaker than the

assumption in Theorem 8.1 that the graph is balanced. Indeed, it is easy to show that every balanced

graph is strongly connected but not vice versa.

8.2. Further eigenvalue estimates

In the last section, we derived eigenvalue estimates for directed graphs by using different compari-

son theorems for directed andundirected graphs. In this section,weprove further eigenvalue estimates

that do not make use of comparison theorems. By considering the trace of �2, we obtain estimates for

the absolute values of the real and imaginary part of the eigenvalues.

Theorem 8.5. Let � ∈ G be a graph. Then,

min
i:λi �=0

|	(λi)| �

√√√√√ |VR| + ∑
i∈VR

(
w2

ii

(dini )2
− 2

wii

dini

)
+ 2

∑
(i,j)∈U

(
wijwji

dini dinj

)
+ ∑n−1

i=m0
�(λi)2

n − m0

� max
i

|	(λi)|
where U ⊆ VR ×VR is the set of distinct mutually connected vertices that are not quasi-isolated, i.e. (i, j) ∈
U, if i �= j, and dini , dinj ,wij,wji �= 0. As before, m0 denotes the multiplicity of the eigenvalue zero of �.

Note that for undirected graphs, the set U is a subset of the edge set E. In particular, if VR = V , and

there are no loops in the graph then U = E.

Proof. First, we note that the trace of �2 satisfies

Tr
(
�2

)
= Tr

(
�2

R

)
=

n−1∑
i=0

λ2
i =

n−1∑
i=m0

λ2
i =

n−1∑
i=m0

	(λi)
2 −

n−1∑
i=m0

�(λi)
2, (35)

where the last equality in (35) follows from the observation that the eigenvalues appear in complex

conjugate pairs. An immediate consequence of Eq. (35) is:

(n − m0)

(
min
i:λi �=0

|	(λi)|
)2

� Tr
(
�2

R

)
+

n−1∑
i=m0

�(λi)
2 � (n − m0)

(
max

i
|	(λi)|

)2

(36)

On the other hand, the trace of �2
R is given by:

Tr
(
�2

R

)
= Tr(IR) − 2Tr(D−1

R WR) + Tr((D−1
R WR)

2)

= |VR| − 2
∑
i∈VR

wii

dini
+ ∑

i∈VR

(
wii

dini

)2

+ ∑
i,j∈VR,i �=j

wij

dini

wji

dinj

= |VR| − 2
∑
i∈VR

wii

dini
+ ∑

i∈VR

(
wii

dini

)2

+ 2
∑

(i,j)∈U

wij

dini

wji

dinj
. (37)
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Combining (36) and (37) completes the proof. �

From this theorem, we can derive interesting special cases.

Corollary 8.2. If there are no loops and no mutually connected vertices in VR, i.e. wii = 0 for all i, and

U = ∅, then

min
i:λi �=0

|	(λi)| �

√√√√ |VR| + ∑n−1
i=m0

�(λi)2

n − m0

� max
i

|	(λi)|.

Corollary 8.3. Let � be a loopless, undirected, unweighted, and regular graph, i.e. wij ∈ {0, 1}, wij = wji,

and di = ∑
j wij = k , ∀ i ∈ V, then

min
i �=0

λi �

√√√√ |V | + 2

k2
|E|

n − 1
=

√
n(k + 1)

(n − 1)k
� max

i
λi.

The next example shows that this estimate is sharp for complete graphs.

Example 4. For a complete graph on n vertices the estimate in Corollary 8.3 yields

min
i �=0

λi � n

n − 1
� max

i
λi.

On the other hand, all non-zero eigenvalues of a complete graph are given by n
n−1

. Hence, the estimate

in Corollary 8.3 is sharp for complete graphs.

In the same way, we can obtain bounds for the absolute values of the imaginary parts.

Theorem 8.6.

min
i:λi �=0

|�(λi)| �

√√√√√∑n−1
i=m0

	(λi)2 − 2
∑

(i,j)∈U

(
wijwji

dini dinj

)
+ ∑

i∈VR

(
2
wii

dini
− w2

ii

(dini )2

)
− |VR|

n − m0

� max
i

|�(λi)|

We obtain the following special case:

Corollary 8.4. If there are no loops and no mutually connected vertices in VR, i.e. wii = 0 for all i, and

U = ∅, then

min
i:λi �=0

|�(λi)| �

√√√√∑n−1
i=m0

	(λi)2 − |VR|
n − m0

� max
i

|�(λi)|.

9. Neighborhood graphs

In [4] we introduced the concept of neighborhood graphs for undirected graphs � ∈ Gu+. Here,

we generalize this concept to directed graphs � ∈ G without quasi-isolated vertices. As already
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mentioned above, for the concept of neighborhood graphs it is crucial to study graphs with loops.

Hence, we will consider graphs with loops in this section.

Definition 9.1. Let � = (V, E) ∈ G and assume that dini �= 0 for all i ∈ V . The neighborhood graph

�[l] = (V, E[l]) of order l � 2 is the graph on the same vertex set V and its edge set E[l] is defined in

the following way: The weight wij[l] of the edge from vertex j to vertex i in �[l] is given by

wij[l] = ∑
k1,...,kl−1

1

dink1

· · · 1

dinkl−1

wik1wk1k2 · · ·wkl−1j.

In particular, j is a neighbor of i in�[l] if there exists at least one directed path of length l from j to i in�.

Another way to look at the neighborhood graph is the following. The neighborhood graph �[l] of
the reversal graph � encodes the transition probabilities of a l-step random walk on �. For a more

detailed discussion of this probabilistic point of view, we refer the reader to [5].

The neighborhood graph �[l] has the following properties:

Lemma 9.1.

(i) The in-degrees of the vertices in � and �[l] satisfy
dini = dini [l] ∀i ∈ V and l � 2.

(ii) If � is balanced, then so is �[l] and the out-degrees of the vertices in � and �[l] satisfy
douti = douti [l] ∀i ∈ V and l � 2.

Proof. (i) We have

dini [l] = ∑
j

wij[l] = ∑
k1,...,kl−1

1

dink1

· · · 1

dinkl−1

wik1wk1k2 · · ·wkl−2kl−1

∑
j

wkl−1j

= ∑
k1,...,kl−2

1

dink1

· · · 1

dinkl−2

wik1wk1k2 · · · ∑
kl−1

wkl−2kl−1

...

= ∑
k1

wik1 = dini .

(ii) Since � is balanced, we have douti = dini for all i ∈ V and thus

douti [l] = ∑
j

wji[l] = ∑
k1,...,kl−1

1

dink1

· · · 1

dinkl−1

wk1k2 · · ·wkl−2kl−1
wkl−1i

∑
j

wjk1

= ∑
k2,...,kl−1

doutk1

dink1

1

dink2

· · · 1

dinkl−1

wk2k3 · · ·wkl−2kl−1
wkl−1i

∑
k1

wk1k2

...

= ∑
kl−1

wkl−1i = douti .

Consequently, if � is balanced, then we have for all i, dini [l] = dini = douti = douti [l] and hence �[l] is
balanced. �
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The next theorem establishes the relationship between � and �[l].
Theorem 9.1. We have

I − (I − �)l = I − Pl = �[l], (38)

where �[l] is the graph Laplace operator on �[l] and � is the graph Laplace operator on �.

The proof is essentially the same as the proof given in [4] for undirected graphs. So we omit the

details here.

Corollary 9.1. The multiplicity m1 of the eigenvalue one is an invariant for all neighborhood graphs,

i.e. m1(�) = m1(�[l]) for all l � 2.

Proof. � and �[l] have the same vertex set, thus both � and �[l] = I − (I − �)l have n = |V |
eigenvalues. ByTheorem9.1, everyeigenfunctionuk for�andeigenvalueλk is also aneigenfunction for

�[l]andeigenvalue1−(1−λk)
l . Thus, the corollary follows fromtheobservation that1−(1−λk)

l = 1

iff λk = 1. �

As in [4], the relationship between the spectrum of a graph and the spectrum of its neighborhood

graphs can be exploited to derive new eigenvalue estimates. For examplewe have the following result:

Theorem 9.2. Let � be a graph and �[l] be its neighborhood graph of order l � 2.

(i) If 1 � A[l] � mini �=0 |λi[l]|, then (A[l] − 1)
1
l � |1 − λi| for all i �= 0, where A[l] is any lower

bound for mini �=0 |λi[l]|.
(ii) If mini �=0 |λi[l]| � B[l] � 1, then (1 − B[l]) 1

l � maxi |1 − λi|, where B[l] is any upper bound

for mini �=0 |λi[l]|.
(iii) If 1 � C[l] � maxi |λi[l]|, then (C[l] − 1)

1
l � maxi |1 − λi|, where C[l] is any lower bound for

maxi |λi[l]|.
(iv) If maxi |λi[l]| � D[l] � 1, then (1 − D[l]) 1

l � |1 − λi| for all i, where D[l] is any upper bound

for maxi |λi[l]|.
Proof. (i) From Theorem 9.1 we have λi[l] = 1 − (1 − λi)

l . Thus, we have for all i �= 0

A[l] � |1 − (1 − λi)
l| � 1 + |1 − λi|l,

where we used the triangle inequality.

(ii) We have

B[l] � min
i �=0

|1 − (1 − λi)
l)| � 1 − (max

i
|1 − λi|)l,

where we used the reverse triangle inequality.

(iii) We have

C[l] � max
i

|1 − (1 − λi)
l| � 1 + (max

i
|1 − λi|)l,

where we used again the triangle inequality.

(iv) For all i we have

D[l] � |1 − (1 − λi)
l| � 1 − |1 − λi|l,

where we used again the reverse triangle inequality. �
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One can exploit theneighborhoodgraph technique further. For instance, byusing similar arguments

as in [4] one can obtain estimates for 	(λi) and |�(λi)|.
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