
1

Directed Graphs

digraph search
transitive closure
topological sort
strong components

References:

 Algorithms in Java, Chapter 19
 http://www.cs.princeton.edu/introalgsds/52directed

2

Directed graphs (digraphs)

Set of objects with oriented pairwise connections.

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

6 22

 one-way streets in a map

hyperlinks connecting web pages

dependencies in software modules prey-predator relationships

3

Digraph applications

digraph vertex edge

financial stock, currency transaction

transportation street intersection, airport highway, airway route

scheduling task precedence constraint

WordNet synset hypernym

Web web page hyperlink

game board position legal move

telephone person placed call

food web species predator-prey relation

infectious disease person infection

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

4

Some digraph problems

Transitive closure.

Is there a directed path from v to w?

Strong connectivity.

Are all vertices mutually reachable?

Topological sort.

Can you draw the digraph so that all edges point

from left to right?

PERT/CPM.

Given a set of tasks with precedence constraints,

how we can we best complete them all?

Shortest path. Find best route from s to t

in a weighted digraph

PageRank. What is the importance of a web page?

5

Digraph representations

Vertices

• this lecture: use integers between 0 and V-1.

• real world: convert between names and integers with symbol table.

Edges: four easy options

• list of vertex pairs

• vertex-indexed adjacency arrays (adjacency matrix)

• vertex-indexed adjacency lists

• vertex-indexed adjacency SETs

Same as undirected graph

 BUT

orientation of edges is significant.

0

6

4

21

5

3

7

12

109

11

8

6

Adjacency matrix digraph representation

Maintain a two-dimensional V V boolean array.

For each edge v w in graph: adj[v][w] = true.

 0 0 1 1 0 0 1 1 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 2 0 0 0 0 0 0 0 0 0 0 0 0 0
 3 0 0 0 0 0 0 0 0 0 0 0 0 0
 4 0 0 0 1 0 0 0 0 0 0 0 0 0
 5 0 0 0 1 1 0 0 0 0 0 0 0 0
 6 0 0 0 0 1 0 0 0 0 0 0 0 0
 7 0 0 0 0 0 0 0 0 1 0 0 0 0
 8 0 0 0 0 0 0 0 0 0 0 0 0 0
 9 0 0 0 0 0 0 0 0 0 0 1 1 1
10 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

from

to

0

6

4

21

5

3

7 12

109

118

one entry
for each

edge

7

Adjacency-list digraph representation

Maintain vertex-indexed array of lists.

0: 5 2 1 6

1:

2:

3:

4: 3

5: 4 3

6: 4

7: 8

8:

9: 10 11 12

10:

11: 12

12:

0

6

4

21

5

3

7 12

109

118

one entry
for each

edge

8

Adjacency-SET digraph representation

Maintain vertex-indexed array of SETs.

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

0

6

4

21

5

3

7 12

109

118

{ 1 2 5 6 }

{ }

{ }

{ }

{ 3 }

{ 3 4 }

{ 4 }

{ 8 }

{ }

{ 10 11 12 }

{ }

{ 12 }

{ }

one entry
for each

edge

adjacency
SETs

create empty
V-vertex graph

add edge from v to w
(Graph also has adj[w].add[v])

iterable SET for
v’s neighbors

9

Adjacency-SET digraph representation: Java implementation

Same as Graph, but only insert one copy of each edge.

public class Digraph
{
 private int V;
 private SET<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = (SET<Integer>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 }

 public Iterable<Integer> adj(int v)
 {
 return adj[v];
 }
}

Digraphs are abstract mathematical objects, BUT

• ADT implementation requires specific representation.

• Efficiency depends on matching algorithms to representations.

In practice: Use adjacency SET representation

• Take advantage of proven technology

• Real-world digraphs tend to be “sparse”

[huge number of vertices, small average vertex degree]

• Algs all based on iterating over edges incident to v.

10

Digraph representations

representation space
edge between

v and w?
iterate over edges

incident to v?

list of edges E E E

adjacency matrix V2 1 V

adjacency list E + V degree(v) degree(v)

adjacency SET E + V log (degree(v)) degree(v)

11

Typical digraph application: Google's PageRank algorithm

Goal. Determine which web pages on Internet are important.

Solution. Ignore keywords and content, focus on hyperlink structure.

Random surfer model.

• Start at random page.

• With probability 0.85, randomly select a hyperlink to visit next;

with probability 0.15, randomly select any page.

• PageRank = proportion of time random surfer spends on each page.

Solution 1: Simulate random surfer for a long time.

Solution 2: Compute ranks directly until they converge

Solution 3: Compute eigenvalues of adjacency matrix!

None feasible without sparse digraph representation

Every square matrix is a weighted digraph

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

12

digraph search
transitive closure
topological sort
strong components

13

Digraph application: program control-flow analysis

Every program is a digraph (instructions connected to possible successors)

Dead code elimination.

Find (and remove) unreachable code

Infinite loop detection.

Determine whether exit is unreachable

can arise from compiler optimization (or bad code)

can’t detect all possible infinite loops (halting problem)

14

Digraph application: mark-sweep garbage collector

Every data structure is a digraph (objects connected by references)

Roots. Objects known to be directly

 accessible by program (e.g., stack).

Reachable objects.

 Objects indirectly accessible by

 program (starting at a root and

 following a chain of pointers).

Mark-sweep algorithm. [McCarthy, 1960]

• Mark: mark all reachable objects.

• Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost: Uses 1 extra mark bit per object, plus DFS stack.

easy to identify pointers in type-safe language

15

Reachability

Goal. Find all vertices reachable from s along a directed path.

s

16

Reachability

Goal. Find all vertices reachable from s along a directed path.

s

Digraph-processing challenge 1:

Problem: Mark all vertices reachable from a given vertex.

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

17

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
3-1

6

4

21

3

0

5

18

Depth-first search in digraphs

Same method as for undirected graphs

Every undirected graph is a digraph

• happens to have edges in both directions

• DFS is a digraph algorithm

Mark v as visited.

Visit all unmarked vertices w adjacent to v.

DFS (to visit a vertex v)

recursive

19

Depth-first search (single-source reachability)

Identical to undirected version (substitute Digraph for Graph).

true if
connected to s

constructor
marks vertices
connected to s

recursive DFS
does the work

client can ask whether
any vertex is

connected to s

public class DFSearcher
{
 private boolean[] marked;

 public DFSearcher(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean isReachable(int v)
 {
 return marked[v];
 }
}

DFS enables direct solution of simple digraph problems.

• Reachability.

• Cycle detection

• Topological sort

• Transitive closure.

• Is there a path from s to t ?

Basis for solving difficult digraph problems.

• Directed Euler path.

• Strong connected components.

20

Depth-first search (DFS)

stay tuned

21

Breadth-first search in digraphs

Same method as for undirected graphs

Every undirected graph is a digraph

• happens to have edges in both directions

• BFS is a digraph algorithm

Visits vertices in increasing distance from s

Put s onto a FIFO queue.

Repeat until the queue is empty:

 remove the least recently added vertex v

 add each of v's unvisited neighbors to the

 queue and mark them as visited.

BFS (from source vertex s)

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .0

 1 .0

 2 .0

 3 .0

 4 .0

 5 .0

 6 .0

 7 .0

 8 .0

 9 .0

 10 .0

 11 .0

 12 .0

 13 .0

 14 .0

 15 .0

 16 .0

 17 .0

 18 .0

 19 .0

 20 .0

 21 .0

 22 .0

 23 .0

 24 .0

 25 .0

 26 .0

 27 .0

 28 .0

 29 .0

 30 .0

 31 .0

 32 .0

 33 .0

 34 .0

 35 .0

 36 .0

 37 .0

 38 .0

 39 .0

 40 .0

 41 .0

 42 .0

 43 .0

 44 .0

 45 .0

 46 .0

 47 .0

 48 .0

 49 .0

6 22

22

Digraph BFS application: Web Crawler

The internet is a digraph

Goal. Crawl Internet, starting from some root website.

Solution. BFS with implicit graph.

BFS.

• Start at some root website

(say http://www.princeton.edu.).

• Maintain a Queue of websites to explore.

• Maintain a SET of discovered websites.

• Dequeue the next website

and enqueue websites to which it links

(provided you haven't done so before).

Q. Why not use DFS?

A. Internet is not fixed (some pages generate new ones when visited)

subtle point: think about it!

Queue<String> q = new Queue<String>();

SET<String> visited = new SET<String>();

String s = "http://www.princeton.edu";

q.enqueue(s);

visited.add(s);

while (!q.isEmpty())

{

 String v = q.dequeue();

 System.out.println(v);

 In in = new In(v);

 String input = in.readAll();

 String regexp = "http://(\\w+\\.)*(\\w+)";

 Pattern pattern = Pattern.compile(regexp);

 Matcher matcher = pattern.matcher(input);

 while (matcher.find())

 {

 String w = matcher.group();

 if (!visited.contains(w))

 {

 visited.add(w);

 q.enqueue(w);

 }

 }

}
23

Web crawler: BFS-based Java implementation

read in raw html for next site in queue

use regular expression
to find all URLs in site

if unvisited, mark as visited
and put on queue

http://xxx.yyy.zzz

start crawling from s

queue of sites to crawl

set of visited sites

24

digraph search
transitive closure
topological sort
strong components

Graph-processing challenge (revisited)

Problem: Is there a path from s to t ?

Goals: linear ~(V + E) preprocessing time

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

25

0-1
0-6
0-2
4-3
5-3
5-4

6

4

21

3

0

5

Digraph-processing challenge 2

Problem: Is there a directed path from s to t ?

Goals: linear ~(V + E) preprocessing time

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

26

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

27

The transitive closure of G has an directed edge from v to w

 if there is a directed path from v to w in G

Transitive Closure

G

Transitive closure
of G

TC is usually dense
so adjacency matrix
representation is OK

graph is usually sparse

Digraph-processing challenge 2 (revised)

Problem: Is there a directed path from s to t ?

Goals: ~V2 preprocessing time

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

28

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

Digraph-processing challenge 2 (revised again)

Problem: Is there a directed path from s to t ?

Goals: ~VE preprocessing time (~V3 for dense digraphs)

 ~V2 space

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

29

0-1
0-6
0-2
3-4
3-2
5-4
5-0
3-5
2-1
6-4
1-3

6

4

21

3

0

5

30

Transitive closure: Java implementation

public class TransitiveClosure
{

 private DFSearcher[] tc;

 public TransitiveClosure(Digraph G)
 {
 tc = new DFSearcher[G.V()];
 for (int v = 0; v < G.V(); v++)
 tc[v] = new DFSearcher(G, v);
 }

 public boolean reachable(int v, int w)
 {
 return tc[v].isReachable(w);
 }
}

is there a directed path from v to w ?

Use an array of DFSearcher objects,

one for each row of transitive closure
public class DFSearcher
{
 private boolean[] marked;
 public DFSearcher(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }
 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }
 public boolean isReachable(int v)
 {
 return marked[v];
 }
}

31

digraph search
transitive closure
topological sort
strong components

32

Digraph application: Scheduling

Scheduling. Given a set of tasks to be completed with precedence

constraints, in what order should we schedule the tasks?

Graph model.

• Create a vertex v for each task.

• Create an edge v w if task v must precede task w.

• Schedule tasks in topological order.

0. read programming assignment
1. download files
2. write code
3. attend precept
…
12. sleep

tasks

precedence
constraints

feasible
schedule

33

Topological Sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point left to right.

Observation. Not possible if graph has a directed cycle.

Digraph-processing challenge 3

Problem: Check that the digraph is a DAG.

 If it is a DAG, do a topological sort.

Goals: linear ~(V + E) preprocessing time

 provide client with vertex iterator for topological order

How difficult?

1) any CS126 student could do it

2) need to be a typical diligent CS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

34

0-1
0-6
0-2
0-5
2-3
4-9
6-4
6-9
7-6
8-7
9-10
9-11
9-12
11-12

35

Topological sort in a DAG: Java implementation

public class TopologicalSorter
{
 private int count;
 private boolean[] marked;
 private int[] ts;

 public TopologicalSorter(Digraph G)
 {
 marked = new boolean[G.V()];
 ts = new int[G.V()];
 count = G.V();
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) tsort(G, v);
 }

 private void tsort(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) tsort(G, w);
 ts[--count] = v;
 }
}

standard DFS
with 5

extra lines of code

add iterator that returns
ts[0], ts[1], ts[2]...

Seems easy? Missed by experts for a few decades

36

Topological sort of a dag: trace

1

4

52

3

0

6

0: 1 2 5
1: 4
2:
3: 2 4 5 6
4:
5: 2
6: 0 4

visit 0: 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 visit 1: 1 1 0 0 0 0 0 0 0 0 0 0 0 0

 visit 4: 1 1 0 0 1 0 0 0 0 0 0 0 0 0

 leave 4: 1 1 0 0 1 0 0 0 0 0 0 0 0 4

 leave 1: 1 1 0 0 1 0 0 0 0 0 0 0 1 4

 visit 2: 1 1 1 0 1 0 0 0 0 0 0 0 1 4

 leave 2: 1 1 1 0 1 0 0 0 0 0 0 2 1 4

 visit 5: 1 1 1 0 1 1 0 0 0 0 0 2 1 4

 check 2: 1 1 1 0 1 1 0 0 0 0 0 2 1 4

 leave 5: 1 1 1 0 1 1 0 0 0 0 5 2 1 4

leave 0: 1 1 1 0 1 1 0 0 0 0 5 2 1 4

check 1: 1 1 1 0 1 1 0 0 0 0 5 2 1 4

check 2: 1 1 1 0 1 1 0 0 0 0 5 2 1 4

visit 3: 1 1 1 1 1 1 0 0 0 0 5 2 1 4

 check 2: 1 1 1 1 1 1 0 0 0 0 5 2 1 4

 check 4: 1 1 1 1 1 1 0 0 0 0 5 2 1 4

 check 5: 1 1 1 1 1 1 0 0 0 0 5 2 1 4

 visit 6: 1 1 1 1 1 1 1 0 0 0 5 2 1 4

 leave 6: 1 1 1 1 1 1 1 0 6 0 5 2 1 4

leave 3: 1 1 1 1 1 1 1 3 6 0 5 2 1 4

check 4: 1 1 1 1 1 1 0 3 6 0 5 2 1 4

check 5: 1 1 1 1 1 1 0 3 6 0 5 2 1 4

check 6: 1 1 1 1 1 1 0 3 6 0 5 2 1 4

marked[] ts[]

“visit” means “call tsort()” and “leave” means “return from tsort()

adj SETs

3 6 0 5 2 1 4

0

1 2 5

4

3

6

37

Topological sort in a DAG: correctness proof

Invariant:

 tsort(G, v) visits all vertices

 reachable from v with a directed path

Proof by induction:

• w marked: vertices reachable from w

are already visited

• w not marked: call tsort(G, w) to

visit the vertices reachable from w

Therefore, algorithm is correct

in placing v before all vertices visited

during call to tsort(G, v) just before returning.

Q. How to tell whether the digraph has a cycle (is not a DAG)?

A. Use TopologicalSorter (exercise)

public class TopologicalSorter
{
 private int count;
 private boolean[] marked;
 private int[] ts;

 public TopologicalSorter(Digraph G)
 {
 marked = new boolean[G.V()];
 ts = new int[G.V()];
 count = G.V();
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) tsort(G, v);
 }

 private void tsort(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) tsort(G, w);
 ts[--count] = v;
 }
}

38

Topological sort applications.

• Causalities.

• Compilation units.

• Class inheritance.

• Course prerequisites.

• Deadlocking detection.

• Temporal dependencies.

• Pipeline of computing jobs.

• Check for symbolic link loop.

• Evaluate formula in spreadsheet.

• Program Evaluation and Review Technique / Critical Path Method

39

Topological sort application (weighted DAG)

Precedence scheduling

• Task v takes time[v] units of time.

• Can work on jobs in parallel.

• Precedence constraints:

• must finish task v before beginning task w.

• Goal: finish each task as soon as possible

Example:

index time prereq

A 0 -

task

begin

B 4 Aframing

C 2 Broofing

D 6 Bsiding

E 5 Dwindows

F 3 Dplumbing

G 4 C, Eelectricity

H 6 C, Epaint

I 0 F, Hfinish

4

6

2

5

3

4 60 0

IHG

C

B

E

D

A

F

vertices labelled
A-I in topological order

Program Evaluation and Review Technique / Critical Path Method

40

4

6

2

5

3

4 60 0

IHG

C

B

E

D

A

F

PERT/CPM algorithm.

• compute topological order of vertices.

• initialize fin[v] = 0 for all vertices v.

• consider vertices v in topologically sorted order.

for each edge v w, set fin[w]= max(fin[w], fin[v] + time[w])

Critical path

• remember vertex that set value.

• work backwards from sink

4

10

6

19 25

15

13

13

critical
path

25

41

digraph search
transitive closure
topological sort
strong components

Strong connectivity in digraphs

Analog to connectivity in undirected graphs

42

0
6

4

21

5

3

7

12

109

11

8

 0 1 2 3 4 5 6 7 8 9 10 11 12

cc 0 0 0 0 0 0 0 1 1 2 2 2 2

public int connected(int v, int w)

{ return cc[v] == cc[w]; }

0
6

4

21

5

3

7

12

109

11

8

In a Graph, u and v are connected
when there is a path from u to v

In a Digraph, u and v are strongly connected
when there is a directed path from u to v
 and a directed path from v to u

 0 1 2 3 4 5 6 7 8 9 10 11 12

sc 2 1 2 2 2 2 2 3 3 0 0 0 0

public int connected(int v, int w)

{ return cc[v] == cc[w]; }

constant-time client connectivity query constant-time client strong connectivity query

3 connected components
(sets of mutually connected vertices)

4 strongly connected components
(sets of mutually strongly connected vertices)

Connectivity table (easy to compute with DFS) Strong connectivity table (how to compute?)

Digraph-processing challenge 4

Problem: Is there a directed cycle containing s and t ?

Equivalent: Are there directed paths from s to t and from t to s?

Equivalent: Are s and t strongly connected?

Goals: linear (V + E) preprocessing time (like for undirected graphs)

 constant query time

How difficult?

1) any COS126 student could do it

2) need to be a typical diligent COS226 student

3) hire an expert

4) intractable

5) no one knows

6) impossible

43

44

Typical strong components applications

Strong component: subset with common energy flow

• source in kernel DAG: needs outside energy?

• sink in kernel DAG: heading for growth?

Ecological food web Software module dependency digraphs

Strong component: subset of mutually interacting modules

• approach 1: package strong components together

• approach 2: use to improve design!

Internet explorer

Firefox

Strong components algorithms: brief history

1960s: Core OR problem

• widely studied

• some practical algorithms

• complexity not understood

1972: Linear-time DFS algorithm (Tarjan)

• classic algorithm

• level of difficulty: CS226++

• demonstrated broad applicability and importance of DFS

1980s: Easy two-pass linear-time algorithm (Kosaraju)

• forgot notes for teaching algorithms class

• developed algorithm in order to teach it!

• later found in Russian scientific literature (1972)

1990s: More easy linear-time algorithms (Gabow, Mehlhorn)

• Gabow: fixed old OR algorithm

• Mehlhorn: needed one-pass algorithm for LEDA
45

46

Simple (but mysterious) algorithm for computing strong components

• Run DFS on GR and compute postorder.

• Run DFS on G, considering vertices in reverse postorder

• [has to be seen to be believed: follow example in book]

Theorem. Trees in second DFS are strong components. (!)

 Proof. [stay tuned in COS 423]

Kosaraju's algorithm

G

GR

Digraph-processing summary: Algorithms of the day

47

Single-source

reachability
DFS

transitive closure DFS from each vertex

topological sort

(DAG)
DFS

strong components
Kosaraju

DFS (twice)

