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Abstract

We obseroe a certain random process on a graph
"locally", i.e., in the neighborhood of a node, and
would like to derive information about "global"
properties of the graph. For example, what can we
know about a graph based on observing the returns
of a random walk to a given node"!

Our main result concerns a graph embedded in
an orientable surface with genus g, and a process,
consisting of random excitations of edges and ran-
dom balancing around nodes and faces. It is shown
how to obtain the genus of the surface in polyno-
mial time from local obseroations of the process re-
stricted to a connected sub.graph whose size is (es-

sentially) O(g2).

1 Introduction

At least since P6lya's observation (1921) that
"a drank man will return home while a drank bird
might lose its way forever", it is known that geo-
metric properties of the underling space can mani-
fest themselves in the behavior of a random process
taking place on the space. Morc recently, random
processes were used to retrieve information about
the underlying space. E.g. sampling, volume es-
timates of convex bodies or scenery reconstruction
along random walk paths (see for instance [11], [2]
and [9]).

Several examples can be found in physics: con-
sider a stationary spin system on a graph, such as
Glauber dynamics for the Ising model. What prop-
erties of the graph can be inferred from properties
of the process (for instance, are there interesting re-
lations between the spectrum of the Ising dynamics
and the graph spectrum)?

We may ask an even harder question: rather
then letting a random walker wonder around and
gather information, or observe the behavior of the
Ising model, suppose that we can observe the ran-
dom process only locally, say in a fixed bounded
neighborhood of a node. Can non-trivial global ob-
servation be distilled from such local observations?
Can we put reasonable restriction (say, polynomi-
ality) on the observation time'!

As a simple example, suppose that we start a
random walk on a graph, but we can only observe
it locally, at a single node. What properties of
the graph can be inferred from this? Even to this
simple question, we don't know the answer.

Facing this harder challenge, one might start
with devising custom-made variants of the stan-
dard random processes (spin systems, random
walks), which can be analyzed, and provide ways to
compute global invariants using natural "physical"

systems.
Below we will study a reasonably simple process,

the "Noisy Circulator" with local operations, living
on the edges of a graph embedded in an orientable
surface. The process consists of adding mass 1 to
randomly chosen edges at a slow rate, and balanc-
ing the flow into vertices or ar01md faces at ran-
dom, at a faster rate (details below), We know a
priori bounds on the size of the graph and on the
genus. We will show how to extract, almost surely
and in polynomial time in the size of the graph,
the exact genus of the surface by observing the
restriction of the process on a "small" connected

subgraph.
Although this construction might be useful and

have some advantages even from a pure algorith-
mic view point, our goal is not to devise a dis-
tributed algorithm for finding the genus, but to
provide a non-trivial example for the "global infor-
mation from local observation" phenomenon.
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The analysis of the algorithm, which involves a
topological theorem and a statistical element, has
some independent interest. In the topological part,
we define rotation-free circulations (that are also
circulations on the dual map). These can be con-
sidered as discrete analogues of analytic functions.
Every homology class of circulations contains ex-
actly one rotation-free circulation, so the dimen-
sion of their spac-.e can be used to find the genus
of the surface. A key result is a discrcte analogue
of the fact that an analytic function is determined
by its values on an arbitrarily small neighborhood
of a point: it asserts that every connected piece of
the vanishing set of a rotation-free circulation can
be separated from the rest of the graph by a small
number of nodes.

We briefly discuss some other examples where
global information carl be obtained from local o})o
servation (these results are less complete).

2 Main result: randomized circula-
tions

The Graph. Let S be a closed compact surface,
and consider a map on S, i.e., a graph G = (V, E)
embedded in S so that each face is a disc. We can
describe the map as a triple G = (V,E,.1"), where
V is the set of nodes, E is the set of edges, and.1" is
the set of faces of G. We fix a reference orientation
of G; then each edge e E E has a tail t(e) E V, a
head h(e) E V, a right shore r(e) E .1", and a left
shore l(e) E .1".

The embedding of G defines a dual map G*.
Combinatorially, we can think of G* as the triple
(.1" ,E, V), where the meaning of "node" and "face",
"head" and "right shore", and "tail" and "left
shore" is interchanged.

For each node v, let 8v E IRE denote the
coboundary of v:

, 1, if h(e) = v,

-1, ift(e)=v,
, 0, otherwise.

Loops attached at v have a 0 coordinate (their
heads and tails cancel out each other). H there
are no loops at v, then 18vf = dv is the degree of
v.

(8v)e =

2

For every face F E :F, we denote by 8F E ~
the boundary of F:

{ 1' ifr(e)=F,

(8F)e= -1, ifl(e)=F,

0, otherwise.

If the face F is on both shores of an edge, thcn this
cdgc has 0 coordinate in 8F: walking along the
boundary wc traverse the edge twice in different
directions (since the surface is orientable). If there
are no such edges, then dF = 18FI2 is the length of
the cycle bounding F.

The Noisy Circulator. Let p > 0 be fixed. We
start with the vector x = 0 E RE. At each step,

the following two operations are carried out on the
current vector x E RE:

(a) [Node balancing.] We choose a random node
v, and subtract from x the vector (xT(tSv)jdv)tSv.

(b) [Face balancing.] We choose a random face
F, and subtract from x the vector (xT(8F)jdF)8F.

In addition, with the given probability p > 0, we
do the following:

(c) [Edge excitation.] We choose a random cdgc
e, and add 1 to Xe.

Immediately after a node balancing step, the
node v just balanced satisfies the flow condition; a
subsequent other node balancing may destroy this.
Similarly, after a face balancing step, the net "rota-
tion" around the newly balanced face is 0, but this
may be destroyed when other faces are balanced.
However, we'll see that under repeated application
of (a) and (b), any vector converges to a f"Otation-
free circulation, i.e., to a circulation with 0 rotation
around each face.

We'll also prove that rotation-free circulations
form a linear space C with dim (C) = 2g, so to re-
cover thc genus g it s\lfficcs to determine this di-
mension.

Genus estimate algorithm: outline. Lct U ~
V (G) induce a connected subgraph of G. Let Eo be
the set of edges incident with U; this set is our "ob-
servation window". We say the U is well-connected
if every set of nodes that separates U from any
cycle that is not contractible in 5, has at least 4g
elements. Note that if the graph is embedded "rea-
sonably uniformly" in the surface so that the ball

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02) 
0272-5428/02 $17.00 © 2002 IEEE 



with radius 9 about each node is planar and is (say)
a grid, then we can take such a ball as our obser-
vation window. The well-connectedness condition
as defined above is necessary at least for our algo-
rithm to work (see remark 7 below).

Let x(t) E JR.E be the vector of edge-weights after
t steps, and let y(t) be the restriction of x(t) E ]REo

to the edges in Eo. So we can observe the sequence
random vectors y(O),y(l), Let x'(t) be the projection of x(t) onto C, and

let y'(t) be the restriction of x'(t) to the edges in
Eo. Because of the excitation steps (c), after a
sufficiently long time, the vectors x' (0), . . . , x' (t -
1) will span the space C. So the rank of this set
of vectors gives us the dimension of C, and so by
Theorem 4, it gives us the genus of the surface.
Our key topological result will assert that if U is
well-connected, then the restriction to Eo is one-
to-one on C (Theorem 6), and so this rank is the
same as the rank of the set {y'(O),y'(l),... ,y'(t)}.

Unfortunately, we cannot observe the vectors
y'(t), only the vectors y(t). But (at least if p is
small) we expect the errors y"(t) = y(t) -y'(t) to
be small, at If'.a.~t as long as no excitation step (c)
occurs. The speed of convergence depends on the
eigenvalue gap of the transition matrix of the (undi-
rected) random walk on G and G*.

So we are lead to the following quite stan-
dard statistical problem: there is a sequence
y'(0),y'(1),... of vectors in r, which span a lin-
ear subspace £. We observe the sequence y(t) =
y'(t)+y"(t), where the "error" y"(t) is small on the
average. We want to find the dimension of £.

The random vectors x(t) or x'(t) are not inde-
pendent (in the probabilistic sense); but the differ-
ences x'(t+1)-x'(t) are. Indeed, node balancing
and face balancing don't change x'; so if no excita-
tion occurred in step t+1, then x'(t+1)-x'(t) = 0,
and if new How was created on edge e, then it de-
pends only on e. Hence the vectors y'(t+1)-y'(t)
are also mutually independent.

Since y'(t + 1) - y'(t) = 0 most of the time,

it makes sense to aggregate N of these terms to
one. So we consider the vectors z(t) = y(Nt)-
y(N(t-1)) and z'(t) = y'(Nt)-y'(N(t-1)). Then
the vectors z'(t) are mutually independent sam-
ples from some distribution on L. (The errors
z"(t) = z(t)-z'(t) may be dependent.)

Genus estimate algorithm: formal descrip-
tion. We assume that we are given the (small)
excitation probability p, and upper bounds no ?:
n + m + f and go ?: g. Let mo be the number of
edges incident with U. Define the parameters

c = ~nomono, T = 10l0n~g~,
10 1

T' = 160go, N = r -l n1\ 1.
v-noYop

Let y(t) E JREo be the vector we observe in our win-
dow after t steps, and let z(t) = y(Nt)-y(N(t-

1».
Construct a scqucnce of integers tl, t2, ... , E

[O,T-l] as follows. If wc have tl,t2,...,tk,
then compute the linear hull £(k) of
Z(tl), Z(t2), ..., Z(tk)' Let H(k) be the set of
integers t E [0, T - 1] for which the vector z(t) is
farther from £(k) than c. H IH(k)1 < T', then
return k/2 as your guess for g. Else, choose a
number tk+l E H(k) randomly and uniformly. If
k becomes larger that 2go, declare the procedure
a failure and stop.

Analysis of the algorithm. The main result of
this paper is the following.

Theorem 1 Suppose that U is well-connected and
p < 1/(1013ggmonb In no). Then the Genus Es-
timate Algorithm returns the con-ect genus with
probability at least 4/5. The algorithm runs in time

O(gon~/p).

If you find that a success probability of 4/5 is
not reassuring enough, independent repetition of
the observation can boost this arbitrarily close to
1.

3 Properties of rotation-free circu-

lations

3.1 Circulations and homology

A vector </J E IRE is a circulation if

</J.,sv = L </J(e) - L </J(e) = O.
e: h(e)=v e: t(e)=v

Each vector of is a circulation; circulations that
are linear combinations of vectors of are called
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null-homologous. Two circulations 4> and 4>' are dimA = n -1. Similarly, dimB = f -1, and hence
called homologous if 4> - 4>' is null-homologous. by Euler's Formula,

Let 4> be a circulation on G. We say that 4> is
rotation-free if for every face FE.1:", we have dime = m-(n-l)- (1-1) = m-n-f +2 = 2g.

Thus we have proved:
tj1,lJF = O.

Theorem 4 The dimension of the space C of
rotation-free circulations is 2g.This is equivalent to saying that c/> is a circulation

on the dual map G*.

Remark 2 Rotation-free circulations are closely
related to discrete analytic junctions and are es-
sentially the same as discrete holomorphic 1- foNns.
These functions were introduced for the case of the
square grid a long time ago [7,6]. For the case of a
general planar graph, the notion is implicit in [3].
For a detailed treatment see [12].

To explain the connection, let I/> be a rotation-
free circulation on a graph G embedded in a sur-
face. Consider a planar piece of the surface. Then
on the set :F' of faces contained in this planar piece,
we have a function a: .1:"' -+ IR such that aa = 1/>,

i.e., I/>(e) = a(r(e)) -a(l(e)) for every edge e. Sim-
ilarly, we have a function 11": V' -+ JR (where V'
is the set of nodes in this planar piece), such that
b"1I" = 1/>, i.e., I/>(e) = 1I"(t(e)) -1I"(h(e)) for every edge

c. We can think of 11" and a a.~ the real and imag-
inary parts of a (discrete) analytic function. The
relation b"1I" = p</> is then a discrete analogue of the

Cauchy-Riemann equations.

Thus we have the two orthogonal linear sub-
spaces: A ~ IRE generated by the vectors 15v
(v E V) and B ~ IRE generated by the vectors
8F (F E .'F). Vectors in B are O-homologous cir-
culations. The orthogonal complement AL is the
space of all circulations, and BL is the space of
circulations on the dual graph. The intersection
C = AL nBL is the space of rotation-free circula-
tion.~. So IRE = A $ B $ C. From this picture we
conclude the following.

Lemma 3 Every circulation is homologous to a
unique rotation-free circulation.

We defined A by n generators, which are not
independent: their sum is O. But it is easy to see
that this is the only linear relation among them, so

4

(This would also follow from Lemma 3, which
implies that C is isomorphic to the first homology
group of S over the reals.)

3.2 Nonvanishing of rotation-free circula-
tions

We start with a simple lemma about maps. For
every face F, let aF denote the number of times
the orientation changes if we move along the the
boundary of F. For every node v, let btl denote the
number of times the orientation changes in their
cyclic order as they emanatc from v.

Lemma 5 Let G = (V,E,:F) be any digraph em-
bedded on an orientable surface S of ge1~us g. Then

L (aF-2)+L(bv-2) = 4g-4.
FE:F tlEV

Proof. Clearly

LaF = L(dv-~),
F 11

and so, using Euler's formula,

LaF+Lb11 = Ld11 = 2m = 2n+2f+4g-4.
F 11 11

Rearranging and dividing by 2, we get the equality
in the lemma. 0

Theorem 6 Let G be a graph embedded in an 0';-
entable surface S of genus g > 0 so that all faces
are discs. Let cP be a non-zero rotation-free circula-
tion on G and let G' be the subgraph of G on which
cP does not vanish. Suppose that cP vanishes on all
edges incident with a connected sUbgraph U of G.
Then U can be separated from G' by at most 4g-3
nodes.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02) 
0272-5428/02 $17.00 © 2002 IEEE 



Remark 7 The assumption that the connectivity
between U and the rest of the graph must be linear
in 9 is sharp in the following sense. Suppose X
is a connected induced subgraph of G separated
from the rest of G by :.-:; 29 nodes, and suppose
(for simplicity) that the subgraph induced by X
and its neighborhood is embedded in a subset of
S that is topologically a disc. Contract X to a
single node x, and erase thc rcsulting multiplicities
of edges. We get a graph G' still embedded in S so
that each facc is a disc. Thus this graph has a (29)-
dimensional space of circulations, and hence there
is a non-zero rotation-free circulation ,p vanishing
on 29 -1 of the edges incident with x. Since this
is a circulation, it must vanish on all the edges
incident with x. Uncontracting X, and extending
,p with O-s to the edges of X, it is not hard to check
that we get a rotation-free circulation.

Proof. Let W be the connected component of
G\V(G') containing U, and let Y denote the set
of nodes in V(G) \ V(W) adjacent to W.

Consider an edge e with 4>(e) = O. If e is not a
loop, then we can contract e and get a map on the
same surface with a rotation-free flow on it. If G-e
is still a map, i.e., every face is a disc, then 4> is a
rotation-free flow on it. If G -e is not a map, then
both sides of e must be the same face. So we can
eliminate edges with 4>(e) = 0 unless h(e) = t(e)
and r(e) = l(e) (we call these edges strange loops).
In this latter case, we can change 4>(e) to any non-
zero value and still have a rotation-free flow.

Applying this reduction procedure, we may as-
sume that W = {w} consists of a single node, and
the only edges with 4> = 0 are the edges between
w and Y, or between two nodes of Y. We cannot
try to contract edges between nodes in Y (we don't
want to reduce the sw.e of Y), but we can try to
delete them; if this does not work, then every such
edge must have r(e) = l(e).

Also, if more than one edge remains between w
and a node y E Y, then each of them has r(e) =
l(e) (else, one of them could be deleted). Note that
we may have some strange loops attached at w. Let
D be the number of edges between wand Y.

Re-orient each edge with 4> #= 0 in the direction
of the flow 4>, and orient the edges between w and
Y alternatingly in an out from w. Orient the edges

r.

with 4> = 0 between two nodes of Y arbitrarily. We
get a digraph GI.

It is easy to check that GI has no sources or
sinks, so bv ?: 2 for every node v, and of course
bw ?: IYI-l. Furthermore, every face either has an
edge with 4> > 0 on its boundary, or an edge with
r(e) = ICe). If a face has at least one edge with
4> > 0, then it cannot be bounded by a directed
cycle, since 4> would add 11p to a positive number on
its b01mdary. If a face boundary goes through an
cdgc with r(e) = ICe), then it goes through it twice
in different directions, so again it is not directed.
So we have aF ?: 2 for every face.

Substituting in Lemma 5, we get that IYI-l ~
4g-4, or IYI ~ dw ~ 4g-3. Since Y separates U
from G', this proves the theorem. 0

4 Proof of Theorem 1

4.1 Bounding the error

It will be convenient to introduce two further
parameters:

~ -4gomono L 1
ju=no , a= 10122 2 .

90nop
Consider the matrices

A = ~ E i(tSv)(6v)T,
tlEV

and
B =.!. E .-!.-(8F)(8F)T.

f FE"," dF

Let ,\ 1 and '\2 be the smallest positive cigcnvaluc
of A and B, respectively, and let J1. = min{'\1,'\2}.

We can write A = MMT, where M is a ExV
matrix defined by

{ :k' if h(i) = V,
Mitl = ~, if t(i) = v,

0, otherwise.

Then A has the same nonzero eigenvalues as the
matrix MT M, which is a V x V matrix with

{ ~' ifuvEE,
(MTM)utl = 1 ifu = v

n' ,

0, otherwise.
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This is (l/n) times the symmetrized form of the Lemma 8 E(IXt-yI2) .s: (l-A.)tlzI2.
transition matrix of the random walk, from which ..
it follows by well-known results that A.l ;?: n-4. From thIS we derIve:

Similarly, A.2 ;?: f-4, so.u;?: min{n-4,f-4} > n~4. Lemma 9 E(IX1(s)12) < 5pn4e-o/n~.Let Tt: IRE -+ IRE denote the (random) lin- - 0

ear mapping that (a) and (b) generate in step t. Proof. Let us fix the "excitations" u(O),u(l),...,
Note that the subspace C is invariant under Tt. Let and let Eu denote expectation conditional on these.
W(t,s) = T"T"-l...Tt+l, Lemma 8 implies that

ej, if in step t edge j was excited, Eu(lul(t,s}12).s: (l-A.1}B-tlul(t}f,
0, otherwise.

u(t) =
and

and u(t,s) = W(t,s)u(t). Hence
Eu(lu2(t,S)t2) .$ (1->"2)6-tlu2(t)j2,

(1)

12\
I~ w{t,S)

1t=o

B

X(S) = Lu(t,s). and so
t=o

Let Ul(t,S), U2(t,S) and U3(t,S) denote the or- Eu(lw(t,s)12)=Eu(lul(t,S)j2+lu2(t,S)j2)

thogonal projections of u(t,s) to A, Band C, re- ~(1-p.)B-t(lul(t)j2+lu2(t)j2)
~pectively, and let Ui(t) = Ui(t, t). This notation ~(1- p.)B-tlu(t)j2.

IS somewhat redundant, since C is invariant under
Tt, and hence U3(t,.,) = U3(t) for every s ~ t. The From the definition of ~l we have

"error part" is w(t,s) = Ut(t,S)+U2(t,S). Thus

B B Eu(l~l(S)f) = Eu
(x'(s) = LU3(t), x//(s) = Lw(t,s).

t=o t=O
This x" in turn can be split into "old" and "new" = Eu I

errors:

8-08-0

LLW(t,S)TW(t',S)

2

(2)Eu{IEI (8)12) ~ (~{1- p.)('-t)/2Iu(t)1

(~(1- p)(a-t)/2Iu(t) I
t=O

6

=Ot'=o ;

8-08-4

X"(8) = E + t = Xl(S)+X2(S). = {;~E,,(W(t,s)TW(t,,8))

t=O t=8-0+1 .-4.-0

Note that X2(S) = 0 unless an excitation occurs in s: LL E,,(\w(t,s)12)1/2Eu<lw(t',s)12)1/2
the interval [8 - a+ 1,s]. t=O t'=O

We also need a simple lemma. Let al,...,ak E (.-4 2

~, and let A = (l/k)}::::~=l~aT. Let). be the = LEu(lw(t,s)12}1/2
smallest positive eigenvalue of A. Let L be the t=O

linear subspacc generated by a1,... ,at, and L.l, its Using (1), this gives

orthogonal complement.
For x E ~, define a Markov chain XO,Xl,... E

~ as follows: start withXO = x. Given XL, choose
a vector ai (uniformly and randomly), and let

aTXt-1--

\t=O

Now we take expectation over the sequence u(t).
Xt+l = Xt_~. Since the lu(t)\ are independent 0-1 valued vari-

aT ai abIes with mean p, the expectation of the right
L d b h rth at . t . f t hand side is easy to estimate:et y an z e t eo ogon proJec Ions 0 x on 0
L.L and L, respectively. Then Xt -+ y, and in '

fact the following lemma (whose proof is omitted) E I
describes the rate of convergence: \
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Proof. The probability that (a) is violated is
less than (Np)2T :$ 1/100. The probability that
(b) is violated is less than apT :$ 1/100. By
Lemma 9, the probability that IX1(t)1 > 15/2 is
less than 5n~-a/n~/152, and hence the probability
that there is any t for which IXl(Nt)1 > 15/2 is less
than

.-4.-4

= }: }:(l- Jj)(.-t)/2(1-p)(.-t')/2E(lu(t)llu(t')I),
&=0 t' =0

Here

if t = t',
otherwise.

Thus we can write the sum above as

a-/ia-/l

p2 L L (1- p)(a-t)/2(1- p)(a-t')/'l
t=o t' =0

Iz"(t)I=ly"(Nt) -y"((N -l)t)1

~lx"(Nt) -x"((N -l)t)1

=IX1(Nt) -X1((N -l)t)~
~IXl(Nt)I+IXl((N -l)t)1 ~ 6.

Finally, the probability that for a number t we
have exactly one excitation is at least (Np)/2. The
probability that this was edge ej (an event indepen-
dent of the timing of the excitation) is at least

2T'
.!.~>m 2 - TUsing that IJ ;::: lInt>, the lemma follows. 0

We select and fix a set of 2g edges as follows.
The projection of]RE to C is surjectivej this implies
that there are 2g edges el,"', e2g E E so that the
vectors 1](el),...,1](e2g) fonn a basis in C. Let ei E
]RED be the projection of 1](ei) to Eo. It follows
from Lemma 6 that el,..., e2g form a basis of 'c.
These vectors are rational with denorninators at
most nil f f < n~ , so the determinant of this basis
is at least nomono.

Now we are ready to prove the main estimate in
this section. Call an experiment good, if

(a) at most one excitation occurs in every inter-
val [(t-1)N,tN]j

(b) no excitation occurs in any of the intervals

(tN -a,tN];
(c) 1z"(t)1 .$: tS for every t (1 .$: t .$: T)j
(d) for every i = 1,...,2g, there are at least T'

integers t such that exactly one excitation OC.c1lr8 in
the interval [( t -1) N, tN], and this is the excitation
of the edge ~.

Lemma 10 The probability that a run is good is
at least 9/10.

,.

and 80 (using that these events are independent
for different intervals), the probability that it hap-
pens for fewer than than T' values of t is less than
1/80go. The probability that thi., happens for at
lea..,t one i is less than 1/40. 0

We note that if the run is good, then for every
t, we have

Iz'(t)I=Iy'(Nt) -y'((N -1)t)1
~lx'(Nt)-x'((N -1)t)1 ~ 1, (3)

since Ix' (Nt) - x'((N -1)t)1 is either 0 or the pro-

jection of the increment of a single excitation step
to the subspace C.

4.2 Completing the proof

Now we are ready to complete the proof. Let k
be the vd.lue returned by the algorithm. To simplify
notation, put Zi = Z(ti), z: = Z'(ti) and z:' = z"(ti)'
It follows from the choice of the integers ti that the
vectors Zl, Z2, ... Zk are linearly independent, and
80 dim(£(i)) = i. Furthermore, by the selection of
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these vectors, the Gram-Schmidt orthogonalization
zi = Zl, zi, . . . , zz consists of va-tors of length at
least g.

Claim 1. If the run is good, then k ~ 2g.

It suffices to prove that the vectors ~,..., 4 are
linearly independent, since they belong to a (2g)-
dimensional space. We may assume that k ~ 2g +
1.

Assume that there is a linear relation }:::i ai~ =
0 where not all the ai are O. We can write this
as }:::i aiZi = }:::i ai~'. Since the Zi are linearly
independent, the left hand side is non-zero, and so
we may assume it has norm 1:

I taiZi I =
,=1

(4.)

We claim that
5 Variations

'" .-i
1 ~

+;..;

E.jOltS! ~ , ,. (5) Wc can make some cosmetic changes to the setup

as given above. One objection may be that the

noisy circulator, as defined, is not truly local, since

(say) in operation (a) we have to select a node uni-I~" T .
1 <r . f formly from all nodes. The standard way of fixing

£kiZ. z. z..I 1 - :t this is to attach an "alarm clock" to each node
. 1 '1=

edge, and face, which wakes them up at random
Since zT z' = 0 ifi < J. and zT z~ = Iz~ 1 2, it follows times according to a Poisson process (the edge-

1 1 " 1 .
that clock IS much slower than the other two).

Another objection is that the noisy circulator
I II . , 2 I . , ~.. I T . 1 < I . 1 ~.. I II . 1 as constructed above is not stationary: the total
a. z. < z. - £kiZ. z. z. + ai z.1 , -, .. I 1 - 1 .. ,. mass grows to infinity. An easy fix is to give a

1=' 1=' second, even slower clock to each edge: when this

1, we get rings, they reset their value to O. Another possible

fix comes from the observation that the excitation."

don't necessarily have to be constants, the proof
I ".. works just as well for random and symmetric exci-

tations. So modifying the excitation step to reset

the value of any edge to 1 with very small probabil-

ity (rather than to add 1) provides a stationary ver-

sion (but the analysis becomes more complicated).
. k F\1rther variants, improvements and generaliza-

I < 6£kek~ < 1, tions of the above system are of interest:

Indeed, (4) implies that for any 1 :5 j :5 k,

Dividing by IziP and using that IZil ::5

that
1 k 1 k

la;1 ~ Izil t;lail ~ -;t;lail

Hence (5) follows by induction on k-t
Now using (5) and Iz;'1 5 0, we get

. We had to put a rather tight upper bound on
the excitation rate p (its only virtue is that it
is polynomial in the data). Can one recover
the genus even if the rate at which excitations

a contradiction. This proves Claim 1.

Claim 2. The probability that the run is good but
k < 29 is less than 1/10.

8

Suppose that k < 2g. Since the determinant of
the vectors p.(el)...,p.(e2g) is at least nO-mono =
10£, it follows by an easy geometric argument that
at least one of these vectors, say p.(el), is at a dig,.
tance at least 2£ from £(k). We assumed that
the run was good, and hence there were at least
T' integers t for which exactly one excitation oc-
curred in the interval [(t - I)N + 1, tN], and this

was the excitation of edge et. For such a t, we
have z'(t) = p.(el), and 80

d(z(t),£(k)) ~ d(z'(t),£(k)) -lz"(t)1 ~ c.

Thus we were not supposed to stop yet, a contra-
diction.

It follows that the probability that k = 2g is at
lea.'!t 4/5.
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take place is faster (ideally, independent of
the number of nodes)?

. Suppose that we only allow two values (or
any other given discrete set of values) on any
edge. Can we still recover the genus?

. Can one extend the technique to recover a
non-orientable surface by observing a random
process on an embedded graph locally?

For background regarding graphs on surfaces
and Riemann surfaces see for instance [13] [4], for
background regarding algorithmic applications of
random processes see [8].

Instead of a passive observer, we can also con-
sider an active observer, who can impose an exci-
tation on any of the edges in Eo. In this case, we
assume that spontaneous excitations don't occur.
The analysis above goes through, and it becomes
even easier: we know exactly when the last excita-
tion occurred, and how long we have to wait until
x(t) settles down. The only point where we need to
add something to our analysis above is before the
definition of a "good run", where we need to argue
that there are 2g edges in Eo (rather than in E) so
that the vectors f7(Cl),...,f7(e2g) form a ba.~i~ in C.

Suppose that this is not so. Then there is a
nonzero vector w E C so that w is orthogonal to
every vector f7(e), e E Eo. Write f7(e) = Tx(e),
where T is the projection map onto C. But then
by the symmetry of T we have

0 = f7(e).w = (Tx(e).w = x(e). (Tw) = x(e) .w,

and hence w is 0 on every edge in Eo. By Theorem
6, this is impossible.

6 Other models

The notion of global information from local ob-
serv'd.tion can inspire many questions in different
directions. We briefly present some related exam-
ples.

Example 1 [Checking for a perfect matching.]
Putting together ideas from [10] and [5], we can
formulate the following randomized distributed al-
gorithm to find a maximum matching in a bipartite
graph. Every edge carries a nonnegative weight,

9

which at the start is 1. At each step, we pick a ran-
dom node v, which does the following: (a) if at least
one edge in 8v has positive weight, it rescales the
edges in 8v, so that their sum becomes 1; (b) with
some small probability p, if there is more than one
positive weight on the edges in 8v, then it reduces
the smallest one to O. In polynomial expected time,
we end up with the edges of a maximum matching
having wcight 1, all thc other edges having weight
O. (Details of this result, which is joint work with
Mike Saks, will be published elsewhere.)

We can turn this algorithm to an examplc of
our main theme by allowing negative weights, and
adding a third rule: (c) if v sees only 0 weights, or
at least one negative weight, then it reduces all the
weights in 8v to -1. Then it suffices to observe any
given edge: if the graph has no perfect matching,
then this edge turns negative within polynomial
time with large probability; else, it stays nonnega-
tive with large probability. Thus we can determine
the existence of a perfect matching from local ob-
servation.

Example 2 (Observing returns ofa random walk.}
Now we turn our approach around: we fix the lo-
cal random process, and want to determine which
properties of the graph can be recovered from local
observation. Let G be a finite connected graph, and
consider a simple random wdlk on G. Fix a vertex
v in G. You are given the sequence of times when
the simple random walk visits Vj what information
can you learn about the graph G? (A spelunker
has an accident in the depth of a cavej without a
light and unable to move, all he can sense is a bat
passing by every now and then on its erratic Bight
through the cave. What can he learn about the
shape of the cave?)

An example of Gabor Tardos shows that the
graph cannot be determined, even if we know that
it is a tree, and we can observe the whole infinite
sequence of return times. In fact, even the spec-
trum of the transition matrix of the random walk
on the graph is not determined: in Tardos's exam-
ple, the two trees have the same eigenvalues, but
with different multiplicities. One positive result:
if we know that the graph is has a node-transitive
automorphism group, then the eigenvalues can be
determined (but not necessarily their multiplici-
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the problem: suppose that we know that the eigen- W . T. Tutte, The dissection of rectangles into
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Riemann surfaces. Progress in Mathematics,
Example 3 [Obtaining the size of the road sys- 106. Birkheuser Boston, Inc., Boston, MA,
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