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Abstract

In [C.W. Wu, Algebraic connectivity of directed graphs, Linear and Multilinear Algebra,
in press] a generalization of Fiedler’s notion of algebraic connectivity to directed graphs was
presented that inherits many properties of the algebraic connectivity of undirected graphs and
has applications to the synchronization of coupled dynamical systems with both constant and
time-varying coupling. However, it did not inherit nonnegativity and some of its bounds for
combinatorial properties such as maximum directed cut and isoperimetric number are less
strict that their undirected counterparts. In particular, these bounds do not have the correspond-
ing bounds for undirected graphs as limiting cases. The purpose of this paper is to present a
refinement of this algebraic connectivity which preserve nonnegativity for strongly connected
graphs and have bounds which contain the undirected graphs as special cases. In particular,
we study quantities related to a generalized Laplacian matrix of directed graphs and obtain
bounds on combinatorial properties such as diameter, bandwidth, and bisection width for gen-
eral directed graphs. Finally, we give an application to the synchronization of coupled dynam-
ical systems with constant coupling. In particular, we show that strong enough cooperative
coupling will synchronize a network of coupled systems if the underlying directed graph is
strongly connected.
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1. Introduction

In [2], Fiedler defined the algebraic connectivity of an undirected graph as the
second smallest eigenvalue of its Laplacian matrix. In [1] this is extended to directed
graphs by studying Rayleigh–Ritz ratios of the Laplacian matrix. This extension
inherits many properties of the undirected case such as super-additivity, and can be
applied to graphs with both positive and negative weights. It is also useful in deriving
synchronization criteria for arrays of coupled dynamical systems for both constant
and time-varying coupling. On the other hand, unlike the undirected case, this alge-
braic connectivity can be negative, even for strongly connected graphs. Furthermore,
relationships between this algebraic connectivity and properties such as bisection
width and isoperimetric number do not have the undirected graphs as a limiting case.

In this paper, we refine this generalization of algebraic connectivity to address
some of these issues. In particular, we modify the generalization in [1] by studying
a generalized Laplacian matrix and considering the strongly connected components
of the graph. We will mirror the presentation in [1] to some degree.

We consider finite weighted directed graphs (V , E) without loops, and with a
vertex set V , edge set E and adjacency matrix A, where Aij > 0 if there is a directed
edge from vertex i into vertex j , and 0 otherwise. Without loss of generality, we
assume that Aij � 1. An exception to this assumption is when a graph is unweighted,
defined as the case when Aij are natural numbers, with Aij = k denoting k edges
from vertex i to vertex j . The number of vertices and edges will be denoted as n � 2
and m respectively. The indegree and outdegree of vertex k are given by di(k) =∑

j Ajk and do(k) = ∑
j Akj respectively. The complement of a graph G without

multiple edges is defined as the graph G with the same vertex set as G and adjacency
matrix A where Aij = 1 − Aij for i /= j .

An undirected graph is equivalent to a directed graph by considering each undi-
rected edge with weight w as two directed edges with weight w and opposite orien-
tation. Similarly, a mixed graph (a graph with both undirected and directed edges)
can be considered as a directed graph. We define the symmetric part of a graph
by replacing each directed edge with an undirected edge of half the weight. This
means that the symmetric part of an undirected graph is itself. If A is the adjacency
matrix of G then 1

2 (A + AT) is the adjacency matrix of the symmetric part of G. We
define the reversal of a directed graph as the directed graph obtained by reversing
the orientation of all the edges. The adjacency matrix of the reversal of G is AT.

A graph is strongly connected if for every ordered pair of vertices (v, w), there
exists a directed path from v to w. A graph is weakly connected if its symmetric part
is strongly connected, i.e. after ignoring the orientation of the edges, the resulting
undirected graph is connected.
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For a real symmetric matrix A, let the eigenvalues of A be arranged as:

λ1(A) � λ2(A) � · · · � λn(A).

We will also write λ1(A) and λn(A) as λmin(A) and λmax(A) respectively. For a
vector or matrix X, X � 0 and X > 0 means that all entries of X are nonnegative or
positive respectively.

A directed graph G is a directed tree or arborescence if the symmetric part of
G is a tree and there exists a vertex of G, called the root of G, which has directed
paths to all remaining vertices of G. A vertex in a directed tree is called a leaf if its
outdegree is zero.

2. A generalized Laplacian matrix

The Laplacian matrix of a directed graph is defined as L = D − A, where D is
the diagonal matrix of vertex outdegrees.1 Let e = (1, . . . , 1)T. It is clear that L is
a zero row sums matrix with nonpositive off-diagonal elements and thus e is a right
eigenvector of L, i.e. Le = 0. The Laplacian matrix of the complete graph will be
denoted as LK = nI − eeT. Note that for x ⊥ e, xTLKx = nxTx.

A directed graph can be decomposed into strongly connected components and
the Laplacian matrix (possibly after reordering of the vertices) can be written in
Frobenius normal form [4]:

L =




B1 B12 · · · B1k

B2 · · · B2k

. . .
...

Bk


 , (1)

where Bi are square irreducible matrices corresponding to the strongly connected
components of G. We will call k − 1 the degree of reducibility of L(G). Each Bi

can be further decomposed as Bi = Li + Di where Li is the zero row sum Lapla-
cian matrix corresponding to the strongly connected components of G and Di are
nonnegative diagonal matrices. We can then write L as L = Ls + Lr where Ls is
the block diagonal matrix with Li as diagonal blocks. In other words Ls and Lr

are the Laplacian matrices of subgraphs Gs and Gr where Gs is a disjoint union of
the strongly connected components and Gr is the acyclic residual subgraph whose
edges are those edges in G which go from one strongly connected component to
another strongly connected component. We define ds

o(v) and dr
o(v) as the outdegree

of vertex v in subgraphs Gs and Gr respectively. We define ds
i and dr

i similarly. Note
that do(v) = ds

o(v) + dr
o(v) and di(v) = ds

i (v) + dr
i (v).

1 There exists other definitions of Laplacian matrices of directed (or mixed) graphs, see for instance [3].
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By Gershgorin’s circle criterion, all eigenvalues of the Laplacian matrix L have
nonnegative real parts. From Perron–Frobenius theory [5], there exists a nonnegative
nonzero vector w � 0 such that wTL = 0. If the graph is strongly connected, then 0
is a simple eigenvalue of L and there exists a positive vector w > 0 such that wTL =
0. The special structure of Laplacian matrices allows us to further characterize when
the vector w is positive and when 0 is a simple eigenvalue.

Lemma 1. For a graph G with Laplacian matrix L, there exists a positive vector
w > 0 such that wTL = 0 if and only if G is a disjoint union of strongly connected
graphs.

Proof. If G is a disjoint union of strongly connected graphs, each such subgraph
Hi has a positive vector wi such that wT

i L(Hi) = 0. Concatenating these vectors
will form a positive vector w such that wTL(G) = 0. If G is not a disjoint union of
strongly connected subgraphs, then L(G) written in Frobenius normal form (Eq. (1))
satisfies:

(1) B1 is irreducible,
(2) one of B12, . . . , B1k is not equal to the zero matrix.

Since L has zero row sums this means that (B1)ii �
∑

i /=j |(B1)ij |. B1l /= 0 for
some l means that for at least one i, (B1)ii >

∑
i /=j |(B1)ij |. By [6], B1 is nonsingu-

lar, and so any vector w such that wTL = 0 must be of the form (0 w2)T. �

Corollary 1. If the indegree of each vertex is equal to its outdegree, then the graph
is weakly connected if and only if it is strongly connected.

Proof. The hypothesis on the graph implies that its Laplacian matrix L has zero
column sums, i.e. eTL = 0. By Lemma 1 this implies that the graph consists of
disjoint strongly connected components. Thus if the graph is weakly connected, it is
also strongly connected. �

Lemma 2. The following two statements are equivalent:

(1) Re(λ) > 0 for all eigenvalues λ of L not corresponding to the eigenvector e.
(2) The reversal of G has a spanning directed tree.

Proof. Suppose that the reversal of G has a spanning directed tree. Let r be the
root of this tree. Since all vertices of G has a directed path to r , in the Frobenius
normal form (Eq. (1)), r must be in the connected component corresponding to Bk ,
the diagonal block in the lower right corner. Furthermore, for each i /= k, one of the
matrices Bil must be nonzero. As in the proof of Lemma 1, Bi is nonsingular for
i /= k. So the zero eigenvalue of L must come from Bk . Since Bk is irreducible, the
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zero eigenvalue of L is simple. Furthermore, Gershgorin’s circle criterion implies
that all nonzero eigenvalues of L have positive real parts.

There exists a spanning directed tree in the reversal of G if and only if for any pair
of vertices v and w, there exists a vertex z such that there is a directed path from v to
z and a directed path from w to z [7]. If the reversal of G does not have a spanning
directed tree, then there exist a pair of vertices v and w such that for all vertices z,
there is either no directed paths from v to z or no directed paths from w to z. Let
R(v) and R(w) be the set of vertices reachable from v and w respectively. Let H(v)

and H(w) be the subgraphs of G corresponding to R(v) and R(w) respectively.
Expressing the Laplacian matrix of H(v) in Frobenius normal form, let B(v) be the
square irreducible matrix in the lower right corner. We define B(w) similarly. Note
that B(w) and B(v) are zero row sums singular matrices. By the construction, it is
easy to see that B(v) = Bi and B(w) = Bj in the Frobenius normal form (Eq. (1))
of the Laplacian matrix of G for some i, j . Since the eigenvalues of L are the eigen-
values of Bi’s, this means that the zero eigenvalue of L is not simple. Furthermore,
the kernel of L contains 2 or more linearly independent eigenvectors. �

In [8] Lemma 2 is generalized by showing that for reducible Laplacian matrices,
the multiplicity of the zero eigenvalue is equal to the minimum number of directed
trees needed to span the reversal of the graph.

2.1. Strongly connected graphs

For w such that wTL = 0, let W = diag(w), i.e. W is a diagonal matrix whose
diagonal entries are the entries of w. The components of the vector w is denoted as
w(v) for v ∈ V . For a strongly connected graph, we define a generalized Laplacian
matrix L̃ which depends on w as L̃(w) = WL which has both zero row sums and
zero column sums. We define the following quantities:

Definition 1. For a strongly directed graph G with Laplacian matrix L, let

ã(G) = min
x⊥e,‖x‖=1

xTWLx = λ2

(
1

2
(L̃ + L̃T)

)
,

b̃(G) = maxx⊥e,‖x‖=1 xTWLx

minv w(v)
=

λmax

(
1
2 (L̃ + L̃T)

)
minv w(v)

� ã(G),

where w is the unique vector such that wTL = 0 and maxv w(v) = 1.

2.2. General directed graphs

Consider the Laplacian matrix expressed in Frobenius normal form (Eq. (1)). Let
wi be the positive vector such that wT

i Li = 0 and maxv wi(v) = 1 and define:
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w =




w1
w2
...

wk


 .

As before, we define W = diag(w) and L̃ = WL. We can now define ã(G) and
b̃(G):

Definition 2. For a directed graph with Laplacian matrix L in Frobenius normal
form (Eq. (1)), ã(G) and b̃(G) are defined as:

ã(G) = min
x⊥e,‖x‖=1

xTWLx � maxx⊥e,‖x‖=1 xTWLx

minv,i wi(v)
= b̃(G).

It is easy to show that WL has zero row sums and zero column sums if and only
if G is a disjoint union of strongly connected graphs. By Courant–Fischer min–max
theorem, we have:

λ1

(
1

2
(L̃ + L̃T)

)
� ã(G) � λ2

(
1

2
(L̃ + L̃T)

)
,

λn−1

(
1
2 (L̃ + L̃T)

)
minv,i wi(v)

� b̃(G) �
λmax

(
1
2 (L̃ + L̃T)

)
minv,i wi(v)

.

As in [1], ã and b̃ can be written as

ã(G) = λmin

(
1

2
QT(WL + LTW)Q

)
,

b̃(G) =
λmax

(
1
2 QT(WL + LTW)Q

)
mini,v wi(v)

,

where Q is an n by n − 1 matrix whose columns form an orthonormal basis of e⊥.
The quantity ã(G) can be considered as another extension of the algebraic con-

nectivity to directed graphs and ã(G) and b̃(G) coincide with the definitions of a(G)

and b(G) in [1] for graphs where the indegree of each vertex in a strongly connected
component subgraph is equal to its outdegree, i.e. each Li in the Frobenius normal
form has zero column sums. This is due to the fact that in this case wi = e for each
strongly connected component and thus W = I .

3. Properties of ã(G) and b̃(G)

Lemma 3. If G is strongly connected, then ã(G) � Re(λ) for all eigenvalues λ of
L(G) not belonging to the eigenvector e.
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Proof. The proof will be given in Section 5. �

Lemma 4. If G is strongly connected, then

0 � ã(G) � b̃(G) � 2 maxv{w(v)do(v)}
minv w(v)

,

where w is a vector such that wTL = 0.

Proof. 1
2 (L̃ + L̃T) is a symmetric matrix with zero row sums, nonnegative diagonal

elements and nonpositive off-diagonal elements. Its diagonal elements are w(v)do(v)
minv w(v)

.

By Gershgorin’s circle criterion, the eigenvalues of L̃ satisfy

0 � λ � 2 maxv{w(v)do(v)}
minv w(v)

. �

It is easy to see that if G is a disjoint union of 2 or more strongly connected graphs
H1, . . . , Hk , then ã(G) = 0 and b̃(G) = maxi b̃(Hi).

Lemma 5. If G is strongly connected, then

ã(G) = n min
x ∈span(e)

xTWLx

xTLKx
,

b̃(G) = n max
x ∈span(e)

xTWLx

xTLKx
.

Proof. Decompose x ∈ span(e) as x = αe + y, where y ⊥ e. Since eTWL =
WLe = eTLK = LKe = 0, the proof is then complete by noting that

xTWLx

xTLKx
= yTWLy

yTLKy
= yTWLy

nyTy
. �

Definition 3. Let S1 and S2 be subsets of vertices. Define

e(S1, S2) =
∑

v1∈S1,v2∈S2

Av1,v2

which is the sum of the weights of edges which start in S1 and end in S2. In general,
e(S1, S2) /= e(S2, S1). For the decomposition L = Ls + Lr in the Frobenius normal
form, we also define

es(S1, S2) =
∑

v1∈S1,v2∈S2

As
v1,v2

,

er (S1, S2) =
∑

v1∈S1,v2∈S2

Ar
v1,v2

,
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where As and Ar are −Ls and −Lr respectively with the diagonal elements set to
zero.

Note that e(S1, S2) = es(S1, S2) + er(S1, S2) and since Aij � 1, e(S1, S2) �
|S1||S2|. The following two lemmas are simple to prove but are quite useful to relate
combinatorial properties of G with ã(G) and b̃(G).

Lemma 6. Let S1 and S2 be two nontrivial disjoint subsets of vertices of a graph G

(i.e. 0 < |S1|, 0 < |S2| and S1 ∩ S2 = ∅) and Si = V \Si . Then

ã(G) � |S2|2e(S1, S1) + |S1||S2|(e(S1, S2) + e(S2, S1)) + |S1|2e(S2, S2)

|S1||S2|2 + |S1|2|S2|
� b̃(G).

Furthermore,

ã(G) � e(S1, S1)

|S1| + e(S2, S2)

|S2| ,

b̃(G) � e(S1, S2)

|S1| + e(S2, S1)

|S2| .

Proof. Let x be a vector such that xv = |S2| if v ∈ S1, xv = −|S1| if v ∈ S2 and
xv = 0 otherwise. Then x ⊥ e and xTx = |S1||S2|2 + |S1|2|S2|.

xTWDx = |S2|2
∑
v∈S1

w(v)do(v) + |S1|2
∑
v∈S2

w(v)do(v),

xTWAx = |S2|2
∑
v∈S1

w(v)e(v, S1) − |S1||S2|
∑
v∈S1

w(v)e(v, S2)

− |S1||S2|
∑
v∈S2

w(v)e(v, S1) + |S1|2
∑
v∈S2

w(v)e(v, S2).

Since e(v, S) + e(v, S) = e(v, V ) = do(v), this implies that

xTWLx = xTWDx − xTWAx

= |S2|2
∑
v∈S1

w(v)e(v, S1) + |S1|2
∑
v∈S2

w(v)e(v, S2)

+ |S1||S2|
(∑

v∈S1

w(v)e(v, S2) +
∑
v∈S2

w(v)e(v, S1)

)
. (2)

Since ã(G) � xTWLx
xTx

� b̃(G), the first set of inequalities follows, noting that

minv w(v) � w(v) � 1 in the definitions of ã(G) and b̃(G). The last 2 inequalities
follow from the fact that e(S1, S1) � e(S1, S2) and e(S2, S2) � e(S2, S1). �
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Lemma 7. Let S be a nontrivial subset of vertices of a graph G (i.e. 0 < |S| < n)

and S = V \S. Then

ã(G) � e(S, S)

|S| + e(S, S)

n − |S| � b̃(G),

ã(G) � n

|S|(n − |S|) min(es(S, S), es(S, S)) + er(S, S)

|S| + er(S, S)

n − |S| ,

b̃(G) � n

|S|(n − |S|) max(es(S, S), es(S, S)) + er(S, S)

|S| + er(S, S)

n − |S| .

Proof. By choosing S1 = S and S2 = S in Lemma 6, the first set of inequalities
follows. Furthermore, Eq. (2) becomes:

xTWLx = (n − |S|)2
∑
v∈S

w(v)e(v, S) + |S|2
∑
v∈S

w(v)e(v, S)

+ |S|(n − |S|)
(∑

v∈S

w(v)e(v, S) +
∑
v∈S

w(v)e(v, S)

)

= n(n − |S|)
∑
v∈S

w(v)e(v, S) + n|S|
∑
v∈S

w(v)e(v, S). (3)

Note that∑
v∈S

w(v)es(v, S) +
∑
v∈S

w(v)es(v, S) =
∑
v∈S

w(v)ds
o(v). (4)

Since WLs has zero row sums and zero column sums, this implies that
w(v)ds

o(v) = ∑
u∈V w(u)es(u, v). Therefore∑

v∈S

w(v)ds
o(v) =

∑
u∈V

w(u)
∑
v∈S

es(u, v) =
∑
u∈V

w(u)es(u, S)

=
∑
u∈S

w(u)es(u, S) +
∑
u∈S

w(u)es(u, S). (5)

Combining Eqs. (4) and (5) we get:∑
v∈S

w(v)es(v, S) =
∑
v∈S

w(v)es(v, S).

Combining this with Eq. (3) and the fact that e(v, S) = es(v, S) + er(v, S) we
get the desired result. �

Corollary 2. Let S be a nontrivial subset of vertices of G. Then

|S|(n − |S|)
n

ã(G) � max(e(S, S), e(S, S)), (6)

|S|(n − |S|)
n

b̃(G) � min(e(S, S), e(S, S)). (7)
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Proof. Since

er(S, S)

|S| + er(S, S)

n − |S| = n

|S|(n − |S|)er (S, S) + er(S, S) − er(S, S)

n − |S| ,

we get by Lemma 7

ã(G) � n

|S|(n − |S|)e(S, S) + er(S, S) − er(S, S)

n − |S|
Similarly,

ã(G) � n

|S|(n − |S|)e(S, S) + er(S, S) − er(S, S)

|S|

Since one of the terms er (S,S)−er (S,S)
n−|S| and er (S,S)−er (S,S)

|S| is nonpositive, we get

Eq. (6). Eq. (7) follows from a similar reasoning. �

Corollary 3. Let S be a nontrivial subset of vertices of a graph G. If G is a disjoint
union of strongly connected graphs, then

|S|(n − |S|)
n

ã(G) � min(e(S, S), e(S, S)),

|S|(n − |S|)
n

b̃(G) � max(e(S, S), e(S, S)).

Proof. Follows from Lemma 7 and the fact that Lr = 0 in this case. �

Lemma 8. Let v, u be nonadjacent vertices of a graph G, i.e. Avu = Auv = 0. Then

ã(G) � 1

2
(do(v) + do(u)) � b̃(G).

In particular, if G has two vertices with zero outdegrees, then ã(G) � 0.

Proof. Follows from Lemma 6 and choosing S1 = {v}, S2 = {u}. �

Let �o = maxv∈V do(v), δo = minv∈V do(v), �i = maxv∈V di(v), and δi =
minv∈V di(v).

Lemma 9

ã(G) � n

n − 1
min

v

(
max(do(v), di(v))

)
,

b̃(G) � n

n − 1
max

v

(
min(do(v), di(v))

)
.
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If G is a disjoint union of strongly connected graphs,

ã(G) � n

n − 1
min(δo, δi) � n

n − 1
max(�o, �i ) � b̃(G).

Proof. Follows from Corollaries 2 and 3 and choosing S = {v}. �

Lemma 10. If G is strongly connected, then ã(G) > 0. If G does not contain a
spanning directed tree, then ã(G) � 0.

Proof. If G is strongly connected, then 1
2 (WL + LTW) is irreducible. Therefore by

Perron–Frobenius theory, ã(G) = λ2
( 1

2 (WL + LTW)
)

> 0.
As in the proof of Lemma 2, if the reversal of G does not contain a spanning

directed tree, then there exist a pair of vertices v and w such that for all vertices z,
either there are no directed paths from v to z or there are no directed paths from
w to z. Let R(v) and R(w) denote the nonempty set of vertices reachable from v

and w respectively. The hypothesis implies that R(v) and R(w) are disjoint. Fur-
thermore, by definition e(R(v), R(v)) = e(R(w), R(w)) = 0 and the result follows
from Lemma 6 by setting S1 = R(v) and S2 = R(w). �

Definition 4. The (weak) edge connectivity e(G) of a graph is defined as the small-
est weighted sum among all subsets of edges such that its removal results in a graph
which is not weakly connected.

Theorem 1. ã(G) � e(G). If G is strongly connected,
2(n−1)

n
ã(G) � e(G).

Proof. Let S be a weakly connected component of the weakly disconnected graph
resulting from removal of a minimal set of edges. Then e(S, S) + e(S, S) = e(G).
By Lemma 7,

ã(G) � e(S, S)

|S| + e(S, S)

n − |S| � e(S, S) + e(S, S).

If G is strongly connected, by Corollary 3

2ã(G) � (e(S, S) + e(S, S))
n

|S|(n − |S|) � (e(S, S) + e(S, S))
n

n − 1
.

�

Theorem 2. If G is strongly connected, then

ã(G) �
1 − cos

(
π
n

)
r

e(G),

ã(G) � C1e(G)

2r
− C2q,

where r = maxv w(v)
minv w(v)

, q = maxv w(v)do(v), C1 = 2
(

cos
(

π
n

)− cos
( 2π

n

))
and C2 =

2 cos
(

π
n

)(
1 − cos

(
π
n

))
.
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Proof. The proof is similar to [2]. Let K = I − 1
2q

(WL + LTW) where q =
maxv{w(v)do(v)}. K is doubly stochastic and by [9]

ã(G)

q
= 1 − λ2(K) � 2

(
1 − cos

(π

n

))
µ,

1 − λ2(K) � C1µ − C2,

where µ = min0<|S|<n

{∑
v∈S,w∈S Kvw

}
. Note that

µq = 1

2
min

0<|S|<n

{∑
v∈S

w(v)e(v, S) +
∑
v∈S

w(v)e(v, S)

}
� 1

2r
e(G),

and the result follows. �

We can also define the strong edge connectivity as follows:

Definition 5. The strong edge connectivity es(G) of a graph is defined as the small-
est weighted sum among all subsets of edges such that its removal results in a graph
which is not strongly connected.

The following results follow similar proofs as the weakly connected case.

Theorem 3. If G is strongly connected, n−1
n

ã(G) � es(G).

Theorem 4. If G is strongly connected, then

ã(G) �
2
(
1 − cos

(
π
n

))
r

es(G),

ã(G) � C1es(G)

r
− C2q,

where r, q, C1 and C2 are as defined in Theorem 2.

Definition 6. A directed graph is bipartite if its vertices can be partitioned into two
sets V and W such that each edge starts from a vertex in V and ends in a vertex in
W . If |V | = p and |W | = q, then we use Gp,q to denote such a graph.

Corollary 4. If q � 2 for a bipartite directed graph Gp,q, then ã(G) � 0.

Proof. Follows from Lemma 10. �

Theorem 5. If G is a directed tree with at least two leaves, then a(G) � 0. If the
reversal of G is a directed tree, then ã(G) � di (r)

n−1 where r is the root of the tree.

Proof. The proof is the same as in [1]. �
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In [10], the eigenvector of L corresponding to λ2(L) is used to construct con-
nected subgraphs of undirected graphs. The following extends this to directed graphs.

Theorem 6. Let G be a weakly connected graph. Let y > 0 be an eigenvector of the
Laplacian matrix of the symmetric part of G corresponding to λ2. For any θ � 0,

the subgraph corresponding to the vertex set

V (θ) = {i ∈ V : yi � −θ}
is weakly connected. Similarly, the subgraph corresponding to

V (θ) = {i ∈ V : yi � θ}
is weakly connected.

Proof. Apply Theorem (3,3) in [10] to the symmetric part of G and noting that a
graph is weakly connected if and only if its symmetric part is strongly connected. �

3.1. Stationary distribution of Markov chains

The quantity r in Theorems 2 and 4 is related to how different the vector w is from
e, which in turn is related to how far L is from having zero column sums. We can get
an upper bound on r by using perturbation bounds on the stationary distribution of
Markov chains.

First note that for a Laplacian matrix L, P = I − αL is a stochastic matrix for
some α > 0. For example, we can choose α = 1

maxi Lii
. Next note that if πTL = 0

then πTP = π . Thus if
∑

i πi = 1, then π is the stationary distribution of the Mar-
kov chain with transition matrix P . Furthermore, for strongly connected graphs, π

is unique and thus r = maxi πi

mini πi
.

Let P̃ be an irreducible doubly stochastic matrix close to P . In [11] several
bounds of the form ‖π − e‖p � κ‖P − P̃ ‖q were given for some suitable norms
‖ · ‖p, ‖ · ‖q . These bounds can in turn be used to bound r . For instance, ‖π −
e‖∞ � δ < 1 implies r � 1+δ

1−δ
.

4. Combinatorial properties

4.1. Maximum directed cut

Definition 7. The maximum directed cut md(G) is defined as:
md(G) = max

0<|S|<n
{e(S, S)}.
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Theorem 7. If G is a disjoint union of strongly connected graphs,

md(G) �
⌊n

2

⌋⌈n

2

⌉ b̃(G)

n
.

Proof. Follows from Corollary 3 and the fact that |S|(n−|S|)
n

� � n
2 �� n

2 �
n

. �

4.2. Edge-forwarding index

Consider the definition of edge-forwarding index in [12] applied to directed
graphs:

Definition 8. Given a strongly connected unweighted directed graph, a routing is
defined as a set of n(n − 1) paths R(u, v) between any pair of distinct vertices v,
w of G. The load of an edge e, π(G, R, e), is defined as the number of paths in
the routing R which traverse it. The edge-forwarding index of (G, R) is defined as
π(G, R) = maxe∈E(G, R, e). The edge-forwarding index of the graph G is defined
as π(G) = minR π(G, R).

Theorem 8. Let G be a strongly connected unweighted directed graph. For S ⊂ V,

π(G) � max

( |S|(n − |S|)
e(S, S)

,
|S|(n − |S|)

e(S, S)

)
� n

b̃(G)
.

Proof. The proof is similar to [13]. Let R be a routing. Each path in R from vertex
v in S to vertex w in S contains at least one edge in the edge cut of S. Since there are
|S|(n − |S|) such paths, π(G) � |S|(n−|S|)

e(S,S)
. Similarly, π(G) � |S|(n−|S|)

e(S,S)
. The result

then follows from Corollary 3. �

4.3. Bisection width

Definition 9. The bisection width is defined as:

bw(G) = min
|S|=� n

2 �
{e(S, S)}.

A related quantity is

bw(G) = max
|S|=� n

2 �
{e(S, S)}.

It is easy to see that

bw(G) + bw(G) =
⌊n

2

⌋⌈n

2

⌉
. (8)
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Theorem 9. If G is a strongly connected graph,

bw(G) �
⌊n

2

⌋⌈n

2

⌉ ã(G)

n
,

bw(G) �
⌊n

2

⌋⌈n

2

⌉ b̃(G)

n
.

Proof. Follows from Corollary 3 by setting |S| = ⌊
n
2

⌋
. �

4.4. Isoperimetric number and minimum ratio cut

Definition 10. The isoperimetric number i(G) and the minimum ratio cut rc(G)

[14] are defined as:

i(G) = min
0<|S|� n

2

{
e(S, S)

|S|

}
,

rc(G) = min
S

{
e(S, S)

|S||S|

}
.

Theorem 10. If G is strongly connected, the isoperimetric number and the mini-
mum ratio cut of a graph satisfy:

i(G) � a(G)

2
, rc(G) � ã(G)

n
.

Proof. Follows from Corollary 3. �

4.5. Independence number

Definition 11. An independent set of vertices is a set of vertices such that no 2
distinct vertices in the set are adjacent. The independence number of a graph α(G)

is the size of the largest independent set of vertices.

The following results extend a theorem in [15] to strongly connected graphs.

Theorem 11. For a strongly connected graph, let the outdegrees and indegrees be
ordered as do(1) � do(2) � · · · � do(n) and di(1) � di(2) � · · · � di(n) respec-
tively and define γ (r) = 1

r
max

(∑r
j=1 do(j),

∑r
j=1 di(j)

)
. If r0 is the smallest inte-

ger r such that
nγ (r)

n − r
> b̃(G)

then α(G) � r0 − 1.
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Proof. Let S be an independent set such that |S| = r . Since S is independent,
e(S, S) = ∑

v∈S do(v) and e(S, S) = ∑
v∈S di(v) and thus max(e(S, S), e(S, S)) �

rγ (r). Then by Corollary 3

b(G) � nγ (r)

n − r
. �

4.6. Diameter

In [16], an upper bound on the diameter of an undirected graph was proved. A
weaker bound was also given for directed graphs where the indegree of each vertex
is equal to its outdegree. We extend this latter bound to general directed graphs by
using ã(G) and b̃(G).

First note that for a strongly connected graph, there exists a positive vector w in
Sa . Let W = diag(w). Similar to the argument in [16], the diameter d of a strongly
connected graph G is the smallest positive integer such that for all i /= j , there exists
a polynomial pm of degree m � d such that (pm(WL)) /= 0. The results in [16] can
be used to prove the following two results:

Theorem 12. If G is a strongly connected graph with diameter d and ρ and λ are
such that 1 � ρ >

∥∥I − λWL − 1
n
eeT
∥∥, then

d �
⌈

ln(n − 1)

ln 1
ρ

⌉
.

Proof. The proof is the same as Theorem 6.1 in [16], noting that WL has zero row
sums and zero column sums. �

Theorem 13. If G is a strongly connected graph with diameter d and w is a positive
vector such that wTL = 0 and maxv w(v) = 1, then

d �

 ln(n − 1)

ln ‖WL‖√
‖WL‖2−ã2

+ 1,

where W = diag(w).

Proof. The proof is similar to the proof of Theorem 6.3 in [16]. �

We define a directed graph to be locally connected [17] if the vertices are arranged
on a grid and each vertex is adjacent only to vertices in a local neighborhood of fixed
radius. The following result extends a result in [17]:
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Corollary 5. If G(n) is a locally connected and strongly connected graph of n ver-
tices, then

lim
n→∞ ã(G(n)) = 0.

Proof. If the weights decreases with n such that δo → 0, then clearly n
n−1 δo � ã →

0. Otherwise, ‖WL‖ is bounded away from 0 and the diameter grows faster than
ln(n), and the conclusion follows from Theorem 13. �

In fact any sequence of graphs where the diameter grows as ω(ln(n)) will have
ã → 0.

4.7. Linear labelings and bandwidth

Definition 12. For a labeling ψ : V → {1, . . . , n} the p-discrepancy is defined as

σp(G, ψ) =
(∑

v,w

Avw|ψ(v) − ψ(w)|p
) 1

p

if p < ∞ and

σ∞(G, ψ) = max
v,w

|ψ(v) − ψ(w)|
if p = ∞. The min-p-sum of G is defined as:

σp(G) = min
ψ

σp(G, ψ).

The cutwidth is defined as

c(G, ψ) = max
1�i<n

∣∣{(u, v) : Auv /= 0, ψ(u) � i < ψ(v)
}∣∣.

σ∞(G) is also referred as the bandwidth of G. The following results extends the
corresponding results in [18,19] to directed graphs, and the proofs are omitted since
they are essentially the same as in [18,19].

Theorem 14. If G is strongly connected,

ã(G) � 3σ1(G)

n2 − 1
� b̃(G).

Proof. The proof is essentially the same as [19], except that for a directed graph,
the edge (i, j) is different from (j, i), hence the difference of a factor of two. �

Theorem 15. If G is strongly connected,

ã(G) � n⌊
n
2

⌋ ⌈
n
2

⌉c(G) � b̃(G).
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Theorem 16. For a strongly connected graph, let α =
⌈

ãn

2b̃−ã

⌉
. If α ≡ n mod 2,

then σ∞(G) � α − 1, otherwise σ∞(G) � α.

Theorem 17. For a strongly connected graph, define

α =



b̃n −
√

(b̃ − ã)2n2 + 2ãb̃ − ã2

2b̃ − ã




If α ≡ n mod 2, then σ∞(G) � α, otherwise σ∞(G) � α − 1.

Theorem 18. For a strongly connected graph, define

α =
⌈

ãn

� +
√

�2 + ã2

⌉

where � = min{�o, �i}. If α ≡ n mod 2, then σ∞(G) � α − 1, otherwise σ∞(G) �
α.

5. Synchronization in networks of coupled dynamical systems

We present in this section an application of ã(G) to derive synchronization criteria
in a network of coupled dynamical systems.

Definition 13. A function f (y, t) is V -uniformly decreasing if (y − z)TV (f (y, t) −
f (z, t)) � −c‖y − z‖2 for some c > 0 and all y, z, t .

Consider the following synchronization result [20–23] for the coupled network of
identical dynamical systems with state equations

ẋ = (f (x1, t), . . . , f (xn, t))T + (C ⊗ D)x, (9)

where x = (x1, . . . , xn)T and C is a zero row sums matrix with nonpositive off-
diagonal elements.

Theorem 19. Let P be a matrix and V be a symmetric positive definite matrix such
that f (x, t) + P x is V -uniformly decreasing. Then the array in Eq. (9) synchronizes
in the sense that ‖xi − xj‖ → 0 as t → ∞ if there exists a symmetric irreducible
zero row sums matrix U with nonpositive off-diagonal elements such that

(U ⊗ V )(C ⊗ D − I ⊗ P )

is negative semidefinite.2

2 A (not necessarily symmetric) real matrix B is positive (negative) semidefinite if xTBx � 0 (�0) for
all real vectors x.
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Definition 14. Let µ(C) be the supremum of the set of real numbers µ such that
U(C − µI) is positive semidefinite for some symmetric zero row sums matrix U

with nonpositive off-diagonal elements.

Using Theorem 19 it is easy to show the following [24]:

Theorem 20. The coupled network

ẋ = (f (x1, t), . . . , f (xn, t))T + (C ⊗ D)x (10)

synchronizes if f (y, t) + αDy is V -uniformly decreasing for some symmetric posit-
ive definite V, V D is symmetric negative semidefinite and µ(C) � α.

The matrix C describes the coupling topology between systems whereas the mat-
rix D describes the coupling term between two systems. The term αDy is the amount
of feedback needed to stabilize ẏ = f (y, t). The array can be considered as coupled
via a graph where for i /= j , Cij /= 0 means that there is a term Cij Dxj in ẋi , i.e.
system i is influenced by system j . If we assign a directed edge of weight −Cij

from system i to system j , then C is exactly the Laplacian matrix of the underlying
graph.3

Theorem 20 shows that µ(C) is a lower bound on the amount of coupling needed
to synchronize the array. Next we show that ã of the underlying graph provides a
lower bound on µ(C).

Theorem 21. If C = L(G) and G is strongly connected, then 0 < ã(G) � µ(C).

Proof. Let w be a positive vector such that wTL = 0 and maxv wv = 1. Define U =
W − wwT∑

v wv
where W = diag(w). Then U is a symmetric irreducible zero row sums

matrix with nonpositive off-diagonal elements. It suffices to show that B = U(L −
ã(G)I) is positive semidefinite. First note that since eTU = Ue = 0, it follows that
eTB = Be = 0. Thus it suffices to show that miny⊥e yTBy � 0. Since wTL = 0, B

can be written as B = WL − ãW + ã wwT∑
v wv

. For y ⊥ e,

yTBy = yTWLy − ãyTWy + ã
(yTw)2∑

v wv

� ã‖y‖2 − ã‖y‖2 � 0. �

3 From a dynamical systems point of view, it is probably more appropriate to define the edge to go from
system j into system i, but the above definition is consistent with the definition of the adjacency matrix.
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In fact, the proof of Theorem 21 shows the following stronger result:

ã(G) � min
x⊥e,x /=0

xTWLx

xT
(
W − wwT∑

v wv

)
x

� µ(L(G)).

We are now in a position to prove Lemma 3.

Proof of Lemma 3. Follows from Theorem 21 and the fact that µ(C) � Re(λ) for
all eigenvalues λ of C not belonging to the eigenvector e [25]. �

In [20] it was shown that if the underlying graph is undirected and connected,
sufficiently strong cooperative coupling will synchronize the network. The following
result extends this to strongly connected directed graphs.

Corollary 6. The coupled network

ẋ = (f (x1, t), . . . , f (xn, t))T + κ(C ⊗ D)x (11)

synchronizes if f (y, t) + Dy is V -uniformly decreasing for some symmetric positive
definite V, V D is symmetric negative semidefinite, the underlying graph is strongly
connected and the scalar κ is large enough.

Proof. Follows from Theorems 20 and 21 and Lemma 10. �

Corollary 6 is still true when the underlying graph is not strongly connected, but
its reversal contains a spanning directed tree [26].

Even though we have assumed the weights on the graph to be nonnegative, i.e. L

has nonpositive off-diagonal elements, Theorem 21 can also be applied to the case
where L has both positive and negative off-diagonal elements provided that a positive
vector w exists such that wTL = 0.

6. Conclusions

We propose a refinement ã(G) to the generalization of Fiedler’s algebraic con-
nectivity to directed graphs described in [1] and study the relationship between ã(G)

and b̃(G) and several graph-theoretical properties. We also show that ã(G) provides
a lower bound on the amount of coupling needed to synchronize a network of cou-
pled dynamical systems. In particular this implies that coupled identical dynamical
systems where the underlying graph is strongly connected can be synchronized when
the coupling is large enough.

Properties such as independence number and min-p-sum do not depend on the
orientation and weight of the edges and it would be interesting to study whether
better bounds can be obtained by choosing the orientations and weights of the edges
in an intelligent way.
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