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Abstract. We consider Laplacians for directed graphs and examine their eigenvalues. We intro-
duce a notion of a circulation in a directed graph and its connection with the Rayleigh quotient.
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1. Introduction

There is a large literature on the eigenvalues of the Laplacians for undirected graphs
[1, 2, 6]. In contrast, the spectral approach for directed graphs has not been as well
developed. For example, one of the key invariants for undirected graphs is the Cheeger
constant, which is sometimes called conductance. The relation between the Cheeger
constant and eigenvalues of the Laplacian of an (undirected) graph is represented by
the Cheeger inequality, which is one of the main tools for bounding the mixing time
for random walks on undirected graphs. Many applications in communication networks
and in approximation algorithms involve directed graphs. The goal of this paper is to
introduce the Laplacian of a directed graph and establish a Cheeger inequality for a
directed graph.

Motivated by non-reversible Markov chains, Fill [10] derived bounds for the rate
of convergence by using eigenvalues of certain Hermitian matrices associated with a
directed graph, such as the sum and product of the transition probability matrix and
its transpose. The Cheeger inequality for directed graphs provides methods for further
bounding the rate of convergence.
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We will define the Laplacian of a graph as a Hermitian matrix by using the transi-
tion probability matrix. As we will see in Section 4, the spectral gap of the Laplacian
is related to the real parts of the eigenvalues of the transition probability matrix. This
connection will be illustrated through a natural relation between the Laplacian and the
Rayleigh quotient. One essential notion in directed graphs that differs from the undi-
rected case is the inference of a circulation of a directed graph (defined in Section 3).
By using circulations, we can define a Cheeger constant and derive a Cheeger inequality
for a directed graph. Consequently, we can use the Cheeger constant to bound eigen-
values of the Laplacian and vice versa. In Section 7, we will use eigenvalues of the
Laplacian to bound the rate of convergence of lazy random walks as a non-reversible
Markov chain. Thus, the Cheeger constant can then be used to bound the rate of conver-
gence for lazy random walks for directed graphs as well. In Section 8, several versions
of comparison theorems are given.

2. Preliminaries

Suppose G is a directed graph G with vertex set V (G) and edge set E(G). For a directed
edge (u, v) in E(G), we say that there is an edge (u, v) from u to v, or u has an out-
neighbor v, or v has an in-neighbor u. The number of out-neighbors of u is the out-
degree of u, denoted by dout

u or du. Similarly, the number of in-neighbors of v is denoted
by din

v . A walk is a sequence of vertices w = (v0, v1, . . . , vs) such that (vi−1, vi) is an
edge.

A random walk is defined by a transition probability matrix P, where P(u, v) de-
notes the probability of moving from vertex u to vertex v. Clearly, P(u, v) > 0 only if
(u, v) is an edge. Also, ∑v P(u, v) = 1. However, for a directed graph, it is not required
that ∑u P(u, v) = 1 in general. This is different from the undirected case.

For a given directed graph G , a typical transition probability matrix P = PG is

P(u, v) =

{

1
du

, if (u, v) is an edge,

0, otherwise.

Unless stated otherwise, we will assume that P is of this form.
For a weighted directed graph with edge weights wuv ≥ 0, a general transition prob-

ability matrix P can be defined as

P(u, v) =
wuv

∑
z

wuz
.

An unweighted directed graph is just a special case with weight having value 1 or 0.
The Perron-Frobenius Theorem [9] states that an irreducible matrix M with non-

negative entries has a unique (left) eigenvector with all entries positive. Let ρ denote
the eigenvalue of the all positive eigenvector of P. Then, the absolute values of all
eigenvalues of M are bounded above by ρ.

This can be translated to language for directed graphs. Namely, the transition prob-
ability matrix P of a strongly connected directed graph has a unique left eigenvector φ
with φ(v) > 0 for all v, and

φP = ρφ.
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Here we treat φ as a row vector. Since

P1 = 1,

we have ρ = 1 and the Perron-Frobenius Theorem implies that all other eigenvalues of
P have absolute value at most 1. We can normalize and choose φ to satisfy

∑
v

φ(v) = 1.

We will call φ the Perron vector of P. For a general directed graph, there is no closed
form solution for φ (see [5]). Nevertheless, there is a polynomial-time algorithm to
evaluate φ computationally.

If there is more than one eigenvalue of P with absolute value 1, it is not too difficult
to show that the random walk is periodic and the g.c.d. of the lengths of all directed
cycles in the graph is greater than 1. If G is strongly connected and aperiodic, the
random walk converges to the stationary distribution φ, the Perron vector.

Example 2.1. An undirected graph can be viewed as a directed graph with directed
edges (u, v), (v, u) for each undirected edge {u, v}. It is easy to show that φ(v) =
dv/∑u du (see [6]).

Example 2.2. For a directed regular graph on n vertices with in-degrees and out-degrees
all equal, we have φ = 1/n.

Example 2.3. A directed graph is called Eulerian if the in-degree of each vertex is
equal to its out-degree. For an Eulerian graph, its Perron vector φ is proportional to
the out-degree sequence, i.e., φ(v) = dv/∑u du = dv/m, where m is the total number of
edges.

For a strongly connected graph G on n vertices, the Perron vector φ can have coor-
dinates with values exponentially small, as indicated in the following example.

Example 2.4. We consider a directed graph on n vertices formed by the union of a
directed cycle Cn consisting of edges (v j, v j+1) (where the indices are taken modulo n)
and n−1 edges (v j, v1), for j = 1, . . . , n−1. The Perron vector φ has an exponentially
decreasing distribution. Namely, φ(v j) = 2− j+1φ(v1) for j ≥ 1 and φ(v1) = 1/(2−
2−n+1).

For a strongly connected graph G on n vertices, the Perron vector φ of G satisfies

max
x

φ(x) ≤ kD min
y

φ(y)

where D denotes the diameter of G and k denotes the maximum out-degree.

3. The Circulation of a Directed Graph

In a directed graph G, we consider a function F : E(G)→R+∪{0} that assigns to each
directed edge (u, v) a non-negative value F(u, v). F is said to be a circulation if at each
vertex v, we have

∑
u

u→v

F(u, v) = ∑
w

v→w

F(v, w).
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For example, if G contains a directed cycle Cn. A function that assigns 1 to each of
the edges in Cn and 0 otherwise is a circulation.

We remark that the term of circulation has been previously used in network flow
theory, usually with specified sources and sinks. Here we define the circulation in a
directed graph in a natural way without distinct sources or sinks.

Lemma 3.1. For a directed graph G, the eigenvector φ of the transition probability
matrix P having eigenvalue 1 is associated with a circulation Fφ as follows: For (u, v)∈
E(G),

Fφ(u, v) = φ(u)P(u, v).

Proof. To see that Fφ is a circulation, it can be easily checked that

∑
u

u→v

Fφ(u, v) = ∑
u

u→v

φ(u)P(u, v)

= φ(v)

= ∑
w

v→w

φ(v)P(v, w)

= ∑
w

v→w

Fφ(v, w).

A circulation is said to be reversible if

F(u, v) = F(v, u). (3.1)

Clearly, a reversible random walk satisfies (3.1) and has a reversible circulation. An
undirected graph has a reversible circulation and thus the random walk on an undirected
graph is a reversible Markov chain.

For a circulation Fφ, the flow at a vertex v is given by

φ(v) = ∑
u

u→v

F(u, v) = ∑
w

v→w

F(v, w).

For some directed graphs, the flows at the vertices can differ by exponential factors
as seen in the graphs of Example 2.4. For undirected graphs, the flow at a vertex v is
proportional to its degree and is within a polynomial factor (of n) of the flow at any
other vertex. As we will see, this fact has significant consequences in studying random
walks and isoperimetric inequalities for directed graphs.

4. The Rayleigh Quotient and the Laplacian for a Directed Graph

In this section, we give the definitions of the Laplacian and the Rayleigh quotient for
a directed graph. For two vectors f and g, we denote the usual inner product 〈 f , g〉 =

∑v f (v)ḡ(v).
For a directed graph G with transition probability matrix P and the Perron vector φ,

the Rayleigh quotient for any f : V (G) → R, is defined as follows.
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R( f ) =
∑u→v | f (u)− f (v)|2φ(u)P(u, v)

∑v | f (v)|2φ(v)
.

The Laplacian of a directed graph G is defined by

L = I −
Φ1/2PΦ−1/2 +Φ−1/2P∗Φ1/2

2
,

where Φ is a diagonal matrix with entries Φ(v, v) = φ(v) and M ∗ denotes the conjugated
transpose of M. Clearly, the Laplacian satisfies

L∗ = L .

We also define the combinatorial Laplacian L.

L = Φ−
ΦP+P∗Φ

2
.

We wish to show the following:

Theorem 4.1. For a directed graph G with the transition probability matrix P, suppose
the Rayleigh quotient and the Laplacian are defined as above. Then we have

R( f ) = 2
〈 f L, f 〉
〈 f Φ, f 〉

= 2−
f (ΦP +P∗Φ) f ∗

f Φ f ∗

= 2
〈gL , g〉
‖g‖2 ,

where g = f Φ1/2.

Proof. We can write

R( f ) =
∑u→v | f (u)− f (v)|2φ(u)P(u, v)

∑v | f (v)|2φ(v)

=
∑u→v( f (u)− f (v))( f̄ (u)− f̄ (v))φ(u)P(u, v)

f Φ f ∗

=
2 f Φ f ∗−∑u→v( f (u)φ(u)P(u, v) f̄ (v)+ f̄ (u)φ(u)P(u, v) f (v))

f Φ f ∗

= 2−
f (ΦP +P∗Φ) f ∗

f Φ f ∗

= 2
f L f ∗

f Φ f ∗

= 2
〈 f L, f 〉
〈 f Φ, f 〉

.
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Furthermore, by taking g = f Φ1/2, we have

R( f ) = 2−
f (ΦP+P∗Φ) f ∗

f Φ f ∗

= 2−
g(Φ1/2PΦ−1/2 +Φ−1/2P∗Φ1/2)g∗

gg∗

= 2
gLg∗

gg∗

= 2
〈gL , g〉
‖g‖2 ,

as desired.

As an immediate consequence, we have the following:

Corollary 4.2. Suppose a directed graph G has Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤
·· · ≤ λn−1. Then the eigenvalues and the Rayleigh quotient are related as follows:

(1) For λ1, we have

λ1 = inf
f

∑x f (x)φ(x)=0

R( f )
2

= inf
f

sup
c

∑u→v | f (u)− f (v)|2φ(u)P(u, v)
2∑v | f (v)− c|2φ(v)

,

where φ is the Perron vector and Φ is the Perron diagonal matrix.
(2) Suppose φi is an eigenvector of the Laplacian associated with eigenvalue λi. For

fi = φiΦ−1/2, we have

λi fi(x)φ(x) =

[

fi(Φ−
ΦP+P∗Φ

2
)

]

(x)

= φ(x) fi(x)−
∑y→x fi(y)φ(y)P(y, x)

2
−

∑x→y fi(y)P(x, y)φ(x)
2

=
1
2 ∑

y
( fi(x)− fi(y))(φ(y)P(y, x)+P(x, y)φ(x)),

for each vertex x.

Theorem 4.3. For a directed graph G, the eigenvalue λ1 of the Laplacian L is related
to the eigenvalues ρi of the transition probability matrix P as follows:

min
i6=0

(1−|ρi|) ≤ λ1 ≤ min
i6=0

(1−Re ρi)

where Re x denotes the real part of the complex number x.
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Proof. Suppose f Φ is an eigenvector of P with eigenvalue ρi. Clearly f̄ Φ is an eigen-
vector of P with eigenvalue ρ̄i. From Theorem 4.1, we have

R( f ) = 2−
f (ΦP +P∗Φ) f ∗

f Φ f ∗

= 2−
f ΦP f ∗ + f̄ ΦP f̄ ∗

f Φ f ∗

= 2−
ρi f Φ f ∗ + ρ̄i f Φ f ∗

f Φ f ∗

= 2(1−Re ρi).

On the other hand, we have

R( f ) = 2
〈gL , g〉
‖g‖2

for g = f Φ1/2. Hence,

λ1 = inf
g

〈g,1Φ1/2〉=0

〈gL , g〉
‖g‖2

= inf
f

〈 f Φ,1〉=0

R( f )
2

≤ min
i6=0

(1−Re ρi).

In the other direction, we note that

λ1 = 1− sup
f

〈 f Φ,1〉=0

f (ΦP +ΦP)̄ f ∗

2 f Φ f ∗

≥ 1− sup
f

〈 f Φ,1〉=0

| f ΦP f ∗|
2 f Φ f ∗

− sup
g

〈gΦ,1〉=0

|gP∗Φg∗|
2gΦg∗

= 1− sup
f

〈 f Φ,1〉=0

| f ΦP f ∗|
f Φ f ∗

≥ 1−max
i6=0

|ρi|.
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5. The Cheeger Constant and the Cheeger Inequality for a Directed Graph

In a directed graph G, let S denote a subset of vertices. The out-boundary of S, denoted
by ∂S, consists of all edges (u, v) with u ∈ S and v 6∈ S. We write

F(∂S) = ∑
u∈S,v6∈S

F(u, v).

If F is a circulation, it follows from the definition that

F(∂S) = F(∂S̄),

where S̄ denotes the complement of S.
For a vertex v, we define

F(v) = ∑
u,u→v

F(u, v)

and
F(S) = ∑

v∈S
F(v).

For a strongly connected graph G with stationary distribution φ, we consider the
circulation flow Fφ and define the Cheeger constant as follows:

h(G) = inf
S

Fφ(∂S)

min{Fφ(S), Fφ(S̄)}
. (5.1)

where S ranges over all non-empty proper subset of the vertex set of G. We can relate
h to the eigenvalues of the Laplacian by establishing the directed analog of the Cheeger
inequality.

Theorem 5.1. Let G be a directed graph with eigenvalues λi of the Laplacian. Then
λ = mini6=0 |λi| satisfies

2h(G) ≥ λ ≥
h2(G)

2
,

where h(G) is the Cheeger constant of G.

Proof. To see that h = h(G) ≥ λ/2, we consider the set S which achieves the Cheeger
constant in (5.1), i.e.,

h =
Fφ(∂S)

Fφ(S)
.

We define f : V (G) → C as follows:

f (v) =

{ 1
Fφ(S) , if v ∈ S,

− 1
1−Fφ(S) , otherwise.
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Clearly, φ · f = 0. From Theorem 4.1, we have

λ = inf
ϕ

φ·ϕ=0

1
2

R(ϕ)

≤
1
2

∑u→v( f (u)− f (v))2φ(u)P(u, v)
∑v f 2(v)φ(v)

=
( 1

Fφ(S)
+ 1

1−Fφ(S)
)2Fφ(∂S)

1
Fφ(S) + 1

1−Fφ(S)

=
Fφ(∂S)

Fφ(S)(1−Fφ(S))

≤
2Fφ(∂S)

Fφ(S)

= 2h.

To prove λ ≥ h2/2, we consider the eigenvector φ1 of the Laplacian L which
achieves λ. Since L is symmetric, we may assume that φ is real-valued. For f (x) =
φ1(x)φ(x)−1/2, from Corollary 4.2, we have

λ f (x)φ(x) =
1
2 ∑

y
( f (x)− f (y))(φ(y)P(y, x)+P(x, y)φ(x)).

Without loss of generality, we may assume

f (v1) ≥ f (v2) ≥ ·· · ≥ f (vn)

and

∑
f (v)<0

φ(v) ≥ ∑
f (u)≥0

φ(u).

From the definition of the Cheeger constant, for each fixed i with f (vi) ≥ 0, we have

h ∑
j≤i

φ(v j) ≤ ∑
k≤i<l

φ(vk)P(vk, vl).

We denote
V+ = {v : f (v) ≥ 0}

and define

g(x) =

{

f (x), if x ∈V+,

0, otherwise.
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Then we have

λ =
∑x∈V+

f (x)∑y( f (x)− f (y))(φ(y)P(y, x)+P(x, y)φ(x))
2∑x∈V+

f (x)2φ(x)

≥
∑x g(x)∑y(g(x)−g(y))(φ(y)P(y, x)+P(x, y)φ(x))

2∑x g(x)2φ(x)

=
∑x ∑y(g(x)−g(y))2φ(y)P(y, x)

2∑x g(x)2φ(x)

=

(

∑x ∑y(g(x)−g(y))2φ(y)P(y, x)
)(

∑x ∑y(g(x)+g(y))2φ(y)P(y, x)
)

2∑x g(x)2φ(x)
(

∑x ∑y(g(x)+g(y))2φ(y)P(y, x)
)

≥

(

∑x ∑y |g(x)2 −g(y)2|φ(y)P(y, x)
)2

8(∑x g(x)2φ(x))2

=

(

∑k ∑l>k(g(vk)
2 −g(vl)

2)(φ(vl)P(vl , vk)+φ(vk)P(vk, vl)
)2

8(∑x g(x)2φ(x))2

=

(

∑k(g(vk)
2 −g(vk+1)

2)∑i≤k< j(φ(vi)P(vi, v j)+φ(v j)P(v j, vi)
)2

8(∑x g(x)2φ(x))2

≥

(

∑k(g(vk)
2 −g(vk+1)

2)2h∑i≤k φ(vi)
)2

8(∑x g(x)2φ(x))2

=
h2 (∑i φ(vi)∑k≥i(g(vk)

2 −g(vk+1)
2)
)2

2(∑x g(x)2φ(x))2

=
h2 (∑i φ(vi)g(vi)

2)2

2(∑x g(x)2φ(x))2

=
h2

2
.

6. Bounds for Cheeger Constants

The following lower bounds for the Cheeger constants for various families of directed
graphs follow from the upper bounds for φ .

Lemma 6.1. For a strongly connected regular directed graph G on n vertices and
degree k, we have

h(G) ≥
2
kn

.
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Proof. We have

h(G) = inf
S

Fφ(∂S)

min{Fφ(S), Fφ(S̄)}

= inf
S

|∂S|
knmin{Fφ(S), Fφ(S̄)}

= inf
S

|∂S|
k min{|S|, |S̄|}

≥
2
kn

.

Lemma 6.2. For a strongly connected Eulerian directed graph G on m edges, we have

h(G) ≥
2
m

.

Proof. As before, we have

h(G) = inf
S

Fφ(∂S)

min{Fφ(S), Fφ(S̄)}

≥ inf
S

1/m
min{Fφ(S), Fφ(S̄)}

≥
2
m

.

Lemma 6.3. For some directed graphs G with bounded out-degrees, the Cheeger con-
stant of G can be exponentially small, i.e.,

h(G) ≤ c−n

for some constant c.

Proof. To see this, we consider a graph which is formed in a similar way as the graph
in Example 2.4. We construct a graph G with vertex set {v1, . . . , v2N}. There are two
directed cycles (v1, . . . , vN) and (v2N , . . . , vN+1). There are edges (v j, v1), for 1≤ j ≤N
and (vk, v2N) for N < k ≤ 2N as well as edges (vN , vN+1) and (vN+1, vN). We can see
that for i = 2, . . . , N −1,

φ(vi) = φ(v2N−i+1) =
1
2

φ(vi−1).

Thus, using S = {1, . . . , N}, we have

h(G) ≤
φ(vN)/2

∑ j≤N φ(v j)

≤
1

2N ,

as desired.
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From Lemma 6.3 and the Cheeger inequality, we have the following.

Theorem 6.4. Some strongly connected directed graphs have Laplacian eigenvalues
that are exponenentially small (in the number of vertices of the graph).

We remark that for a connected undirected graph on n vertices, the eigenvalue λ1 of
the Laplacian is at least 1/n2. Hence here is a real difference between the directed and
undirected graphs.

7. The Rate of Convergence of Random Walks on Directed Graphs

In the study of rapidly mixing Markov chains, the convergence in the L2 distance is
rather weak since it does not require convergence to the stationary distribution at every
vertex. A strong notion of convergence that is often used is measured by the so-called
total variation distance. After s steps the total variation distance of P to the stationary
distribution φ(x) is given by

∆TV (s) = max
A⊂V(G)

max
y∈V (G)

∣

∣

∣

∣

∣

∑
x∈A

(P s(y, x)−φ(x))

∣

∣

∣

∣

∣

=
1
2

max
y∈V (G)

∑
x∈V(G)

|P s(y, x)−φ(x)|.

Another notion of distance for measuring convergence is the so-called χ-square dis-
tance:

∆′(s) = max
y∈V (G)

(

∑
x∈V(G)

(P s(y, x)−φ(x))2

φ(x)

)1/2

.

It is easy to see that ∆TV (s) ≤ 1
2 ∆′(s). Thus a convergence upper bound for ∆′(s)

implies one for ∆TV (s).
Now we consider the characteristic vector χx defined by:

χx(y) =

{

1, if y = x,

0, otherwise.

Let P0 denote the projection to the eigenspace associated with 1. (Namely, P0 = 1 ·φ).
We can then rewrite the χ-square distance as follows:

∆′(t)2 = max
y

‖(χyP t −φ)Φ−1/2‖2 (7.1)

= max
y

‖(χy −φ)P t Φ−1/2‖2

where φ is the Perron vector and Φ is the diagonal matrix with Φ(v, v) = φ(v).
The Perron vector φ is the stationary distribution if G is strongly connected and

aperiodic (i.e., the g.c.d. of all cycle lengths is 1). As it turns out (similar to the
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undirected case), periodicity is not an absolute obstacle for the mixing of random walks.
We can modify our random walk P by using a lazy walk, denoted by P ′ for which with
probability 1/2 we choose to stay at the current vertex. In other words, the transition
probability matrix of a lazy walk is taken to be

P ′ =
I +P

2
.

Suppose P has left eigenvalues ρ0 = 1 and ρ1, . . . , ρn−1, where ρi are complex numbers
(as roots of the characteristic polynomials). From the Perron-Frobenius theorem, |ρi| ≤
1 for all i . The lazy walk P ′ still has left eigenvector φ and has eigenvalues (1+ρi)/2.
Since |(1+ρi)/2|< 1 for any i 6= 0, P ′ is not periodic. Therefore we have the following.

Theorem 7.1. In a directed graph G with Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ ·· · ≤
λn−1, there is a lazy random walk with the transition probability matrix P ′ having
eigenvalues ρ′

i satisfying:
λ1

4
≤ min

i6=0
(1−|ρ′

i|).

Proof. Since P ′ = (I +P)/2, we have ρ′
i = (1+ρi)/2, and so,

|ρ′
i|

2 =

∣

∣

∣

∣

1+ρi

2

∣

∣

∣

∣

2

≤
(1+ Re ρi)

2

4
+

(Im ρi)
2

4

≤
1+ Re ρi

2
,

implying that

1−|ρ′
i| ≥ 1−

√

1+ Re ρi

2

=
1− 1+ Re ρi

2

1+
√

1+ Re ρi
2

≥
1− Re ρi

4
.

Thus From Theorem 4.3, we have

min
i6=0

(1−|ρ′
i|) ≥ min

i6=0

1− Re ρi

4

≥
λ1

4
.

We note that the statement in the above theorem does not hold if the word “lazy” is
omitted. For example, for a random walk on the directed cycle Cn, the eigenvalue λ1 of
the Laplacian is strictly larger than mini6=0(1−|ρi|) = 0.
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Theorem 7.2. Suppose that a strongly connected directed graph G on n vertices has
Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ ·· · ≤ λn−1. Suppose that G has transition prob-
ability matrix P and a lazy random walk P ′ = (I +P)/2. Then the matrix M = Φ1/2P ′

Φ−1/2 satisfies
‖ f M‖2

‖ f‖2 ≤ 1−
λ1

2

for all vectors f satisfying f Φ1/21 = 0.

Proof. The vector f0 with f0(v) =
√

φ(v) is a left eigenvector of M with eigenvalue 1.
We consider vectors f orthogonal to f0, i.e., f Φ1/21 = 0. We have

‖ f M‖2

‖ f‖2 =
f MM ∗ f ∗

f f ∗

=
f Φ1/2P ′Φ−1(P ′)∗Φ1/2 f ∗

f f ∗

=
f Φ1/2(I +P)Φ−1(I +P∗)Φ1/2 f ∗

4 f f ∗
.

Now we define h = f Φ−1/2 and then h is orthogonal to φ. By substituting h in the above
equation, we have

‖ f M‖2

‖ f‖2 =
hΦ(I +P)Φ−1(I +P∗)Φh∗

4hΦh∗

=
h(Φ+ΦP+P∗Φ+ΦPΦ−1P∗Φ)h∗

4hΦh∗

=
h[ (−2Φ+ΦP+P∗Φ)+(3Φ+ΦPΦ−1P∗Φ)]h∗

4hΦh∗

= −
R(h)

4
+

(

3+
‖ f Φ1/2PΦ−1/2‖2

‖ f‖2

)

1
4

≤−
R(h)

4
+1

≤ 1−
λ1

2
,

as desired.

Theorem 7.3. Suppose that a strongly connected directed graph G on n vertices has
Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ ·· · ≤ λn−1. Then G has a lazy random walk
with the rate of convergence of order 2λ−1

1 (− logminx φ(x)). Namely, after at most
t ≥ 2λ−1

1 ((− logminx φ(x))+2c) steps, we have

∆′(t) ≤ e−c.
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Proof. From (7.1), the rate of convergence of P ′ = (I + P)/2 in χ-square distance can
be computed as follows:

∆′(t) = max
y

‖(χy −φ)P t Φ−1/2‖

= max
y

‖(χy −φ)Φ−1/2(Φ1/2P t Φ−1/2)‖

= max
y

‖gΦ1/2P tΦ−1/2‖

= max
y

‖gM t‖,

where g = (χy − φ)Φ−1/2 is orthogonal to φ1/2 and M denotes Φ1/2PΦ−1/2. Using
Theorem 7.2 (which gives ‖ f M k‖2 = ‖ f M k−1M‖2 ≤ (1−λ1/2)‖ f M k−1‖2), we have

∆′(t)2 = max
y

‖(χy −φ)Φ−1/2M t‖2

≤ (1−λ1/2)t max
y

‖(χy −φ)Φ−1/2‖2

≤ (1−λ1/2)t max
y

φ−1(y).

Therefore we have

∆′(t) ≤
(1−λ1/2)t/2
√

minx φ(x)

≤ e−tλ1/4− 1
2 log(minx φ(x))

≤ e−c,

provided t ≥ 2λ−1
1 ((− log(minx φ(x)))+2c).

8. Comparison Theorems

As in the undirected graphs, we can bound the Laplacian eigenvalues of one directed
graph by the Laplacian eigenvalues of another provided each directed edge in the first
graph is associated with “short” directed paths in the second graph. Many applications
of such comparison techniques are given in Diaconis and Stroock [7] and numerous
other papers [8, 10] in particular for card shuffling games. These comparison theorems
are sometimes called “Poincaré” inequalities [7]. The proof here is quite similar to that
for the undirected case as given in [6].

Theorem 8.1. Let G and G ′ be two strongly connected directed graphs, with Laplacian
eigenvalues λ1 and λ′

1, respectively. Suppose that the vertex set of G can be embedded
onto the vertex set of G ′ under the mapping ϕ : V (G)→V (G ′), satisfying the following
conditions for fixed positive values a, l, m:



16 F. Chung

(a) Each edge (x, y) in E(G) is associated with a path, denoted by Qx,y, joining ϕ(x)
to ϕ(y) in G ′ of length at most l.

(b) Let φ, φ′ denote the Perron vectors of G and G ′, respectively. For any v in V (G ′),
we have

∑
x∈ϕ−1(v)

φ(x) ≥ aφ′(v).

(c) There is a postive constant m such that each edge e = (u, v) in G ′ satisfies

mφ′(u)P ′(u, v) ≥ ∑
x,y

e∈Qx,y

φ(x)P(x, y).

Then we have

λ′
1 ≥

aλ1

lm
.

Proof. Let f ′ denote the vector achieving the Rayleigh quotient as in Theorem 4.1 for
λ′

1:

λ′
1 =

R( f ′)

2
and ∑v f ′(v)φ′(v) = 0.

We define f : V (G) → R as follows: For a vertex x in V (G),

f (x) = f ′(ϕ(x))− c

where the constant c is chosen to satisfy

∑
x

f (x)φ(x) = 0.

We note that

∑
x∈V (G)

f 2(x)φ(x) = ∑
x∈V(G)

( f ′(ϕ(x))− c))2φ(x)

= ∑
v∈V(G ′)

( f ′(v)− c)2 ∑
ϕ−1(v)=x

φ(x)

≥ a ∑
v∈V(G ′)

( f ′(v)− c)2φ′(v). (8.1)

Now, for (x, y)∈ E(G) with ϕ(x) = u, ϕ(y) = v, let Qx,y denote the path associated with
(x, y) joining u and v in G ′. We have

( f (x)− f (y))2 = ( f ′(u)− f ′(v))2

≤ |Qx,y| ∑
e∈Qx,y

f ′(e)2

≤ l ∑
e∈Qx,y

f ′(e)2,
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where f ′(e)2 = ( f ′(a)− f ′(b))2 for e = (a, b). Hence we have

m ∑
e∈E(G ′)

f ′(e)2φ′(u)P ′(u, v) ≥ ∑
(x,y)∈E(G)

∑
e∈Qx,y

f ′(e)2φ(x)P(x, y)

≥
1
l ∑

(x,y)∈E(G)

( f (x)− f (y))2φ(x)P(x, y). (8.2)

Combining inequalities (8.1), (8.2), we have

2λ′
1 = sup

c′

∑
(u,v)∈E(G ′)

( f ′(u)− f ′(v))2φ′(u)P ′(u, v)

∑
v∈V(G ′)

( f ′(v)− c′)2φ′(v)

≥

∑
(u,v)∈E(G ′)

( f ′(u)− f ′(v))2φ′(u)P ′(u, v)

∑
v∈V(G ′)

( f ′(v)− c)2φ′(v)

=

∑
(u,v)∈E(G ′)

( f ′(u)− f ′(v))2φ′(u)P ′(u, v)

∑
(x,y)∈E(G)

( f (x)− f (y))2φ(x)P(x, y)
·

∑
(x,y)∈E(G)

( f (x)− f (y))2φ(x)P(x, y)

∑
x∈V (G)

f 2(x)φ(x)

·

∑
x∈V (G)

f 2(x)φ(x)

∑
v∈V(G ′)

( f ′(v)− c)2φ′(v)

≥
1

ml
·

∑
(x,y)∈E(G)

( f (x)− f (y))2φ(x)P(x, y)

∑
x∈V (G)

f 2(x)φ(x)
·a.

Since
∑
x

f (x)φ(x) = 0,

we have

∑
(x,y)∈E(G)

( f (x)− f (y))2φ(x)P(x, y)

∑
x∈V (G)

f 2(x)φ(x)
≥ 2λ1.

Hence
λ′

1 ≥
a

ml
λ1

and the proof of Theorem 8.1 is complete.
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Theorem 8.2. Let G and G ′ be two connected regular graphs with eigenvalues λ1 and
λ′

1 and degrees k and k ′, respectively. Suppose that the vertex set of G is the same as
the vertex set of G ′. We assume that for each edge {x, y} in G, there is a path P(x, y)
in G ′ joining x and y of length at most l. Furthermore, suppose that every edge in G ′ is
contained in at most t paths P(x, y). Then we have

λ′
1 ≥

λ1

tl
.

Proof. Since G is regular, for an edge (x, y), we have

φ(x) =
1
n
, and P(x, y) =

1
k
.

Thus the condition (c) in Theorem 8.1 is satisfied if we choose

m =
tk ′

k
.

Condition (b) is satisfied with a = 1. Condition (a) is one of the assumptions. This
gives

λ′
1 ≥

λ1

tl
,

as desired.

9. Polynomial Versus Exponential Convergence Rates for Various Families of Di-
rected Graphs

Unlike undirected graphs, some directed graphs can have random walks which require
an exponential number of steps to converge to the stationary distribution (in total varia-
tion distance or in relative pointwise distance). Here we summarize convergence bounds
for various families of directed graphs.

Theorem 9.1. A strongly connected regular directed graph G on n vertices with out-
degree k has a lazy random walk converging to the uniform distribution with the rate of
convergence no more than k2n2 logn.

Proof. The proof follows from Theorem 7.3 and Lemma 6.1. Note that φ(x) = 1/n and
also the eigenvalue λ1 of the Laplacian satisfies

λ1 ≥
h(G)2

2
≥

2
k2n2 .

The convergence rate is bounded above by

2λ−1
1 (− logmin

x
φ(x)) ≤ k2n2 logn.

Theorem 9.2. A strongly connected Eulerian directed graph G with m edges has a lazy
random walk with the rate of convergence no more than m2 logm.
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Proof. The proof follows from Theorem 7.3 and Lemma 6.2 together with the fact that

φ(x) ≥
1

2m
.

The eigenvalue λ1 of the Laplacian satisfies

λ1 ≥
h(G)2

2
≥

2
m2 .

The convergence rate is bounded above by

2λ−1
1 (− logmin

x
φ(x)) ≤ m2 logm.

We remark that many random walk problems such as those originating from card
shuffling are random walks for regular or Eulerian graphs. The above theorems imply
polynomial upper bounds for their rates of convergence. For general directed graphs,
φ(x) can be as small as c−n even for bounded degree graphs. As a result, the Cheeger
constant hG can be exponentially small, and consequently so is the eigenvalue λ1.
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