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Abstract

Harmonic and analytic functions have natural discrete analogues.
Harmonic functions can be defined on every graph, while analytic func-
tions (or, more precisely, holomorphic forms) can be defined on graphs
embedded in orientable surfaces. Many important properties of the
“true” harmonic and analytic functions can be carried over to the dis-
crete setting.

1 Introduction

Discrete and continuous mathematics study very different structures, by
very different methods. But they have a lot in common if we consider
which phenomena they study: Symmetry, dispersion, expansion, and other
general phenomena have interesting formulations both in the discrete and
continuous setting, and the influence of ideas from one to the other can be
most fruitful. One such notion we should more explicitly mention here are
discrete harmonic functions, which can be defined on every graph, and have
been studied quite extensively. See [23] for a lot of information on harmonic
functions on (infinite) graphs and their connections with electrical networks
and random walks. In this paper we show that analycity (most notably
the uniqueness of analytic continuation and the long-range dependence it
implies) is an important phenomenon in discrete mathematics as well.

Discrete analytic functions were introduced for the case of the square
grid in the 40’s by Ferrand [11] and studied quite extensively in the 50’s by
Duffin [8]. For the case of a general map, the notion of discrete analytic
functions is implicit in a paper of Brooks, Smith, Stone and Tutte [5] (cf.
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section 7.2) and more recent work by Benjamini and Schramm [4]. They
were formally introduced recently by Mercat [18].

Discrete analytic functions and holomorphic forms can be defined on
orientable maps, i.e., graphs embedded in orientable surfaces. (Much of this
could be extended to non-orientable surfaces, but we don’t go into this in
this paper.) In graph-theoretic terms, they can be defined as rotation-free
circulations (which is the same as requiring that the circulation is also a
circulation on the dual graph).

Many important properties of the “true” harmonic and analytic func-
tions can be carried over to the discrete setting: maximum principles,
Cauchy integrals etc. Some of these translations are straightforward, some-
times it is not so easy to find the right formulation. But discreteness brings
in several new aspects as well, like connections with network flows, matroid
theory, various embeddings of graphs, tiling the plane by squares, circle
representations etc.

Other aspects of analytic functions are worse off. Integration can be
defined on the grid [8], but we run into trouble if we want to extend it to
more general maps. Mercat [18] introduced a (rather restrictive) condition
called “criticality”, under which integrals can be defined. Multiplication is
problematic even on the grid. Analogues of polynomials and exponential
functions can be defined on the grid [8], and can be extended to to critical
maps [19, 20].

In this paper we start with briefly surveying two related topics: harmonic
functions on graphs and discrete analytic functions on grids. This is not our
main topic, and we concentrate on some aspects only that we need later.
In particular, we show the connection of harmonic functions with random
walks, electrical networks and rubber band structures.

We discuss in detail zero-sets of discrete analytic functions, in particular
how to extend to discrete analytic functions the fact that a nonzero analytic
function can vanish only on a very small connected piece [2, 3]. As an
application, we describe a simple local random process on maps, which has
the property that observing it in a small neighborhood of a node through a
polynomial time, we can infer the genus of the surface.

2 Notation

We recall some terminology from graph theory. Let G = (V, E) be a graph,
where V is the set of its nodes and E is the set of its edges. An edge of G
is a loop, if both endpoints are the same. Two edges are called parallel, if
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they connect the same pair of nodes. A graph G is called simple, if it has no
loops or parallel edges. The set of nodes connected to a given node v ∈ V
(called its neighbors) is denoted by N(v).

A graph is k-connected, if deleting fewer than k nodes always leaves a
connected graph.

A directed graph is a graph in which every edges has an orientation. So
each edge e ∈ E has a tail te ∈ V and a head he ∈ V . Our main concern
will be undirected graphs, but we will need to orient the edges for reference
purposes.

Let G be a directed graph. For each node v, let δv ∈ RE denote the
coboundary of v:

(δv)e =





1 if te = v,

−1 if he = v,

0 otherwise.

Thus |δv|2 = dv is the degree of v. We say that a node v ∈ V is a source
[sink] if all edges incident with it are directed away from [toward] the node.
Every function π ∈ RV gives rise to a vector δπ ∈ RE , where

(δπ)(uv) = π(v)− π(u). (1)

In other words,
δπ =

∑
v

π(v)δv. (2)

For an edge e, let ∂e ∈ RV be the boundary of e:

(∂e)i =





1 in i = h(e),
−1 in i = t(e),
0 otherwise.

For φ : E → R, we define

∂φ(v) = (δv)T φ =
∑

e: t(e)=v

φ(e)−
∑

e: h(e)=v

φ(e)

In other words,
∂φ =

∑
e

φ(e)∂e.

We say that φ satisfies the flow condition at v if ∂φ(v) = 0. We say that
φ is a circulation if it satisfies the flow condition at every node v. Note that
this depends on the orientation of the edges, but if we reverse an edge, we
can compensate for it by switching the sign of φ(e).
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3 Discrete harmonic functions

3.1 Definition

Let G = (V,E) be a connected graph. A function f : V → C is called
harmonic at node i if

1
di

∑

j∈N(i)

f(j) = f(i), (3)

and is said to have a pole at i otherwise. Note that the condition can be
re-written as ∑

j∈N(i)

(f(j)− f(i)) = 0. (4)

More generally, if we also have a “length” `ij > 0 assigned to each edge ij,
then we say that f is harmonic on the weighted graph G = (V, E, `) at node
i if ∑

j∈N(i)

f(j)− f(i)
`ij

= 0. (5)

If S is the set of poles of a function f , we call f a harmonic function with
poles S.

In the definition we allowed complex values, but since the condition
applies separately to the real and imaginary parts of f , it is usually enough
to consider real valued harmonic functions.

Proposition 3.1 Every non-constant function has at least two poles.

This follows simply by looking at the minimum and maximum of the
function. In fact, the maximum of a function cannot be attained at a node
where it is harmonic, unless the same value is attained at all of its neighbors.
This argument can be though of as a (very simple) discrete version of the
Maximum Principle.

For any two nodes a, b ∈ V there is a harmonic function with exactly
these poles. More generally, we have the following fact.

Proposition 3.2 For every set S ⊆ V , S 6= ∅, every function f0 : S → C
has a unique extension to a function f : V → C that is harmonic at each
node in V \ S.

The proof of uniqueness is easy (consider the maximum or minimum of
the difference of any two extensions). The existence of the extension follows
from any of several constructions, some of which will be given in the next
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section. Note that the case |S| = 1 does not contradict Proposition 3.1: the
unique extension is a constant function.

If S = {a, b}, then a harmonic function with poles S is uniquely deter-
mined up to scaling by a real number and translating by a constant. There
are various natural ways to normalize; we’ll somewhat arbitrarily decide on
the following one:

∑

u∈N(v)

(f(u)− f(v)) =





1 if v = b,

−1 if v = a,

0 otherwise.

(6)

and ∑
u

f(u) = 0. (7)

We denote this function by πab. If e = ab is an edge, we also denote this
function by πe.

Expression (4) is equivalent to saying that the function δπ satisfies the
flow condition at node i if and only if π is harmonic at i. Not every flow can
be obtained from a harmonic function: for example, a non-zero circulation
(a flow without sources and sinks) would correspond to a non-constant har-
monic function with no poles, which cannot exist. In fact, the flow obtained
by (1) satisfies, for every cycle C, the following condition:

∑

e∈C

fπ(e) = 0, (8)

where the edges of C are oriented in a fixed direction around the cycle. We
could say that the flow is “rotation-free”, but we’ll reserve this phrase for a
slightly weaker notion in section 5.

3.2 Random walks, electrical networks, and rubber bands

Harmonic functions play an important role in the study of random walks:
after all, the averaging in the definition can be interpreted as expectation
after one move. They also come up in the theory of electrical networks,
and in statics. This provides a connection between these fields, which can
be exploited. In particular, various methods and results from the theory of
electricity and statics, often motivated by physics, can be applied to provide
results about random walks. We only touch upon these connections; see
[7, 23] for much more.
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Let a nonempty subset S ⊆ V and a function π0 : S → R be given.
We describe three constructions, one in each of the fields mentioned, that
extend π0 to a function π : V → R so that the extension is harmonic at the
nodes in V \ S.

Example 1 Let π(v) be the expectation of π0(s), where s is the (random)
node where a random walk on the graph G starting at v first hits S.

We can re-state this construction as a discrete version of the Poisson
Formula. Let S ⊆ V (G). For every i ∈ V (G) \ S and j ∈ S, let K(i, j)
denote the probability that a random walk started at i hits j before any
other node in S. Then for every function f on V (G) that is harmonic on
V \ S, and every i ∈ V \ S

f(i) =
∑

j∈S

K(i, j)f(j).

Example 2 Consider the graph G as an electrical network, where each
edge represents a unit resistance. Keep each node s ∈ S at electric potential
π0(s), and let the electric current flow through G. Define π(v) as the electric
potential of node v.

Example 3 Consider the edges of the graph G as ideal springs with unit
Hooke constant (i.e., it takes h units of force to stretch them to length h).
Nail each node s ∈ S to the point π0(s) on the real line, and let the graph
find its equilibrium. The energy is a positive definite quadratic form of the
positions of the nodes, and so there is a unique minimizing position, which
is the equilibrium. Define π(v) as the position of node v on the line.

More generally, fix the positions of the nodes in S (in any dimension),
and let the remaining nodes find their equilibrium. Then every coordinate
function is harmonic at every node of V \ S.

A consequence of the uniqueness property is that the harmonic functions
constructed (for the case |S| = 2) in examples 1, 2 and 3 are the same. As
an application of this idea, we show the following interesting connections
(see Nash-Williams [22], Chandra at al. [6]). Let G be a graph with n nodes
and m edges. Considering G as an electrical network, let Rst denote the
effective resistance between nodes s and t. Considering the graph G as a
spring structure in equilibrium, with two nodes s and t nailed down at 1 and
0, let Fab denote the force pulling the nails. Doing a random walk on G, let
κ(a, b) denote the commute time between nodes a and b (i.e., the expected
time it takes to start at a, walk until you first hit b, and then walk until you
first hit a again).
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Theorem 3.3 Rab =
1

Fab
=

κ(a, b)
2m

.

Using the “topological formulas” from the theory of electrical networks
for the resistance, we get a further well-known characterization of these
quantities:

Corollary 3.4 Let G′ denote the graph obtained from G by identifying a
and b, and let T (G) denote the number of spanning trees of G. Then

Rab =
T (G)
T (G′)

.

4 Analytic functions on the grid

4.1 Definition and variations

Suppose that we have an analytic function g on the complex plane, and we
can consider its restriction f to the set of lattice points (Gaussian integers)
(say, for the purpose of numerical computation). Suppose that we want to
“integrate” this function f along a path, which now is a polygon v0v1 . . . vn

where vk+1 − vk ∈ {±1,±i}. A reasonable guess is to use the formula

n−1∑

k=0

(vk+1 − vk)
f(vk+1) + f(vk)

2
. (9)

Unfortunately, this sum will in general depend on the path, not just on its
endpoints. Of course, the dependence will be small, since the sum approxi-
mates the “true” integral.

Can we modify our strategy by defining f not as the restriction of g to the
lattice, but as some other discrete approximation of g, for which the discrete
integral (9) is independent from the path? To answer this question, we have
to understand the structure of such discrete functions. Independence from
the path means that the integral is 0 on closed paths, which in turn is
equivalent to requiring that the integral is 0 on the simplest closed paths of
the form (z, z + 1, z + 1 + i, z + i, z). In this case, the condition is

f(z + 1) + f(z)
2

+ i
f(z + 1 + i) + f(z + 1)

2

+ (−1)
f(z + i) + f(z + 1 + i)

2
+ (−i)

f(z) + f(z + i)
2

= 0.
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By simple rearrangement, this condition can be written as

f(z + i + 1)− f(z)
i + 1

=
f(z + 1)− f(z + i)

1− i
. (10)

This latter equation can be thought of as discrete version of the fact that
the derivative is unique, or (after rotation), as a discrete version of the
Cauchy-Riemann equation.

Let Ω be a subset of the plain that is the union of lattice squares. A
function satisfying (10) for every square in Ω is called a discrete analytic
function on Ω. This notion was introduced by Ferrand [11] and developed
by Duffin [8]. There are several variations, some of which are equivalent to
this, others are not (see e.g. Isaacs [12]).

The following version is essentially equivalent. The lattice of Gaussian
integers can be split into “even” and “odd” lattice points (a + bi with a + b
even or odd), and condition (10) only relates the differences of even values
to the differences of odd values. We can take the even sublattice, rotate
by 45◦, and rescale it to get the standard lattice. We can think of the odd
sublattice as the set of fundamental squares of the even lattice. This way
a discrete analytic function can be thought of as a pair of complex-valued
functions f1 and f2 defined on the lattice points and on the lattice squares,
respectively. These are related by the following condition:
Discrete Cauchy-Riemann, complex version Let ab be an edge of the
lattice graph (so b = a + 1 or b = a + i), and let p and q be the square to
bordering ab from the left and right, respectively. Then

f1(b)− f1(a) = i(f2(p)− f2(q)).

We call such a pair (f1, f2) a complex discrete analytic pair.
This form suggests a further simplification: since this equation relates

the real part of f1 to the imaginary part of f2, and vice versa, we can separate
these. So to understand discrete analytic functions, it suffices to consider
pairs of real valued functions g1 and g2, one defined on the standard lattice,
one on the lattice squares, related by the following condition:
Discrete Cauchy-Riemann, real version Let ab be an edge of the lattice
graph (so b = a + 1 or b = a + i), and let p and q be the square to bordering
ab from the left and right, respectively. Then

g1(b)− g1(a) = g2(p)− g2(q).
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To do computations, it is convenient to label each square by its lower
left corner. This way a discrete analytic function can be thought of as two
functions f1 and f2 defined on the lattice points, related by the equations

f1(z + 1)− f1(z) = −i(f2(z)− f2(z − i)),
f1(z + i)− f1(z) = i(f2(z)− f2(z − 1)). (11)

In the real version, we get the equations

g1(x + 1, y)− g1(x, y) = g2(x, y)− g2(x, y − 1)
g1(x, y + 1)− g1(x, y) = g2(x− 1, y)− g2(x, y). (12)

Both functions g and g2 are harmonic on the infinite graph formed by lattice
points, with edges connecting each lattice point to its four neighbors. Indeed,

[g1(x + 1, y)− g1(x, y)] + [g1(x− 1, y)− g1(x, y)]
+ [g1(x, y + 1)− g1(x, y)] + [g1(x, y − 1)− g1(x, y)]

= [h(x, y)− h(x, y − 1)] + [h(x− 1, y − 1)− h(x− 1, y)]
+ [h(x− 1, y)− h(x, y)] + [h(x, y − 1)− h(x− 1, y − 1)]

= 0.

Conversely, if we are given a harmonic function g1, then we can define
a function g2 on the squares such that (g1, g2) satisfy (12). We define g2

on one square arbitrarily, and then use (12) to extend the definition to all
squares. The assumption that g1 is harmonic guarantees that we don’t run
into contradiction by going around a lattice point; since the plane is simply
connected, we don’t run into contradiction at all.

So we see that a discrete analytic function can be identified with a single
complex valued harmonic function on the even sublattice, which in turn can
be thought of a pair of real valued harmonic functions on the same lattice.
To each (real or complex) harmonic function we can compute a conjugate
using (11) or (12). It turns out that both ways of looking at these functions
are advantageous in some arguments.

4.2 Integration and differentiation

We defined discrete analytic functions so that integration should be well de-
fined: Given a discrete analytic function f and two integer points a, b, we can
define the integral from a to b by selecting a lattice path a = z0, z1, . . . , zn,
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and defining

∫ b

a
f dz =

n−1∑

k=0

f(zk+1) + f(zk)
2

(zk+1 − zk).

The main point in our definition of discrete analytic functions was that this
is independent of the choice of the path. It is not obvious, but not hard to
see, that the integral function

F (u) =
∫ u

a
f dz

is a discrete analytic function.
A warning sign that not everything works out smoothly is the following.

Suppose that we have two discrete analytic functions f and g defined on Ω.
It is natural to try to define the integral

∫ b

a
f dg =

n−1∑

k=0

f(zk+1) + f(zk)
2

(g(zk+1)− g(zk)).

It turns out that this integral is again independent of the path, but it is not
an analytic function of the upper bound in general.

There are several ways one could try to define the derivative. The func-
tion defined by

(∇af)(z) =
f(z + a)− f(z)

a
,

is discrete analytic for any Gaussian integer a (a = i + 1 seems the most
natural choice in view of (10)). Unfortunately, neither one if these is the
converse of integration. If F (u) =

∫ u
a f dz, then for a ∈ {±1,±i},

(∇aF )(z) =
f(z + a) + f(z)

2
. (13)

There is in fact no unique converse, since adding c · (−1)x+y to the function
value at x+iy does not change the integral along any path. This also implies
that the converse of integration cannot be recovered “locally”. But if we fix
the value arbitrarily at (say) 0, then (13), applied with a = 1 and a = i, can
be used to recover the values of f one-by one. This also can be expressed
by integration (see [8]).
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4.3 Constructions

Example 4 (Extension) To see that there is a large variety of discrete
analytic functions, we mention the following fact: if we assign a complex
number to every integer point on the real and imaginary axes, there is a
unique discrete analytic function with these values. Indeed, we can recon-
struct the values of the function at the other integer points z one by one by
induction on |z|2, using (10).

Example 5 (Discrete polynomials) The restriction of a linear or
quadratic polynomial to the lattice points gives a discrete analytic func-
tion, but this is not so for polynomials of higher degree. But there are
sequences of discrete analytic functions that can be thought of as analogues
of powers of z.

One of these is best described in terms of an analytic pair. For n ≥ 1,
consider the functions

g
{n}
1 (x, y) = n!

bn/2c∑

j=0

(−1)j

(
x− j

n− 2j

)(
y + j

2j

)
,

and

g
{n}
2 (x, y) = n!

b(n−1)/2c∑

j=0

(−1)j

(
x− j

n− 2j − 1

)(
y + j + 1
2j + 1

)

Then g
{n}
1 and g

{n}
2 satisfy the conditions (12). (To explain these formulas,

note that if we replace
(
u
k

)
by uk/k!, then we get the real and imaginary

parts of (x+iy)n.) Taking linear combinations, we get “polynomials”. These
functions are polynomials in x and y, or (after a change of coordinates) in
the complex numbers z and z, but not necessarily polynomials in z.

Integration offers another way to define “pseudo-powers” of z:

z(0) = 1, z(n) = n

∫ z

0
w(n−1) dw.

These functions are not the same as the analytic functions defined by the
pairs (g{n}1 , g

{n}
2 ) defined above, but they give rise to the same linear space

of discrete polynomials. These functions approximate the true powers of z
quite well: Duffin proves that z(n)− zn is a polynomial in Z and z of degree
at most n− 2. Hence

z(n) = zn(1 + O(|z|−2)) (14)
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Example 6 (Discrete exponentials) Once we have analogues of powers
of z, we can obtain further discrete analytic functions by series expansion.
As an example, we can define the exponential function by the formula

e(z) =
∞∑

n=0

1
n!

z(n).

More generally, one can introduce a continuous variable z, and define (at
least for |t| < 2)

e(z, t) =
∞∑

n=0

1
n!

z(n)tn.

For this function, Ferrand proved the explicit formula

e(z, t) =
(

2 + t

2− t

)x (
2 + it

2− it

)y

.

This function is discrete analytic for every fixed t 6= ±2,±2i.

4.4 Approximation

Let go back to the remark we used to motivate discrete analytic functions:
that we want to use discrete analytic function to approximate a “true” ana-
lytic function by a function on a discrete set of points, in a more sophisticated
way than restricting it.

One way to construct such an approximation is to first approximate f(z)
by a polynomial p(z) (which could be a partial sum of the Taylor expansion),
and then replace zn by z(n) in the polynomial. It follows from (14) that by
this, we introduce a relative error of 1 + O(|z|n−2). If we do this not on the
lattice L of Gaussian integers, but on the lattice δL with δ → 0, then we
get an approximation with relative error 1+O(δ2). See Duffin and Peterson
[10] for details.

While the space of polynomials is well-defined, which polynomials we
want to call “powers of z” is a matter of taste, and expansion in terms
of other sequences of polynomials may have better properties. For exam-
ple, Zeilberger [26] constructs another sequence (pn(z)) for which the series∑

n anpn(z) converges absolutely to a discrete analytic function in the quad-
rant x, y ≥ 0 whenever |an|1/n → 0.

Many results from complex analysis can be extended (mutatis mutan-
dis) to discrete analytic functions. Besides Cauchy’s integral formulas and
the Maximum Principle, these include the Phragmén-Lindelöf Theorem, the
Paley–Wiener–Schwartz theorem, and more. See also [27, 28] for details.
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5 Holomorphic forms on maps

While no function can be harmonic at all nodes of a finite graph, the notion
of holomorphic forms can be extended to any finite graph embedded in an
orientable surface.

5.1 Preliminaries about maps

Let S be a 2-dimensional orientable manifold. By a map on S we mean
graph G = (V, E) embedded in S so that

(i) each face is an open topological disc, whose closure is compact,
(ii) every compact subset of S intersects only a finite number of edges.
We in fact will need mainly two cases: either S is the plane or S is

compact. In the first case, G is necessarily infinite; in the second, G is
finite.

We can describe the map by a triple G = (V,E,F), where V is the set of
nodes, E is the set of edges, and F is the set of faces of G. We set n = |V |,
m = |E|, and f = |F|.

We call an edge e one-sided, if it is incident with one and the same face
on both sides, and two-sided otherwise.

For every map G, we can construct its universal cover map Ĝ = (V̂ , Ê, F̂)
in the usual way. This is an infinite graph embedded in the plane, invari-
ant under the action of an appropriate discrete group of isometries of the
euclidean plane (in the case of the torus) or of the hyperbolic plane (in the
case of higher genus).

Fixing any reference orientation of G, we can define for each edge a right
shore re ∈ F , and a left shore le ∈ F . Recall that an edge e = ij has a head
he = j and a tail te = i.

The embedding of G defines a dual map G∗ = (V ∗, E∗,F∗). Geomet-
rically, we create a new node inside each face of G, to get V ∗. For each
edge e ∈ E, we connect the two faces bordering this edge by an edge e∗

that crosses e exactly once. (If the same face is incident with e from both
sides, then e∗ is a loop.) It is not hard to arrange these curves so that these
new edges give a map G∗. Combinatorially, we can think of G∗ as the map
where “node” and “face” are interchanged, “tail” is replaced “right shore”,
and “head” is replaced by “left shore”. So |E∗| = |E|, and there is an ob-
vious bijection e ↔ e∗. Note that “right shore” is replaced by “head” and
“left shore” is replaced by “tail”. So (G∗)∗ is not G, but G with all edges
reversed.
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Sometimes it is useful to consider another map G♦ associated with a map
G, called the diamond map. This is defined on the node set V (G♦) = V ∪V ∗,
where the edges are those pairs xy where x ∈ V , y ∈ V ∗, and x is incident
with the face F corresponding to y. (If F has t corners at x, we connect y
to x by t edges, one through each of these corners.) Clearly G∗ is a bipartite
map where each face has 4 edges.

For every face F ∈ F , we denote by ∂F ∈ RE the boundary of F :

(∂F )e =





1 if re = F ,

−1 if le = F,

0 otherwise.

Then dF = |∂F |2 is the length of the cycle bounding F .
Let e and f be two consecutive edges along the boundary of a face F ,

meeting at a node v. We call the quadruple (F, v, e, f) a corner (at node v
on face F ). If both edges are directed in or directed out of b, we call the
corner sharp; else, we call it blunt.

5.2 Circulations, homology and discrete Hodge decomposi-
tion

If G is a map on a surface S, then the space of circulations on G has an
important additional structure: for each face F , the vector ∂F is circulation.
Circulations that are linear combinations of these special circulations ∂F are
called 0-homologous. Two circulations φ and φ′ are homologous if φ− φ′ is
0-homologous.

Let φ be a circulation on G. We say that φ is rotation-free, if for every
face F ∈ F , we have

(∂F )Tφ =
∑

e: re=F

φ(e)−
∑

e: le=F

φ(e) = 0.

This is equivalent to saying that φ is a circulation on the dual map G∗.
The following linear spaces correspond to the Hodge decomposition. Let

A ⊆ −→
RE be the subspace generated by the vectors δv (v ∈ V ) and B ⊆

RE , the subspace generated by the vectors ∂F (F ∈ F). Vectors in A
are sometimes called tensions or potentials. Vectors in B are 0-homologous
circulations. It is easy to see that A and B are orthogonal to each other.
The orthogonal complement A⊥ is the space of all circulations, while B⊥
consists of rotation-free vectors on the edges. The intersection C = A⊥∩B⊥
is the space of rotation-free circulations.
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Proposition 5.1 For every map G on a surface S with genus G, the space
of all 1-chains has a decomposition

←−
RE = A⊕ B ⊕ C

into three mutually orthogonal subspaces, where A is the space of 0-
homologous circulations, B is the space of all potentials, and C is the space
of all rotation-free circulations.

If the map G is not obvious from the context, we denote these spaces by
A(G),B(G) and C(G).

From this proposition we conclude the following.

Corollary 5.2 Every circulation is homologous to a unique rotation-free
circulation.

It also follows that C is isomorphic to the first homology group of S (over
the reals), and hence we get the following:

Corollary 5.3 The dimension of the space C of rotation-free circulations is
2g.

Indeed, we have

dim(A) = f − 1 and dim(B) = n− 1

by elementary graph theory, and hence

dim(B) = m− dim(A)− dim(B) = m− f − n + 2 = 2g

by Euler’s Formula.
Figure 1 shows the (rather boring) situation on the toroidal grid: for

every choice of a and b we get a rotation-free circulation, and by Corollary
5.3, these are all.

5.3 Discrete analytic functions on a map

To explain the connection between rotation-free circulations and discrete
analytic functions, let φ be a rotation-free circulation on a map G in the
plane. Using that φ is rotation-free, we can construct a function π : V̂ → R
such that

φ(e) = π(te)− π(he) (15)
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Figure 1: Rotation-free circulation on the toroidal grid.

for every edge e. Similarly, the fact that φ is a circulation implies that there
exists a function σ : F̂ → R such that

φ(e) = σ(re)− σ(le) (16)

for every edge e.
It is easy to see that π is harmonic at all nodes of Ĝ and σ is harmonic at

all nodes of the dual map. Furthermore, π and σ are related by the following
condition:

σ(le)− σ(re) = π(he)− π(te). (17)

for every edge e (since both sides are just φ(e)). We can think of π and σ as
the real and imaginary parts of a (discrete) analytic function. The relation
(17) is then a discrete analogue of the Cauchy–Riemann equations.

Figures 2 and 3 show a rotation-free circulation on a graph embedded in
the torus. The first figure shows how to obtain it from a harmonic function
on the nodes of the universal cover map, the second, how to obtain it from
a harmonic function on the faces.

As we mentioned in the introduction, discrete analytic functions and
holomorphic forms on general maps were introduced by Mercat [18]. His
definition is more general than the one above on two counts. First, he
allows weighted edges; we’ll come back to this extension a bit later. Second,
he allows complex values. Let’s have a closer look on this.

Let G = (V,E,F) be a discrete map in the plane, and let G∗ =
(V ∗, E∗,F∗) be its dual map. Let f : V ∪ V ∗ → C. We say that f is
analytic, if

f(le)− f(re) = i(f(he)− f(te)). (18)
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Figure 2: A rotation-free circulation on the torus, and a corresponding har-
monic function on the universal cover.

for every edge e. Relation (18) implies a number of further properties; for
example, the f to V is harmonic. Indeed, let y1, . . . , yd be neighbors of x
and let (xyk)∗ = pkpk+1 (where pd+1 = p1. Then

d∑

i=1

(f(yk)− f(x)) =
d∑

k=1

i(f(pk+1)− f(pk)) = 0.

It follows that if f is analytic, then the function φ : E → C defined by

φ(e) = f(he)− f(te),

is a complex valued rotation-free circulation on G, which we call a holomor-
phic form on G.

Conversely, for any complex-valued function φ : E → C, we define
φ∗ : E∗ → C by

φ∗(e∗) = i · φ(e) (19)

Then φ is rotation-free if and only if φ∗ is a circulation. So if both φ and
φ∗ are circulations, then they are both rotation-free. Similarly as in the real
case, we can represent both φ and φ∗ as differentials of functions on the
nodes and faces, respectively. It is convenient to think of the two primitive
functions as a single function f defined on V ∪ V ∗. So we have

φ(e) = f(he)− f(te), and φ∗(e) = f(le)− f(re)
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Figure 3: A harmonic function on the faces of the universal cover associated
with the same rotation-free circulation.

for every edge e, and hence f is analytic on the whole map.
However, just like we saw it in the case of discrete analytic functions on

a grid, the complex version is not substantially more general than the real.
Indeed, a complex-valued function on the edges is a rotation-free circulation
if and only if its real and imaginary parts are; and (19) only relates the
real part of φ to the imaginary part of φ∗ and vice versa. So a holomorphic
form is just a pair of two rotation-free circulations, with no relation between
them. In some cases (like in the topological considerations in section 6) the
real format is more convenient, in others (like defining integration in section
8), the complex format is better.

Let f be a (complex-valued) discrete analytic function on a map in the
plane; this corresponds to four real harmonic functions: π1 = <(f) on G,
π2 = =(f) on G, σ2 = <(f) on G∗ and σ1 = =(f) on G∗. Here π1 and σ1

are related by the Cauchy-Riemann equations, and so are π2 and σ2; but
there is no relation between the pair (π1, σ1) and the pair (π2, σ2).

This way of looking at analytic functions explains the following con-
struction, which does not seem to correspond to any classical notion. Let
us multiply the second pair by −1; we get another 4-tuple of harmonic
functions satisfying the Cauchy-Riemann equations, which correspond to a
complex-valued discrete analytic function f †. In other words, we define the
conjugate of f by

f †(i) =

{
f(i), if i ∈ V (G),
−f(i), if i ∈ V (G∗).

(20)
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This construction was introduced in the special case of grids by Duffin, and
it plays an important role in defining derivatives.

5.4 The weighted case

We can consider the following more general setup (Mercat [18]). Suppose
that every edge e in the graph as well as in the dual graph has a positive
weight `e associated with it, which we call its length. This assignment is
symmetric, so that `ij = `ji. We can think of the length of the dual edge e∗

as the “width” of the edge e.
For φ : E → C, we define the flow condition as

∑
e

δv(e)`e∗φ(e) = 0,

and the rotation-free condition for a face F as
∑

e

∂F (e)`eφ(e) = 0.

(In terms of hydrodynamics, we think of φ(e) as the speed of flow along the
edge e.) This means that

φ∗(e∗) = φ(e)

defines a rotation-free circulation on the dual graph.
Similarly as before, we can consider real or complex valued circulations,

and one complex rotation-free circulation will be equivalent to a pair of real
ones.

Consider a complex valued rotation-free circulation φ on a map in the
plane. Then there is a function f on V ∪ V ∗ so that for every edge e

φ(e) =
f(he)− f(te

`e
= i

f(le)− f(re)
`e∗

.

Such a function f is called a primitive function of φ.
In most of this paper we’ll not consider the weighted case, because it

would not amount to much more than inserting ‘`e’ or ‘`e∗ ’ at appropriate
places in the equations. In section 8, however, choosing the right weighting
will be an important issue.

5.5 Constructing holomorphic forms

We give a more explicit construction of rotation-free circulations in the com-
pact case, using electrical currents. For e = ab ∈ E, consider the harmonic
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function πe with poles a and b (as defined in section 3.1). The function δπe

is certainly rotation-free, but it is not a circulation: a is a source and b is a
sink (all the other nodes satisfy the flow condition). We could try to repair
this by sending a “backflow” along the edge ab; in other words, we consider
πe − χe. This is now a circulation, but it is not rotation-free around the
faces re and le.

The trick is to also consider the dual map G∗, the dual edge (ab)∗ = pq,
and the harmonic function πe∗ . We carry out the same construction as
above, to get δ∗πe∗ . Then we can combine these to repair the flow condition
without creating rotation: We define

ηe = δπe − δ∗πe∗ + χe. (21)

The considerations above show that ηe is a rotation-free circulation. In
addition, it has the following description:

Lemma 5.4 The circulation ηe is the orthogonal projection of χe to the
space C of rotation-free circulations.

Proof. It suffices to show that

χe − ηe = δπe − δ∗πe∗

is orthogonal to every φ ∈ C. But δπe ∈ A by (2, and similarly, δ∗πe∗ ∈ B.
So both are orthogonal to C. ¤

This lemma has some simple but interesting consequences. Since the
vectors χe span RE , their projections ηe generate the space of rotation-free
circulations. Since ηe is a projection of χe, we have

ηe(e) = ηe · χe = |ηe|2 ≥ 0. (22)

Let Re denote the effective resistance between the endpoints of an edge e,
and let Re∗ denote the effective resistance of the dual map between the
endpoints of the dual edge e∗. Then we get by Theorem 3.3 that

ηe(e) = 1−Re −Re∗ . (23)

If we work with a map on the sphere, we must get 0 by Theorem 5.3. This
fact has the following consequence (which is well known, and can also be
derived e.g. from Corollary 3.4): for every planar map, Re + Re∗ = 1. For
any other underlying surface, we get Re + Re∗ ≤ 1. It will follow from
theorem 6.6 below that strict inequality holds here, as soon as the map
satisfies some mild conditions.
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6 Topological properties

6.1 Combinatorial singularities

We need a simple combinatorial lemma about maps on compact surfaces.
For every face F , let aF denote the number of sharp corners of F . For every
node v, let bv denote the number of blunt corners at v. So aF is the number
of times the orientation changes if we move along the boundary of F , while
bv is the number of times the orientation changes in the cyclic order of edges
as they emanate from v.

Lemma 6.1 Let G = (V, E,F) be any digraph embedded on a surface S
with Euler characteristic χ. Then

∑

F∈F
(aF − 2) +

∑

v∈V

(bv − 2) = 4g − 4. (24)

Proof. Counting sharp corners, we get
∑

F

aF =
∑

v

(dv − bv),

and so by Euler’s formula,
∑

F

aF +
∑

v

bv =
∑

v

dv = 2m = 2n + 2f + 4g − 4.

Rearranging, we get the equality in the lemma. ¤
Suppose that the orientation of the map is such that there are no sources

and sinks (so each node has at least one edge going out and at least one edge
going in), and no face boundary is a directed cycle. Then bv ≥ 2 for each
node and aF ≥ 2 for each face, and so every term in (24) is nonnegative.
Lemma 6.1 says that all but at most 2g − 2 nodes will have bv = 2, which
means that both the incoming edges and the outgoing edges are consecutive
in the cyclic ordering around the node. Similarly, all but at most 2g − 2
faces will have aF = 2, which means that the face boundary consists of two
directed paths.

6.2 Zero sets

Some useful nondegeneracy properties of rotation-free circulations were
proved in [2, 3]. In this section we present these in a more general form.
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An analytic function cannot vanish on a open set, unless it is identically
0. What is the corresponding statement for finite graphs? For which sub-
graphs of a map can we find a discrete holomorphic form that vanishes on all
edges of the subgraph? In other words, what do we know about the support
subgraph Hφ of a rotation-free circulation?

Let H be a subgraph of a finite connected graph G. Consider the con-
nected components of G\V (H). A bridge of H is defined as a subgraph of G
that consists of one of these components, together with all edges connecting
it to H, and their endpoints in H. We also consider edges not in H but
connecting two nodes in H as trivial bridges of H. Let B(H) denote the
set of bridges of H. For every bridge B ∈ B(H), we call its nodes in H its
terminals. The other nodes of the bridge are called internal.

If we look at a small neighborhood of a terminal v of B, then the edges
of H incident with this node divide this neighborhood into “corners”. The
bridge B may have edges entering v through different corners. The number
of corners B uses is the multiplicity of the terminal. We denote the sum of
multiplicities of all terminals of B by τ(B).

Theorem 6.2 Let H be a subgraph of a map G on an orientable surface S
with genus g.

(a) If H is the support of a rotation-free circulation φ, then
∑

B∈B(H)
τ(B)≥2

(τ(B)− 2) ≤ 4g − 2.

(b) If ∑

B∈B(H)

(τ(B)− 1) ≤ 2g − 1,

then there is a rotation-free circulation with support contained in H.

Let us make some remarks in connection with this theorem.
1. Part (b) of the theorem implies that a rotation-free circulation can

vanish on a rather large part of the graph, which could contain even the
majority of the nodes. It is not the size of a set S that matters, but rather
how well connected S is to the non-trivial parts of the graph.

2. It would be nice to replace τ(B) − 2 by τ(B) − 1 in (a); but no
such result can be stated, since we cannot control the number of trivial
bridges. As an example, consider the rotation-free circulation in Figure 1
on a toroidal grid with a = 1, b = 0.
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3. If H satisfies (a) but not (b), then whether or not there exists a
nonzero rotation-free circulation supported on H may depend on finer prop-
erties. An interesting case is a node of degree 6 in a map on the double torus
(g = 2). One can construct examples where no rotation-free circulation can
vanish on all 6 edges, and other examples where it can.

Let us formulate some corollaries of this theorem. The following theorem
was proved in [2, 3]. We say that a connected subgraph H is k-separable in
G, if G can be written as the union of two graphs G1 and G2 so that |V (G1)∩
V (G2)| ≤ k, V (H)∩V (G2) = ∅, and G2 contains a non-0-homologous cycle.

Corollary 6.3 Let G be a map on an orientable surface S of genus g > 0,
and let H be a connected subgraph of G. If H is not (4g−1)-separable in G,
then every rotation-free circulation vanishing on all edges of H is identically
0.

Corollary 6.4 Assume that for every set X of 4g− 1 nodes, all but one of
the components of G − X are plane and have fewer than k′ nodes. Let H
be a connected subgraph with k nodes. Then every rotation-free circulation
vanishing on all edges incident with H is identically 0.

A map is called k-representative, if every non-contractible Jordan curve
on the surface intersects the map in at least k points.

Corollary 6.5 Let G be a (4g − 1)-representative map on an orientable
surface S of genus g > 0. Then every rotation-free circulation vanishing on
all edges of a non-0-homologous cycle, and on all edges incident with it, is
identically 0.

6.3 Identically zero-sets

Most of the time, the motivation for the study of discrete analytic functions
is to transfer the powerful methods from complex analysis to the study of
graphs. In this section we look at questions that are natural for graphs.
It would be interesting to find analogues or applications in the continuous
setting.

Recall that for every oriented edge e, we introduced the rotation-free
circulation ηe. We want to give a sufficient condition for this projection to
be non-zero. The fact that ηe is the orthogonal projection of χe to C implies
that the following three assertions are equivalent: ηe 6= 0; ηe(e) 6= 0; there
exists a rotation-free circulation φ with φ(e) 6= 0.
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Theorem 6.6 Let G be a 3-connected simple map an orientable surface
with genus g > 0. Then ηe 6= 0 for every edge e.

The toroidal graphs in Figure 4 (where the surrounding area can be any
graph embedded in the torus) show that the assumption of 3-connectivity
and the exclusion of loops and parallel edges cannot be dropped1

e e e

Figure 4: Every rotation-free circulation is 0 on the edge e.

Corollary 6.7 If G is a 3-connected simple graph on a surface with positive
genus, then there exists a nowhere-0 rotation-free circulation.

Another corollary gives an explicit lower bound on the entries of ηab.

Corollary 6.8 If G is a 3-connected simple graph on a surface with positive
genus, then for every edge e, ηe(e) ≥ n2−nf2−f .

Indeed, combining Theorem 6.6 with (22), we see that ηe(e) > 0 if g > 0.
But ηe(e) = 1 − Re − R∗

e∗ is a rational number, and from Theorem 3.4 it
follows that its denominator is not larger than nn−2ff−2.

Corollary 6.9 If G is a 3-connected simple graph on a surface with positive
genus, then for every edge e, Re + R∗

e∗ < 1.

6.4 Generic independence

The question whether every rotation-free circulation vanishes on a given
edge is a special case of the following: given edges e1, . . . , ek, when can we
independently prescribe the values of a rotation-free circulation on them?
Since the dimension of dim(C) = 2g, we must have k ≤ 2g. There are other

1This condition was erroneously omitted in [3].
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obvious conditions, like the set should not contain the boundary of a face or
the coboundary of a node. But a complete answer appears to be difficult.

We get, however, a question that can be answered, if we look at the
“generic” case: we consider the weighted version, and assume that there is
no numerical coincidence, by taking (say) algebraically independent weights.
Using methods from matroid theory, a complete characterization of such
edge-sets can be given [17]. For example, the following theorem provides
an NP-coNP characterization and (through matroid theory) a polynomial
algorithm in the case when k = 2g. We denote by c(G) the number of
connected components of the graph G.

Theorem 6.10 Let W ⊆ E be any set of 2g edges of a map on an ori-
entable surface with genus g, with algebraically independent weights. Then
the following are equivalent:

(a) Every set of prescribed values on W can be extended to a rotation-free
circulation in a unique way.

(b) E(G)−W can be partitioned into two sets T and T ∗ so that T forms
a spanning tree in G and T ∗ forms a spanning tree in G∗.

(c) For every set W ⊆ S ⊆ E(G) of edges

c(G \ S) + c(G∗ \ S) ≤ |S|+ 2− 2g.

As another special case, one gets that for a given edge e, there is a
rotation-free circulation that is non-zero on e for some weighting (equiva-
lently, for almost all weightings) of the edges if and only if the map contains
a non-zero-homologous cycle through e.

7 Geometric connections

7.1 Straight line embeddings

We can view a (complex-valued) analytic function f on a map G as a map-
ping of the nodes into the complex plane. We can extend this to the whole
graph by mapping each edge uv on the segment connecting f(u) and f(v).
It turns out that under rather general conditions, this mapping is an em-
bedding. To formulate the condition, note that on the nodes of G we can
define a distance dG(u, v) as the minimum length of path in G connecting u
and v.
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Theorem 7.1 Let G be a simple 3-connected map in the plane and let f be
an analytic function on G. Suppose that there exist a constant c such that

1
c
≤ |f(u)− f(v)|

dG(u, v)
≤ c. (25)

for every pair of distinct nodes u, v ∈ V ∪V ∗. Then f defines an embedding.
Furthermore, this embedding has the additional property that every face is a
convex polygon, and every node is in the center of gravity of its neighbors.

One case when the conditions in the theorem are automatically fulfilled
is when the map G is the universal cover map of a toroidal map H and f
is the primitive function of a holomorphic form on H. Then the embedding
defined by f can be “rolled up” to the torus again. So we obtain the following
corollary:

Corollary 7.2 Every holomorphic form on a simple 3-connected toroidal
map defines an embedding of it in the torus such that all edges are geodesic
arcs.

7.2 Square tilings

A beautiful connection between square tilings and rotation-free flows was
described in the classic paper of Brooks, Smith, Stone and Tutte [5]. They
considered tilings of squares by smaller squares, and used the connection
with flows to construct a tiling of a square with squares whose edge-lengths
are all different. For our purposes, periodic tilings of the whole plane are
more relevant.

Consider tiling of the plane with squares, whose sides are parallel to
the coordinate axes. Assume that the tiling is discrete, i.e., every bounded
region contains only a finite number of squares. We associate a map in the
plane with this tiling as follows. Represent any maximal horizontal segment
composed of edges of the squares by a single node (say, positioned at the
midpoint of the segment). Each square “connects” two horizontal segments,
and we can represent it by an edge connecting the two corresponding nodes,
directed top-down. We get an (infinite) directed graph G (Figure 5).

It is not hard to see that G is planar. If we assign the edge length of
each square to the corresponding edge, we get a circulation: If a node v
represents a segment I, then the total flow into v is the sum of edge length
of squares attached to I from the top, while the total flow out of v is the
sum of edge length of squares attached to I from the bottom. Both of these
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sums are equal to the length of I (let’s ignore the possibility that I is infinite
for the moment). Furthermore, since the edge-length of a square is also the
difference between the y-coordinates of its upper and lower edges, this flow
is rotation-free.
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Figure 5: The Brooks–Smith–Stone–Tutte construction

Now suppose that the tiling is double periodic with period vectors a, b ∈
R2 (i.e., we consider a square tiling of the torus). Then so will be the graph
G, and so factoring out the period, we get a map on the torus. Since the
tiling is discrete, we get a finite graph. This also fixes the problem with
the infinite segment I: it will become a closed curve on the torus, and so
we can argue with its length on the torus, which is finite now. The flow we
constructed will also be periodic, so we get a rotation-free circulation on the
torus.

We can repeat the same construction using the vertical edges of the
squares. It is not hard to see this gives the dual graph, with the dual
rotation-free circulation on it.

A little attention must be paid to points where four squares meet. Sup-
pose that A,B, C,D share a corner p, where A is the upper left, and B, C,D
follow clockwise. In this case, we must consider the lower edges of A and B
to belong to a single horizontal segment, but interrupt the vertical segment
at p, or vice versa. In other words, we can consider the lower edges of A
and C “infinitesimally overlapping”.

This construction can be reversed. Take a toroidal map G∗ and any
rotation-free circulation on it. Then this circulation can be obtained from
a doubly periodic tiling of the plane by squares, where the edge-length of a
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square is the flow through the corresponding edge. (We suppress details.)
If an edge has 0 flow, then the corresponding square will degenerate

to s single point. Luckily, we know (Corollary 6.7) that for a simple 3-
connected toroidal map, there is always a nowhere-zero rotation-free cir-
culation, so these graphs can be represented by a square tiling with no
degenerate squares.

7.3 Rubber bands

Another important geometric method to represent planar graph was de-
scribed by Tutte [25]. Tutte used it to obtain drawings of planar graphs,
but we apply the method to toroidal graphs.

Let G be a toroidal map. We consider the torus as R2/Z2, endowed with
the metric coming from the euclidean metric on R2. Let us replace each
edge by a rubber band, and let the system find its equilibrium. Topology
prevents the map from collapsing to a single point. In mathematical terms,
we are minimizing ∑

ij∈E(G)

`(ij)2, (26)

where the length `(ij) of the edge ij is measured in the given metric, and
we are minimizing over all continuous mappings of the graph into the torus
homomorphic to the original embedding.

It is not hard to see that the minimum is attained, and the minimizing
mapping is unique up to isometries of the torus. We call it the rubber band
mapping. Clearly, the edges are mapped onto geodesic curves. A nontrivial
fact is that if G is a simple 3-connected toroidal map, then the rubber band
mapping is an embedding. This follows from Theorem 7.1.

We can lift this optimizing embedding to the universal cover space, to
get a planar map which is doubly periodic, and the edges are straight line
segments. Moreover, every node is at the center of gravity of its neighbors.
This follows simply from the minimality of (26). This means that both co-
ordinate functions are harmonic and periodic, and so their coboundaries are
rotation-free circulations on the original graph. Since the dimension of the
space C of rotation-free circulations on a toroidal map is 2, this construction
gives us the whole space C.

This last remark also implies that if G is a simple 3-connected toroidal
map, then selecting any basis φ1, φ2 in C, the primitive functions of φ1 and
φ2 give a doubly periodic straight-line embedding of the universal cover map
in the plane.
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7.4 Circle representations

Our third geometric construction that we want to relate to discrete holomor-
phic forms are circle representations. A celebrated theorem of Koebe [15]
states that the nodes of every planar graph can be represented by openly
disjoint circular discs in the plane, so that edges correspond to tangency of
the circles. Andre’ev [1] improved this by showing that there is a simulta-
neous representation of the graph and its dual. Thurston [24] extended this
to the toroidal graphs, and this is the version we need.

It is again best to go to the universal cover map Ĝ. Then the result says
that for every 3-connected toroidal graph G we can construct two (infinite,
but discrete) families F and F∗ of circles in the plane so that they are
double periodic modulo a lattice L = Za + Zb, F (mod L) corresponds to
the nodes of G, F∗ (mod L) corresponds to the faces of G, and for ever edge
e, there are two circles C,C ′ representing he and te, and two circles D and
D′ representing re and le so that C, C ′ are tangent at a point p, D,D′ are
tangent at the same point p, and C,D are orthogonal.

If we consider the centers the circles in F as nodes, and connect two
centers by a straight line segment if the circles touch each other, then we
get a straight line embedding of the universal cover map in the plane (ap-
propriately periodic modulo L). Let f(i) denote the point representing node
i of the universal cover map. or of its dual.

To get a holomorphic form out of this representation, consider the plane
as the complex plane, and define φ(ij) = ρ(j)− ρ(i) for every edge of Ĝ or
Ĝ∗. Clearly φ is invariant under L, so it can be considered as a function on
E(G). By the orthogonality property of the circle representation, φ(e)/φ(e∗)
is a positive multiple of i. In other words,

φ(e)
|φ(e)| = i

φ(e∗)
|φ(e∗)|

It follows that if we consider the map G with weights

`e = |φ(e)|, `e∗ = |φ(e∗)|,

then φ is a discrete holomorphic form on this weighted map.
It would be nice to be able to turn this construction around, and con-

struct a circle representation using discrete holomorphic forms.
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8 Operations

8.1 Integration

Let f and g be two functions on the nodes of a discrete weighted map in
the plane. Integration is easiest to define along a path P = (v0, v1, . . . , vk)
in the diamond graph G♦ (this has the advantage that it is symmetric with
respect to G and G∗). We define

∫

P
f dg =

k−1∑

i=0

1
2
(f(vi+1) + f(vi))(g(vi+1)− g(vi)).

The nice fact about this integral is that for analytic functions, it is
independent of the path P , depends on the endpoints only. More precisely,
let P and P ′ be two paths on G♦ with the same beginning node and endnode.
Then ∫

P
f dg =

∫

P ′
f dg. (27)

This is equivalent to saying that
∫

P
f dg = 0 (28)

if P is a closed path. It suffices to verify this for the boundary of a face of
G♦, which only takes a straightforward computation. It follows that we can
write ∫ v

u
f dg

as long as the homotopy type of the path from u to v is determined (or
understood).

Similarly, it is also easy to check the rule of integration by parts: If P is
a path connecting u, v ∈ V ∪ V ∗, then

∫

P
f dg = f(v)g(v)− f(u)g(u)−

∫

P
g df. (29)

Let P be a closed path in G♦ that bounds a disk D. Let f be an analytic
function and g an arbitrary function. Define ĝ(e) = g(he)− g(te)− i(g(le)−
g(re)) (the “analycity defect” of g on edge e. Then it is not hard to verify
the following generalization of (28):

∫

P
f dg =

∑

e⊂D

(f(he)− f(te))ĝ(e). (30)
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This can be viewed as a discrete version of the Residue Theorem. For further
versions, see [18].

Kenyon’s ideas in [13] give a nice geometric interpretation of (28). Let G
be a map in the plane and let g be an analytic function on G. Let us assume
that g satisfies the conditions of Theorem 7.1, so that it gives a straight-line
embedding of G in the plane with convex faces, and similarly, a straight-
line embedding of G∗ with convex faces. Let Pu denote the convex polygon
representing the face of G (or G∗) corresponding to u ∈ V ∗ (or u ∈ V )).
Shrink each Fu from the point g(u) by a factor of 2. Then we get a system
of convex polygons where for every edge uv ∈ G♦, the two polygons Pu and
Pv share a vertex at the point (g(u) + g(v))/2 (Figure 6(a)). There are two
kinds of polygons (corresponding to the nodes in V and V ∗, respectively. It
can be shown that the interiors of the polygons Pu will be disjoint (the point
g(u) is not necessarily in the interior of Pu). The white areas between the
polygons correspond to the edges of G. They are rectangles, and the sides
of the rectangle corresponding to edge e are g(he)− g(te) and g(le)− g(re).

Figure 6: Representation of an analytic function by touching polygons, and
a deformation given by another analytic function.

Now take the other analytic function f , and construct the polygons
f(u)Pu (multiplication by the complex number f(u) corresponds to blowing
up and rotating). The resulting polygons will not meet at the appropriate
vertices any more, but we can try to translate them so that they do. Now
equation (28) tells us that we can do that (Figure 6(b)). Conversely, every
“deformation” of the picture such that the polygons Pu remain similar to
themselves defines an analytic function on G.
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8.2 Critical analytic functions

These have been the good news. Now the bad part: for a fixed starting node
u, the function

F (v) =
∫ v

u
f dg

is uniquely determined, but it is not analytic in general. In fact, a simple
computation shows that for any edge e,

F̂ (e) =
F (he)− F (te)

`e
− i

F (le)− F (re)
`e∗

= i
f(he)− f(te)

`e

[
g(te) + g(he)− g(re)− g(le)

]
. (31)

So we want an analytic function g such that the factor in brackets in (31)
is 0 for every edge:

g(te) + g(he) = g(re) + g(le) (32)

Let us call such an analytic function critical. What we found above is that∫ v
u f dg is an analytic function of v for every analytic function f if and only

if g is critical.
This notion was introduced in a somewhat different setting by Duffin [9]

under the name of rhombic lattice. Mercat [18] defined critical maps: these
are maps which admit a critical analytic function.

Geometrically, this condition means the following. Consider the function
g as a mapping of G∪G∗ into the complex plane C. This defines embeddings
of G, G∗ and G♦ in the plane with following (equivalent) properties:

(a) The faces of G♦ are rhomboids.
(b) Every edge of G♦ has the same length.
(c) Every face of G is inscribed in a unit circle.
(d) Every face of G∗ is inscribed in a unit circle.
Criticality can be expressed in terms of holomorphic forms as well. Let

φ be a (complex valued) holomorphic form on a weighted map G. We say
that φ is critical if the following condition holds: Let e = xy and f = yz
be two edges of G bounding a corner at y, with (say) directed so that the
corner is on their left, then

`eφ(e) + `fφ(f) = `e∗φ(e∗)− `f∗φ(f∗). (33)

Note that both f and f∗ are directed into hf , which explains the negative
sign on the right hand side. To digest this condition, consider a plane piece
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of the map and a primitive function g of ψ. Then (33) means that

g(y′)− g(y) = g(q)− g(q′),

which we can rewrite in the following form:

g(x) + g(y)− g(p)− g(q) = g(x) + g(y′)− g(p)− g(q′).

This means that g(he) + g(te) − g(le) − g(re) is the same for every edge e,
and since we are free to add a constant to the value of g at every node in
V ∗ (say), we can choose the primitive function g so that g is critical.

Whether or not a weighted map in the plane has a critical holomorphic
form depends on the weighting. Which maps can be weighted this way? A
recent paper of Kenyon and Schlenker [14] answers this question. Consider
any face F0 of the diamond graph G♦, and a face F1 incident with it. This
is a quadrilateral, so there is a well-defined face F2 so that F0 and F2 are
attached to F1 along opposite edges. Repeating this, we get a sequence of
faces (F0, F1, F2 . . . ). Using the face attached to F0 on the opposite side to
F1, we can extend this to a two-way infinite sequence (. . . , F−1, F0, F1, . . . ).
We call such a sequence a track.

Theorem 8.1 A planar map has a rhomboidal embedding in the plane if
and only if every track consists of different faces and any two tracks have at
most one face in common.

8.3 Polynomials, exponentials, derivation and approxima-
tion

Once we can integrate, we can define polynomials. More exactly, let G be a
map in the plane, and let us select any node to be called 0. Let Z denote a
critical analytic function on G such that Z(0) = 0. Then we have

∫ x

0
1 dZ = Z(x).

Now we can define higher powers of Z by repeated integration:

Z :n:(x) = n

∫ x

0
Z :n−1:dZ.

We can define a discrete polynomial of degree n as any linear combination
of 1, Z, Z :2:, . . . , Z :n:. The powers of Z of course depend on the choice of
the origin, and the formulas describing how it is transformed by shifting the
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origin are more complicated than in the classical case. However, the space
of polynomials of degree see is invariant under shifting the origin [19]).

Further, we can define the exponential function exp(x) as a discrete
analytic function Exp(x) on V ∩ V ∗ satisfying

dExp(x) = Exp(x)dZ.

More generally, it is worth while to define a 2-variable function Exp(x, λ) as
the solution of the difference equation

dExp(λ, x) = λExp(λ, x)dZ.

It can be shown that there is a unique such function, and there are various
more explicit formulas, including

Exp(λ, x) =
∞∑

n=0

Z :n:

n!
,

(at least as long as the series on the right hand side is absolute convergent).
We can also define derivation, using the notion of the conjugate function

defined in (20). Given a (complex) analytic function on (say) a map in the
plane, we define

f ′(j) =
(∫ j

0
f †dg

)†
.

Then it is not hard to see that f ′ is analytic, and
∫ v

0
f ′ dg = f − f(0).

Mercat [19, 20] uses these tools to show that exponentials form a basis for
all discrete analytic functions, and to generalize results of Duffin, Zeilberger
and others about approximability of analytic functions by discrete analytic
functions.

9 An application in computer science:
Global information from local observation

Suppose that we live in a (finite) map on a compact orientable surface with
genus g (we assume the embedding is reasonably dense). On the graph, a
random process is going on, with local transitions. Can we determine the
genus g, by observing the process in a small neighborhood of our location?
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Discrete analytic functions motivate a reasonably natural and simple
process, called the noisy circulator, which allows such a conclusion. This
was constructed by Benjamini and the author [2]. Informally, this can be
described as follows. Each edge carries a real weight. With some frequency,
a node wakes up, and balances the weights on the edges incident with it,
so that locally the flow condition is restored. With the same frequency, a
face wakes up, and balances the weights on the edges incident with it, so
that the rotation around the face is cancelled. Finally, with a much lower
frequency, an edge wakes up, and increases or decreases its weight by 1.

To be precise, we consider a finite graph G, embedded on an orientable
surface S, so that each face is a disk bounded by a simple cycle. We fix
a reference orientation of G, and a number 0 < p < 1. We start with the
vector x = 0 ∈ RE . At each step, the following two operations are carried
out on the current vector x ∈ RE :

(a) [Node balancing.] We choose a random node v. Let a = (δv)Tx be
the “imbalance” at node v (the value by which the flow condition at v is
violated). We modify f by subtracting (a/dv)δv from x.

(b) [Face balancing.] We choose a random face F . Let r = (∂F )Tx be
the rotation around F . We modify f by subtracting (r/dF )∂F from x.

In addition, with some given probability p > 0, we do the following:
(c) [Excitation.] We choose a random edge e and a random number

X ∈ {−1, 1}, and add X to xe.
Rotation-free circulations are invariant under node and face balancing.

Furthermore, under repeated application of (a) and (b), any vector converges
to a rotation-free circulation.

Next we describe how we observe the process. Let U be a connected
subgraph of G, which is not (4g−1)-separable in G. Our observation window
is the set E0 of edges incident with U (including the edges of U). Let
x(t) ∈ RE be the vector of edge-weights after t steps, and let y(t) be the
restriction of x(t) to the edges in E0. So we can observe the sequence random
vectors y(0), y(1), . . . .

The main result of [2] about the noisy circulator is the following (we
don’t state the result in its strongest form).

Theorem 9.1 Assume that we know in advance an upper bound N on n +
m + f . If p = O(N−8), then observing the Noisy Circulator for O(N8/p)
steps, we can determine the genus g with high probability.

The idea behind the recovery of the genus g is that if the excitation
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frequency p is sufficiently small, then most of the time x(t) will be essen-
tially a rotation-free circulation. The random excitations guarantee that
over sufficient time we get 2g linearly independent rotation-free circulations.
Corollary 6.3 implies that even in our small window, we see 2g linearly in-
dependent weight assignments y(t).
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Appendix

Proof of Theorem 6.2

(a) Consider an edge e with φ(e) = 0. There are various ways e can be
eliminated. If e is two-sided, then we can delete e and get a map on the
same surface with a rotation-free flow on it. If e is not a loop, then we can
contract e and get a map on the same surface with a rotation-free flow on
it. If e is a one-sided loop, we can change φ(e) to any non-zero value and
still have a rotation-free circulation.

Of course, we don’t want to eliminate all edges with φ = 0, since then
we don’t get anything. We eliminate two-sided edges that constitute trivial
bridges (this does not change the assertion in (a)). We contract edges that
connect two different internal nodes in the same bridge, so that we may
assume that every bridge has exactly one internal node. If there are two
edges with φ = 0 that together bound a disc (which necessarily connect
the internal node of a bridge to a terminal), we delete one of them. We
delete any two-sided loop with φ = 0. Finally, if we have a one-sided loop
with φ = 0 attached at a node of H, then we send non-zero flow through it
arbitrarily.

Let vB denote the internal node of bridge B. The node vB has τ(B)
edges connecting it to H (there may be some one-sided loops left that are
attached to vB). For every face F , let β(F ) denote the number of times we
switch between H and the rest when walking along the boundary.

We need some additional terminology. We call a corner unpleasant if it
is at a node of H, and both bounding edges are outside H. Note that these
edges necessarily belong to different bridges. Let u(v) and u(F ) denote the
number of unpleasant corners at node v and face F , respectively. Clearly∑

v u(v) =
∑

F u(F ) is the total number of unpleasant corners.
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Re-orient each edge of H in the direction of the flow φ. Re-orient each
edge not in H randomly, independently of each other, with probability 1/2
in either direction. We evaluate the expectation of various terms in Lemma
6.1. A corner that has at most one edge of H will be sharp with probability
1/2 and blunt with probability 1/2. Hence for the internal nodes we have

E(bvB − 2) =
τ(B)

2
− 2. (34)

We claim that for each node v ∈ V (H),

E(bv − 2) ≥ u(v)
2

. (35)

Trivially, v is never a source or a sink, and so bv − 2 ≥ 0 for any of the
random orientations. So we may assume that u(v) ≥ 1. H has at least two
blunt corners at v. If all the bridges attached at v come in through the same
corner, then one of these blunt corners is left intact in every orientation, and
the u(v) unpleasant corners give rise to u(v) + 2 corners at v bordered by
at least one edge with φ = 0. This means that

E(bv − 2) ≥ 1 +
u(v) + 2

2
− 2 =

u(v)
2

.

If the bridges attached at v come in through at least two corners, then the
u(v) unpleasant corners give rise to at least u(v) + 4 corners at v bordered
by at least one edge with φ = 0, and so

E(bv − 2) ≥ u(v) + 4
2

− 2 =
u(v)

2
.

Finally, we claim that for any face F

E(aF − 2) ≥ β(F )− u(F )
2

. (36)

The number of internal points and their neighbors on the boundary of F is
at least 3β(F )− u(F ), and so

E(aF − 2) ≥ 3β(F )− u(F )
2

.

So if β(F ) ≥ 2, then we are done. Suppose that β(F ) = 1. If the boundary
contains edges with φ 6= 0, then it must contain two such edges that are
oriented in the opposite direction (since φ is rotation-free). There is an
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expected number of at least 3/2 orientation changes on the arc between
these two edges that contains an internal node, and at least one on the
other. This gives that

E(aF − 2) ≥ 1 +
3
2
− 2 =

1
2

=
β(F )− u(F )

2
.

Finally, if β(F ) = 0, then all we have to show is that the face is not oriented.
If the face has at least one edge with φ 6= 0 then this is obvious, since φ
is rotation-free. If all its edges have φ = 0, then these cannot connect
H to vB, which means that they must be one-sided. But then the face
boundary passes through them twice in the opposite direction, so the face
is not oriented.

Now we have, by Lemma 6.1,

4g − 4 = E

(∑

F

(aF − 2) +
∑

v

(bv − 2)

)

=
∑

F

E(av − 2) +
∑

v

E(bv − 2)

≥
∑

F

β(F )− u(F )
2

+
∑

v∈V (H)

u(v)
2

+
∑

B∈B(H)

(
τ(B)

2
− 2

)

=
∑

F

β(F )
2

+
∑

B∈B(H)

(
τ(B)

2
− 2

)

=
∑

B∈B(H)

(τ(B)− 2),

as claimed.

(b) Contract the internal nodes of every non-trivial bridge B to a single
node vB. If we have two edges in E(G) \E(H) that bound a disc, we delete
one of them. So we will have τ(B) edges connecting vB to H. Let G denote
the resulting map.

Let S be a set of edges that contains all the trivial bridges and also all
but one edge between vB and H for every bridge B. Then

|S| =
∑

B

(τ(B)− 1) ≤ 2g − 1.

Since the space C(G′) of rotation-free circulations has dimension 2g, there
is a φ ∈ C(G′) that is 0 on all edges of S. From the flow condition it follows
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that φ is 0 on the remaining edges between the nodes vB and H. Now we
can construct a ψ ∈ C(G) by keeping φ on H and extending it by 0 values
to the rest of G.

Proof of Theorem 6.6

Suppose that ηe = 0. Then by the definition (21) of ηe, we have

πe(hf )− πe(tf ) = πe∗(rf )− πe∗(lf ) (37)

for every edge f 6= e, but

πe(he)− πe(te) = πe∗(re)− πe∗(le)− 1. (38)

It will be convenient to set α(f) = πe(hf ) − πe(tf ). We may choose the
reference orientation so that α(f) ≥ 0 for every edge.

Let Uc denote the union of faces F with πe∗(F ) > c. The boundary of
Uc is an eulerian subgraph, and so it can be decomposed into edge-disjoint
cycles D1, . . . , Dt. For every edge f ∈ E(Dj), f 6= e we have α(f) > 0 by
(37), and all these edges are oriented in the same way around the cycle. So πe

strictly increases as we traverse the cycle Dj . This is clearly a contradiction
unless t = 1 and e is an edge of D1. Let D(c) denote this unique boundary
cycle of Uc. It also follows that all the values of πe on this cycle are different.

Let G0 denote the subgraph formed by those edges f for which α(f) = 0,
and G1 the subgraph formed by the other edges. Clearly πe is constant on
every connected component of G0. Hence (i) a cycle D(c) meets a component
of G0 at most once.

Next we show that (ii) every node is in G1. Suppose u /∈ V (G1). Since
D(c) ⊆ G1 for any c, and there are no parallel edges, the subgraph G1 must
have at least 3 nodes. By 3-connectivity, there are 3 paths connecting u to
three nodes v1, v2, v3 ∈ V (G1), which are disjoint from each other except
for u and from G1 except for the vi. All edges incident with inner points
of these paths have α(f) = 0, and hence all faces F incident with inner
points of these paths have the same πe∗(F ) = c. On the other hand, each
vi must be incident with an edge with α(f) 6= 0, and hence also with a face
Fi with πe∗(Fi) 6= c. We may assume by symmetry that πe∗(F1) < c and
πe∗(F2) < c. But then D(c) passes through v1 and v2, which belong to the
same component of G0, a contradiction.

Essentially the same argument shows that (iii) no two edges of G0 form
a corner.
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We apply Lemma 6.1. Clearly bhe = bte = 0. We claim that

bv ≤ 2 (39)

for every other node. Suppose not, then there are four edges e1, e2, e3, e4

incident with v in this clockwise order, so that he1 = he3 = v and te2 =
te3 = v. Choose these edges so that as many of them as possible belong to
G1. Then (iv) no two consecutive edges of these four can be in G0; indeed,
by (iii) there would be an edge f of G1 between them, and we could replace
one of them by f .

First, suppose that all four of these edges belong to G1. We may assume
that there is no edge of G1 between e1 and e2, nor between e3 and e4. Then
all faces F between e1 and e2 have the same πe∗(F ) = c, and all faces F
between e3 and e4 have the same πe∗(F ) = c′. Let (say) c < c′, then D(c)
passes through v twice, which is impossible.

Second, suppose that e1 ∈ E(G0). Then e2, e4 ∈ E(G1) by (iv). The
edge f that follows e1 in the clockwise order around v must be in G1 by
(iii). This edge cannot be directed into v, since then we could replace e1 by
it and decrease the number of G0-edges among the four. So we can replace
e2 by f . Thus we may assume that e1 and e2 form a corner, and similarly
for e1 and e4. Let πe∗(l(e1)) = πe∗(l(e1)) = c, then πe∗(r(e2)) > c and
πe∗(rl(e4)) < c. Let u = t(e1), then (ii) implies that there is a face F with
πe∗(F ) 6= c incident with u. Let, say, πe∗(F ) < c, then D(c) passes through
both endpoints of e1, which contradicts (∗). This completes the proof of
(39).

A similar argument shows that

aF ≤ 2 (40)

for every face. So substituting in Lemma 6.1 yields −4 ≥ 4g − 4, or g ≤ 0,
a contradiction.

Proof of Theorem 7.1

The assertion that every node is in the center of gravity of its neighbors is
just a restatement of the fact that every analytic function is harmonic. This
also shows that (assuming that that f gives an embedding) no face can have
a concave angle, and so the faces are convex polygons. So the main step is
to show that f defines an embedding.

We start with observing that the image of every edge of G is a segment
of length at most c, and for any two nodes u and v of G (adjacent or not)
the distance of f(u) and f(v) is at least 1/c.
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We start with some lemmas.

Lemma 9.2 The image of G is not contained in a single line.

Proof. Suppose that a line `, say the x-axis, contains the image of G.
Let V ′ = {v ∈ V (G) : f(v) ≥ 0 and V ′′ = {v ∈ V (G) : f(v) < 0}. It
follows from (25) that f(V ) is a discrete set, and the fact that each node is
mapped to the center of gravity of its neighbors implies that both these sets
must be infinite. It is not hard to see that there must be infinitely many
disjoint edges ukvk (k = 1, 2, . . . ) of G connecting V ′ and V ′′. But then
|f(uk)− f(vk)| could not remain bounded, which contradicts (25). ¤

Lemma 9.3 Let H be an open halfplane an v a node of G such that f(v) ∈
H. Then there exists an infinite path Pv = (v0 = v, v1, . . . starting at v such
that f(Pv) ⊂ H and the distance of f(vk) from the boundary of H tends to
∞.

Proof. Let G′ be the subgraph spanned by those nodes that can be
reached from v on a path Q such that f(Q) lies in H. It suffices to show
that the distance of points of f(G′) from the boundary of H is unbounded,
since then the existence of Pv follows by simple compactness.

Suppose that f(G′) lies in a strip S of finite width, and let U denote
the connected component of C \ f(G′) containing the halfplane H \ S. The
boundary of U is a polygon, whose vertices are points f(i), i ∈ V (G′) and
intersection points of images of edges. Neither type of vertices can give a
concave angle, and so U is convex; since U contains a halfplane, it follows
that U is a halfplane. So its boundary is a line `.

Clearly G has nodes whose image is on ` (infinitely many such nodes, in
fact). Furthermore, if a node v of G is mapped onto `, then so are all its
neighbors (otherwise, v could not be their center of gravity), so it follows
that all nodes of G are mapped onto `. But this contradicts Lemma 9.2. ¤

Lemma 9.4 For every (open or closed) halfplane H, the set S = {i ∈
V (G) : f(i) ∈ H} induces a connected subgraph.

Proof. We may assume that H is the halfplane {y ≥ 0}. Let u and v
be two nodes in S, we want to show that they can be connected by a path
whose image stays in the halfplane H. Consider any path P in G connecting
u and v. We may assume that P is not just an edge, and that all the inner
nodes of this path are outside H. Let w be a node on P which is lowest.
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By Lemma 9.3, we can find three infinite paths Pu, Pv and Pw, starting
at u, v and w, respectively, such that f(Pu) and f(Pv) lie in the upper
halfplane, f(Pw) lies in the lower halfplane, and the distance from the x-
axis tends to infinity along each of these paths. Clearly Pw is node-disjoint
from Pu and Pv. If Pu and Pv intersect, then the conclusion is trivial, so
assume that they are node-disjoint.

Consider P ∪ Pu ∪ Pv ∪ Pw in the original planar embedding of G. This
subgraph splits the plane into three infinite regions; let Ω be the region
bounded by Pu ∪ P ∪ Pv. It is easy to see that there are infinitely many
disjoint paths Q1, Q2, . . . connecting Pu and Pv inside Ω. We claim that if
k is large enough, the image of Qk must stay in H, proving that u and v
can be connected by a path in S.

Let D denote the diameter of f(P ). Let u1 be the last node on the path
Pu such that the distance of f(u1) from the x-axis is at most D + 2c3, let
P ′

u be the piece of Pu between u and u1, and let P ′′
u = Pu \ P ′

u. We define
P ′

v, P ′
w etc. analogously.

Suppose that f(P ′′
u ) intersects f(P ′′

v ), say edge ij of f(P ′′
u ) intersects

edge ab of f(P ′′
v ). By (25), the length of the image of any edge is at most c,

so |f(i) − f(a)| ≤ 2c, and so dG(i, a) ≤ 2c2. Thus there exists a path R of
length at most 2c2 in G connecting i to a. Again by (25), the diameter of
f(R) is at most 2c3. By the definition of P ′′

u , the distance of f(i) from the
x-axis is more than 2c3, so f(R) cannot cross the x-axis. It follows that u
and v can be connected by a path whose image stays in the upper halfplane,
using paths Pu, R, and Pv.

So we may assume that f(P ′′
u ) and f(P ′′

v ) are disjoint. Let T be the set
of all nodes in G at a graph-distance at most c2 from P ∪P ′

u∪P ′
v∪P ′

w. Since
T is a finite set, there is a k for which Qk does not intersect T . By (25) we
get that for every node s of Qk and every node t of P ,

|f(s)− f(t)| ≥ dG(s, t)
c

≥ c1

c
= c2.

In particular, f(s) cannot be in the convex hull of f(P ).
If f(Qk) does not intersect the lower halfplane, then we are done. Sup-

pose it does, then either it intersects f(P ′
w) or else it contains a subpath Q′

k

such that f(Q′
k) lies in the upper halfplane and intersects both f(P ′′

u ) and
f(P ′′

v ).
Suppose that f(Qk) intersects f(Pw). Similarly as above, we find a path

R of length at most 2c2 in G connecting a node a on Pw to a node i on
Qk. This path must intersect the path P ∪ Pu ∪ Pv at some node z; this
means that dG(z, a) ≤ 2c2, and so |f(z)− f(a)| ≤ 2c3. But f(z) is either in
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the upper halfplane or at a distance at most D from it, and so f(a) is at a
distance at most 2c3 +D from the upper halfplane. So a ∈ V (P ′

u) and hence
i ∈ T , a contradiction, since Qk avoids T .

Finally, if there is a path Q such that f(Q) lies in the upper halfplane and
intersects both f(P ′′

u ) and f(P ′′
v ), then similarly as above, we find two paths

Ru and Rv of length at most 2c2 connecting Q to P ′′
u and P ′′

v , respectively.
Similarly as above, these paths must stay in the upper halfplane, and so
again we find that u and v can be connected by a path staying in the upper
halfplane through Pu, Ru, Q, Rv and Pv. ¤

Now we turn to the proof that f defines an embedding. Let us triangulate
each face of G arbitrarily, to get a new graph G1. Let us draw the images of
these new edges as straight segments. We claim that even with these new
edges, f defines an embedding.

It is enough to show that (a) the images of every triangular face is a
triangle (it does not degenerate), (b) two triangular faces of G1 sharing an
edge xy are mapped onto triangles on different sides of the line f(x)f(y),
and (c) the images of triangular faces incident with the same node x cover a
neighborhood of f(x) exactly once. We describe the proof of (b); the proof
of (a) and (c) is similar.

So suppose that xyz and xyw are two triangular faces of G1, and that
f(z) and f(w) are on the same side of the line ` through f(x) and f(y), say
on the right side. By Lemma 9.4, there is a path P in G connecting z and w
whose image under f stays on the right side of `. Since x is mapped to the
center of gravity of its neighbors, there is a node x′ adjacent to x in G such
that f(x′) lies on the left side of `, and similarly, y has a neighbor y′ such
that f(y′) lies on the left side of `. Again by Lemma 9.4, there is a path Q
in G connecting x′ to y′ such that the image of Q stays on the left side of `.
Extend Q with the edges xx′ and yy′ to get a path Q′.

Now obviously P and Q′ are node-disjoint paths. But if we consider
them in the planar embedding of G, it is clear that they must cross each
other. This contradiction proves the theorem.
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