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DISCRETE AND CONTINUOUS:
TWO SIDES OF THE SAME?

LASzLO LOVASZ

Abstract

How deep is the dividing line between discrete and continuous mathe-
matics? Basic structures and methods of both sides of our science are
quite different. But on a deeper level, there is a more solid connection
than meets the eye.

1 Introduction

There is a rather clear dividing line between discrete and continuous math-
ematics. Continuous mathematics is classical, well established, with a rich
variety of applications. Discrete mathematics grew out of puzzles and then
is often identified with specific application areas like computer science or
operations research. Basic structures and methods of both sides of our
science are quite different (continuous mathematicians use limits; discrete
mathematicians use induction).

This state of mathematics at this particular time, the turn of the millen-
nium, is a product of strong intrinsic logic, but also of historical coincidence.

The main external source of mathematical problems is science, in par-
ticular physics. The traditional view is that space and time are continuous,
and that the laws of nature are described by differential equations. There
are, of course, exceptions: chemistry, statistical mechanics, and quantum
physics are based on at least a certain degree of discreteness. But these
discrete objects (molecules, atoms, elementary particles, Feynman graphs)
live in the continuum of space and time. String theory tries to explain these
discrete objects as singularities of a higher dimensional continuum.

Accordingly, the mathematics used in most applications is analysis, the
real hard core of our science. But especially in newly developing sciences,
discrete models are becoming more and more important.

One might observe that there is a finite number of events in any finite
domain of space-time. Is there a physical meaning of the rest of a four (or
ten) dimensional manifold? Does “the point in time half way between two
consecutive interactions of an elementary particle” make sense? Should
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the answer to this question be yes or no, discrete features of subatomic
world are undeniable. How far would a combinatorial description of the
world take us? Or could it happen that the descriptions of the world as
a continuum, or as a discrete (but terribly huge) structure, are equivalent,
emphasizing two sides of the same reality?

But let me escape from these unanswerable questions and look around
elsewhere in science. Biology tries to understand the genetic code: a gigan-
tic task, which is the key to understanding life and, ultimately, ourselves.
The genetic code is discrete: simple basic questions like finding matching
patterns, or tracing consequences of flipping over substrings, sound more
familiar to the graph theorist than to the researcher of differential equa-
tions. Questions about the information content, redundancy, or stability of
the code may sound too vague to a classical mathematician but a theoreti-
cal computer scientist will immediately see at least some tools to formalize
them (even if to find the answer may be too difficult at the moment).

Economics is a heavy user of mathematics — and much of its need is
not part of the traditional applied mathematics toolbox. Perhaps the most
successful tool in economics and operations research is linear programming,
which lives on the boundary of discrete and continuous. The applicability
of linear programming in these areas, however, depends on conditions of
convexity and unlimited divisibility; taking indivisibilities into account (for
example, logical decisions, or individual agents) leads to integer program-
ming and other models of combinatorial nature.

Finally, the world of computers is essentially discrete, and it is not
surprising that so many discrete mathematicians are working in this science.
Electronic communication and computation provides a vast array of well-
formulated, difficult, and important mathematical problems on algorithms,
data bases, formal languages, cryptography and computer security, VLSI
layout, and much more.

In all these areas, the real understanding involves, I believe, a synthesis
of the discrete and continuous, and it is an intellectually most challenging
goal to develop these mathematical tools.

There are different levels of interaction between discrete and continu-
ous mathematics, and T treat them (I believe) in the order of increasing
significance.

1. We often use the finite to approximate the infinite. To discretize a
complicated continuous structure has always been a basic method—from
the definition of the Riemann integral through triangulating a manifold in
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(say) homology theory to numerically solving a partial differential equation
on a grid.

It is a slightly more subtle thought that the infinite is often (or perhaps
always?) an approximation of the large finite. Continuous structures are
often cleaner, more symmetric, and richer than their discrete counterparts
(for example, a planar grid has a much smaller degree of symmetry than
the whole euclidean plane). It is a natural and powerful method to study
discrete structures by “embedding” them in the continuous world.

2. Sometimes, the key step in the proof of a purely “discrete” result
is the application of a purely “continuous” theorem, or vice versa. We all
have our favorite examples; I describe two in section 2.

3. In some areas of discrete mathematics, key progress has been achieved
through the use of more and more sophisticated methods from analysis.
This is illustrated in section 3 by describing two powerful methods in dis-
crete optimization. (I could not find any area of “continuous” mathematics
where progress would be achieved at a similar scale through the introduc-
tion of discrete methods. Perhaps algebraic topology comes closest.)

4. Connections between discrete and continuous may be the subject
of mathematical study on their own right. Numerical analysis may be
thought of this way, but discrepancy theory is the best example. In this
article, we have to restrict ourselves to discussing two classical results in
this blooming field (section 4); we refer to the book of Beck and Chen
[BeC], the expository article of Beck and Sés [BeS], and the recent book of
Matousek [M].

5. The most significant level of interaction is when one and the same
phenomenon appears in both the continuous and discrete setting. In such
cases, intuition and insight gained from considering one of these may be
extremely useful in the other. A well-known example is the connection
between sequences and analytic functions, provided by the power series
expansion. In this case, there is a “dictionary” between combinatorial
aspects (recurrences, asymptotics) of the sequence and analytic properties
(differential equations, singularities) of its generating function.

In section 5, I discuss in detail the discrete and continuous notion of
“Laplacian”, connected with a variety of dispersion-type processes. This
notion connects topics from the heat equation to Brownian motion to ran-
dom walks on graphs to linkless embeddings of graphs.

An exciting but not well understood further parallelism is connected
with the fact that the iteration of very simple steps results in very complex
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structures. In continuous mathematics, this idea comes up in the theory of
dynamical systems and numerical analysis. In discrete mathematics, it is
in a sense the basis of many algorithms, random number generation, etc.
A synthesis of ideas from both sides could bring spectacular developments
here.

One might mention many other areas with substantial discrete and con-
tinuous components: groups, probability, geometry... Indeed, my starting
observation about this division becomes questionable if we think of some of
the recent developments in these areas. I believe that further development
will make it totally meaningless.

Acknowledgement. I am indebted to several of my colleagues, in par-
ticular to Alan Connes and Mike Freedman, for their valuable comments
on this paper.

2 Discrete in Continuous and Continuous in Discrete

2.1 Marriage and measures. A striking application of graph theory
to measure theory is the construction of the Haar measure on compact
topological groups. This application was mentioned by Rota and Harper
[RoH], who elaborated upon the idea in the example of the construction
of a translation invariant integral for almost periodic functions on an ar-
bitrary group. The proof is also related to Weil’s proof of the existence
of Haar measure. (There are other, perhaps more significant, applications
of matchings to measures that could be mentioned here, for example the
theorem of Ornstein [O] on the isomorphism of Bernoulli shifts; cf. also
[Du], [LoM], [LoP], [St].)

Here we shall describe the construction of a translation invariant inte-
gral for continuous functions on a compact topological group, equivalent
to the existence of the Haar measure [LoP]. An invariant integration for
continuous functions on a compact topological group is a linear functional
L defined on the continuous real-valued functions on G, with the following
properties:

(a) L(af +Bg) = oL(f) + BL(g)  (linearity)

(b) If f >0 then L(f) >0 (monotonicity)

(c) If I denotes the identity function, then L(I) =1 (normalization)

(d) If s and ¢t are in G and f and g are two continuous functions such
that g(x) = f(sxzt) for every z, then L(g) = L(f) (double translation
invariance).
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Theorem 1. For every compact topological group there exists an invari-
ant integration for continuous functions.

Proof. Let f be the function we want to integrate. The idea is to approxi-
mate the integral by the average

f(4) = ‘,};\ Zf(a’)a
acA
where A is a “uniformly dense” finite subset of group G. The question is,
how to find an appropriate set A7

The key definition is the following. Let U be an open non-empty subset
of G (think of it as “small”). A subset A C G is called a U-net if ANsUt # ()
for every s,t € GG. It follows from the compactness of G that there exists a
finite U-net.

Of course, a U-net may be very unevenly distributed over the group, and
accordingly, the average over it may not approximate the integral. What
we show is that the simple trick of restricting ourselves to U-nets with
minimum cardinality (minimum U-nets, for short), we get a sufficiently
uniformly dense finite set.

To measure this uniformity we define

§(U) =sup{|f(z) f(y)| | z,y € sUt for some s,t € G} .

The compactness of G implies that if f is continuous then it is also uni-
formly continuous in the sense that for every e > 0 there exists a non-empty
open set U such that 6(U) < e.

Let A and B be minimum U-nets. The following inequality is the heart
of the proof:

|f(A) = f(B)| <6(U). (1)
The combinatorial core of the construction lies in the proof of this in-
equality. Define a bipartite graph H with bipartition (A, B) by connecting
x € Atoy € B if and only if there exists s,t € G such that z,y € sUt. We
use the Marriage theorem to show that this bipartite graph has a perfect
matching. We have to verify two things:
(I) |A| = |B|. This is trivial.
(IT) Every set X C A has at least |X| neighbors in B. Indeed, let Y be
the set of neighbors of X. We show that T'=Y U (A\ X) is a U-net.
Let s,t € G, we show that T intersects sUt. Since A is a U-net, there
exists an element € ANsUt. If x ¢ X then x € T and we are done.
Otherwise, we use that there exists an element y € BN sUt. Then xy
is an line of H and so y € Y, and we are done again.
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Thus T is a U-net. Since A is a U-net with minimum cardinality, we
must have |T'| > |A|, which is equivalent to |Y| > | X]|.

Thus H has a perfect matching {a1b1,...,a,b,}. Then
1 n
W) - o)

i=1

Tllz | f(ai) — f(bi)] < (n6 U)) =6(U).
=1

|F(A) = f(B)| =

IN

The rest of the proof is rather routine. First, we need to show that
averaging over minimum U-nets for different U’s gives approximately the
same result. More exactly, let A be a minimum U-net and B a minimum
V-net, then

|f(A) = f(B)] <8(U) +6(V). (2)
Indeed, for every b € B, Ab is also a U-net with minimum cardinality, so
by (1),
|f(A) = f(Ab)| < 8(V).

Hence

F(A) - 7(AB)| = |r(a)~ S ran)| < 5] L () - 1A < 6(0).

’B| beB beB

Similarly,
|f(B) = f(AB)| < 6(V),
whence (2) follows.

Now choose a sequence U, of open sets such that 6(U,) — 0, and let
A, be a minimum Up,-net. Then (2) implies that the sequence f(A4,) tends
to a limit L(f), which is independent of the choice of U,, and A,,, and so it
is well defined. Conditions (a)—(d) are trivial to verify. O

2.2 Disjoint subsets and topology. Now we turn to examples demon-
strating the converse direction: applications of continuous methods to a
purely combinatorial problems. Our first example is a result where al-
gebraic topology and geometry are the essential tools in the proof of a
combinatorial theorem.

Theorem 2. Let us partition the k-element subsets of an n-element set into
n — 2k + 1 classes. Then one of the classes contains two disjoint k-subsets.

This result was conjectured by Kneser [K], and proved in [Lol]. The
proof was simplified by Bérdny [B], and we describe his version here.
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Proof. We first invoke a geometric construction due to Gale There ezists a
set of 2k + d vectors on the d-sphere S¢ such that every open hemisphere
contains at least k of them. (For d = 1, take the vertices of a regular
(2k + 1)-gon.)

Choosing d = n — 2k, we thus get a set S of n points. Suppose that all
the k-subsets are partitioned into d+1 = n — 2k + 1 classes Py, P1,. .., Pq.
Let A; be the set of those unit vectors h € S? for which the open hemisphere
centered at h contains a k-subset of S which belongs to P;. Clearly the sets
Ag, Ay,...,Aq are open, and by the definition of S, they cover the whole
sphere.

Now we turn from geometry to topology: by the Borsuk-Ulam theorem,
one of the sets A; contains two antipodal points h and —h. Thus the
hemispheres about A and —h both contain a k-subset from P;. Since these
hemispheres are disjoint, these two k-subsets are disjoint. O

There are numerous other examples where methods from algebraic topol-
ogy have been used to prove purely combinatorial statements (see [Bj] for
a survey).

3 Optimization: Discrete, Linear, Semidefinite

Our next example illustrates how a whole area of important applied math-
ematical problems, namely discrete optimization, relies on ideas bringing
more and more sophisticated tools from more traditional continuous opti-
mization.

In a typical optimization problem, we are given a set S of feasible solu-
tions, and a function f : S — R, called the objective function. The goal
is to find the element of S which maximizes (or minimizes) the objective
function.

In a traditional optimization problem, S is a decent continuum in a
euclidean space, and f is a smooth function. In this case the optimum can
be found by considering the equation Vf = 0, or by an iterative method
using some version of steepest descent.

Both of these depend on the continuous structure in a neighborhood
of the optimizing point, and therefore fail for a discrete (or combinatorial)
optimization problem, when S is finite. This case is trivial from a classical
point of view: “in principle” one could evaluate f for all elements in S, and
choose the best. But in most cases of interest, S is very large in comparison
with the number of data needed to specify the instance of the problem. For



366 L. LOVASZ GAFA2000

example, S may be the set of spanning trees, or the set of perfect matchings,
of a graph; or the set of all possible schedules of all trains in a country; or
the set of states of a spin glass. In such cases, we have to use the implicit
structure of S, rather than brute force, to find the optimizing element.

In some cases, totally combinatorial methods enable us to solve such
problems. For example, let S be the set of all spanning trees of a graph G,
and assume that each edge of G has a non-negative “length” associated
with it. In this case a spanning tree with minimum length can be found
by the greedy algorithm (due to Borguvka and Kruskal): we repeatedly
choose the shortest edge that does not form a cycle with the edges chosen
previously, until a tree is obtained.

In many (in a sense most) cases, such a direct combinatorial algorithm
is not available. A general approach is to embed the set S into a continuum
S’ of solutions, and also extend the objective function f to a function f’
defined on S’. The problem of minimizing f’ over S’ is called a relazation
of the original problem. If we do this right (say, S’ is a convex set and
/" is a convex function), then the minimum of f’ over S” can be found by
classical tools (differentiation, steepest descent, etc.). If we are really lucky
(or clever), the minimizing element of S’ will belong to S, and then we have
solved the original discrete problem. (If not, we may still use the solution
of the relaxation to obtain a bound on the solution of the original, or to
obtain an approximate solution. See later.)

3.1 Polyhedral combinatorics. The first successful realization of this
scheme was worked out in the 60’s and 70’s, where techniques of linear pro-
gramming were applied to combinatorics. Let us assume that our combi-
natorial optimization problem can be formulated so that S is a set of 0 — 1
vectors and the objective function is linear. The set S may be specified by
a variety of logical and other constraints; in most cases, it is quite easy to
translate these into linear inequalities:

S={ze{0,1}" :ajz <bi,...,apx <by}. (3)

The objective function is
n
flo)=cloe =Y cmi, (4)
i=1

where the ¢; are given real numbers. Such a formulation is typically easy
to find.

Thus we have translated our combinatorial optimization problem into
a linear program with integrality conditions. It is quite easy to solve this,
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if we disregard the integrality conditions; the real game is to find ways to
write up these linear programs in such a way that disregarding integrality
conditions is justified.

A nice example is matching in bipartite graphs. Suppose that
G is a bipartite graph, with node set {uy,...,un,v1,...,0n},
where every edge connects a node u; to a node v;. We want to
find a perfect matching, i.e., a set of edges covering each node
exactly once.

Suppose that G has a perfect matching M and let

1, ifuw; e M,
T —
“ 0, otherwise.

Then the defining property of perfect matchings can be ex-
pressed as follows:

n n

inj =1 forallj, inj =1 foralli. (5)

i=1 j=1
Conversely, we find a solution of this system of linear equations
with every x;; = 0 or 1, then we have a perfect matching.
Unfortunately, the solvability of a system of linear equations
(even of a single equation) is NP-hard. What we can do is to
replace the condition x;; = 0 or 1 by the weaker condition
To solve a linear system like (5) in non-negative real numbers
is still not trivial, but doable efficiently (in polynomial time)
using linear programming.
We are not done, of course, since if we find that (5)—(6) has
a solution, this solution may not be in integers and hence it
may not “mean” a perfect matching. There are various ways
to conclude, extracting a perfect matching from a fractional
solution of (5)—(6). The most elegant is the following. The set of
all solutions forms a convex polytope. Now every vertex of this
convex polytope is integral. (The proof of this fact is amusing,
using Cramer’s Rule and basic determinant calculations. See,
e.g. [LoP].)
So we run a linear programming algorithm to see if (5)-(6) has a
solution in real numbers. If not, then the graph has no perfect
matching. If yes, most linear programming algorithms auto-
matically give a basic solution, i.e., a vertex. This is an integral
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solution of (5)—(6), and hence corresponds to a perfect match-
ing.

Many variations of this idea have been developed both in theory and
practice. There are ways to automatically generate new constraints and add
them to (3) if these fail; there are more subtle, more efficient methods to
generate new constraints in for special problems; there are ways to handle
the system (3) even if it gets too large to be written up explicitly.

3.2 Semidefinite optimization. This new technique of producing re-
laxations of discrete optimization problems makes the problems continuous
in a more sophisticated way. We illustrate it by the Maximum Cut prob-
lem. Let G = (V, E) be a graph. We want to find a partition (5,S) of V
for which the number M of edges connecting S to S is maximum.

This problem is NP-hard, so we cannot hope to find an efficient (poly-
nomial time) algorithm that solves it. Instead, we have to settle for less:
we try to find a cut that is close to being optimal.

It is easy to find a cut that picks up half of the edges. Just process
the nodes one by one, placing them in the set S or S, whichever gives the
larger number of new edges going between the two sets. Since no cut can
have more than all edges, this simple algorithm obtains an approximation
of the maximum cut with at most 50% relative error.

It turned out to be quite difficult to improve upon this simple fact, until
Goemans and Williamson [GW] combined semidefinite optimization with
a randomized rounding technique to obtain an approximation algorithm
with a relative error of about 12%. On the other hand, it was proved by
Hastad [H] (tightening earlier results of Arora et al. [ArLMSS]) that no
polynomial time algorithm can produce an approximation with a relative
error less than (about) 6%, unless P = NP.

We sketch the Goemans—Williamson algorithm. Let us describe any
partition V3 UV, of V' by a vector z € {—1, 1}V by letting x; = —1iff i € V4.
Then the size of the cut corresponding to x is (1/4) >_; ;(zi — z;)%. Hence
the MAX CUT problem can be formulated as maximizing the quadratic
function

iZ(% — ;) (7)

over all z € {—1,1}V. The condition on z can also be expressed by
quadratic constraints:

2
Z;

=1 (ieV). (8)
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Reducing a discrete optimization problem to the problem of maximizing
a quadratic function subject to a system of quadratic equations may sound
great, and one might try to use Lagrange multiplicators and other classical
techniques. But these won’t help; in fact the new problem is very difficult
(NP-hard), and it is not clear that we gain anything.

The next trick is to linearize, by introducing new variables y;; = x;x;
(1 <1i,7 <n). The objective function and the constraints become linear in
these new variables y;;:

maximize 411 Z(yu +Yii — 2yij) (9)
4,J
subject to Y11 =" =Ypn =1. (10)

Of course, there is a catch: the variables y;; are not independent! Intro-
ducing the symmetric matrix Y = (y;;)}';—¢, we can note that

Y is positive semidefinite, (11)
and

Y has rank 1. (12)

The problem of solving (9)—(10) with the additional constraints (11) and
(12) is equivalent to the original problem, and thus NP-hard in general. But
if we drop (12), then we get a tractable relaxation! Indeed, what we get
is a semidefinite program: mazimize a linear function of the entries of
a positive semidefinite matriz, subject to linear constraints on the matriz
entries.

Since positive semidefiniteness of a matrix Y can be translated into
(infinitely many) linear inequalities involving the entries of Y

VY >0 for all v € R"!,

semidefinite programs can be viewed as linear programs with infinitely
many constraints. However, they behave much nicer than one would ex-
pect. Among others, there is a duality theory for them (see, e.g. Wolkowitz
[W]). Tt is also important that semidefinite programs are polynomial time
solvable (up to an arbitrarily small error; note that the optimum solution
may not be rational). In fact, the ellipsoid method [GrLS] and, more im-
portantly from a practical point of view, interior point methods [Al] extend
to semidefinite programs.

Coming back to the Maximum Cut problem, let Y be an optimal so-
lution of (9)-(10)-(11), and let M* be the optimum value of the objective
function. Since every cut defines a solution, we have M* > M.
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The second trick is to observe that since Y is positive semidefinite, we
can write it as a Gram matrix, i.e., there exist vectors u; if R™ such that
ul'uj =Y;; for all i and j. In particular, we get that |u;|> = 1, and

K]
> (ui —uy)® =4M*. (13)
i,
Now choose a uniformly distributed random hyperplane H through the
origin. This divides the u; into two classes, and thereby defines a cut in G.
The expected weight of this cut is

Z Ci;P  (H separates u; and uy;) .
1,J

But it is trivial that the probability that H separates u; and w; is (1/m)
times the angle between u; and w;. In turn, the angle between u; and u;
is at least 0.21964(u; — u;)?, which is easily seen by elementary calculus.
Hence the expected size of the cut obtained is at least

> 0.21964(u; — u;)® = 0.87856M* > 0.87856M .
i

Thus we get a cut which is at least about .88 percent of the optimal.

Except for the last part, this technique is entirely general and has
been used in a number of proofs and algorithms in combinatorial opti-
mization [LoS1].

4 Discrepancy Theory

In section 3, we started with a discrete problem, and tried to find a good
continuous approximation (relaxation) of it. Let us discuss a reverse prob-
lem a bit (only to the extent of a couple of classical examples). Suppose
that we have a set with a measure; how well can it be approximated by a
discrete measure?

In our first example, we consider the Lebesgue measure A on the unit
square [0, 1]2. Suppose that we want to approximate this by the uniform
measure on a finite subset T. Of course, we have to specify how the error
of approximation is measured: here we define it as the maximum error on
axis-parallel rectangles:

A(T) = sup| 701 R = AR)IT]].

where R ranges over all sets of the form R = [a,b] X [¢,d] (we scaled up by
|T'| for convenience). We are interested in finding the best set T, and in
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determining the “discrepancy”
A, = inf A(T).
IT|=n

The question can be raised for any family of “test sets” instead of rect-
angles: circles, ellipses, triangles, etc. The answer depends in an intricate
way on the geometric structure of the test family; see [BeC] for an exposi-
tion of these beautiful results.

The question can also be raised in other dimensions. The 1-dimensional
case is easy, since the obvious choice of T'= {1/(n +1),...,n/(n+ 1)} is
optimal. But for dimensions larger than 2, the order of magnitude of A,
is not known.

Returning to dimension 2, the obvious first choice is to try a /n x /n
grid for T. This leaves out a rectangle of size about 1/y/n, and so it
has A(T) ~ y/n. There are many constructions that do better; the most
elementary is the following. Let n = 2¥. Take all points (x,y) where both
z and y are multiples of 27%, and expanding them to k bits in binary, we
get these bits in reverse order: x = 0.b1by... b, and y = 0.b,b,,—1...01. It
is a nice exercise to verify that this set has discrepancy A(T) =~ k = log, n.

It is hard to prove that one cannot do better; even to prove that A, —

oo was difficult [A]. The lower bound matching the above construction was
finally proved by Schmidt [S]:

A, =0O(logn).
This fundamental result has many applications.

Our second example can be introduced through a statistical motivation.
Suppose that we are given a 0 — 1 sequence x = x1as ... x, of length n. We
want to test whether it comes from independent coin flips.

One approach (related to von Mises’s proposal for the definition of a ran-
dom sequence) could be to count 0’s and 1’s; their numbers should be about
the same. This should also be true if we count bits in the even positions,
or odd positions, or more generally, in any fixed arithmetic progression of
indices.

So we consider the quantity

Az) = mjux‘in — 4]
€A

)

where A ranges through all arithmetic progressions in {1,...,n}. Elemen-
tary probability theory tells us that if z is generated by independent coin
flips, then A(z) ~ y/n/2 with high probability. So if A(z) is larger than
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this (which is the case of most non-random sequences one thinks of), then
we can conclude that it is not generated by independent coin flips.

But can z fail this test in the other direction, being “too smooth”? In
other words, what is

A, = min Alz),
where x ranges over all 0 — 1 sequences of length n? We can think of the
question as a problem of measure approximation: we are given the mea-
sure on {1,...,n} in which each atom has measure 1/2. This is a discrete
measure but not integral valued; we want to approximate it by an inte-
gral valued measure. The test family defining the error of approximation
consists of arithmetic progressions.

It follows from considering random sequences that A, = O(y/n) The
first result in the opposite direction was proved by Roth [Rot]|, who showed
that A, = Q(n'/*). It was expected that the bound would be improved to
v/n eventually, showing that random sequences are the extreme, at least in
the order of magnitude (in many similar instances of combinatorial extremal
problems, for example in Ramsey Theory, random choice is the best). But
surprisingly, Sarkozy showed that A, = O(nl/ 3 which was improved by
Beck [Be] to the almost sharp A,, = O(n'/*logn), and even the logarithmic
factor was recently removed by Matousek and Spencer [MS]. Thus there
are sequences which simulate random sequences too well!

5 The Laplacian

The Laplacian, as we learn it in school, is the differential operator

62
- 81:12 :
(2

What could be more tied to the continuity of euclidean spaces, or at least of
differential manifolds, than a differential operator? In this section we show
that the Laplacian makes sense in graph theory, and in fact it is a basic
tool. Moreover, the study of the discrete and continuous versions interact
in a variety of ways, so that the use of one or the other is almost a matter
of convenience in some cases.

5.1 Random walks. One of the fundamental general algorithmic prob-
lems is sampling: generate a random element from a given distribution over
a set V. In non-trivial cases, the set V is either infinite or finite but very
large, and often only implicitly described. In most cases, we want to gen-
erate an element from the uniform distribution, and this special case will
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be enough for the purpose of our discussions.

I’ll use as examples two sampling tasks:

(a) Given a convex body K in R", generate a uniformly dis-
tributed random point of K.

(b) Given a graph G, generate a uniformly distributed random
perfect matching in G.

Problem (a) comes up in many applications (volume computa-
tion, Monte-Carlo integration, optimization, etc.). Problem (b)
is related to the Ising model in statistical mechanics.

In simple cases one may find elegant special methods for sampling. For
example, if we need a uniformly distributed random point in the unit ball
in R™, then we can generate n independent coordinates from the standard
normal distribution, and “normalize” the obtained vector appropriately.

But in general, sampling from a large finite set, or an infinite set, is
a difficult problem, and the only general approach known is the use of
Markov chains. We define (using the structure of S) an ergodic Markov
chain whose state space is S and whose stationary distribution is uniform.
In the case of a finite set S, it may be easier to think of this as a connected
regular non-bipartite graph G with node set V. Starting at an arbitrary
node (state), we take a random walk on the graph: from a node i, we step
to a next node selected uniformly from the set of neighbors of i. After a
sufficiently large number T of steps, we stop: the distribution of the last
node is approximately uniform.

In the case of a convex body, a rather natural Markov chain to
consider is the following: starting at a convenient point in K, we
move at each step to a uniformly selected random point in a ball
of radius § about the current point (if the new point is outside
K, we stay where we were, and consider the step “wasted”).
The step-size § will be chosen appropriately, but typically it is
about 1/4/n.

If we want to sample from perfect matchings in a graph G,
the random walk to consider is not so obvious. Jerrum and
Sinclair consider a random walk on perfect and near-perfect
matchings (matchings that leave just two nodes unmatched). If
we generate such a matching, it will be perfect with a small but
non-negligible probability (1/n"t if the graph is dense). So
we just iterate until we get a perfect matching.
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One step of the random walk is generated by picking a random
edge e of G. If the current matching is perfect and contains e,
then we delete e; if the current matching is near-perfect and e
connects the two unmatched nodes, we add it; if e connects an
unmatched node to a matched node, we add e to the matching
and delete the edge it intersects.

Another way of looking at this is do a random walk on a “big”
graph H whose nodes are the perfect and near-perfect match-
ings of the “small” graph GG. Two nodes of H are adjacent if
the corresponding matchings arise from each other by changing
(deleting, adding, or replacing) a single edge. Loops are added
to make H regular. Note that we do not want to construct H
explicitly; its size may be exponentially large compared with G.
The point is that the random walk on H can be implemented
using only this implicit definition.

It is generally not hard to achieve that the stationary distribution of
the chain is uniform, and that the chain is ergodic. The crucial question
is: what is the mixing time, i.e., how long do we have to walk? This
question leads to estimating the mixing time of Markov chains (the number
of steps before the chain becomes essentially stationary). From the point
of view of practical applications, it is natural to consider finite Markov
chains — a computation in a computer is necessarily finite. But in the
analysis, it depends on the particular application whether one prefers to use
a finite, or a general measurable, state space. All the essential (and very
interesting) connections that have been discovered hold in both models. In
fact, the general mathematical issue is dispersion: we might be interested
in dispersion of heat in a material, or dispersion of probability during a
random walk, or many other related questions.

A Markov chain can be described by its transition matrix M = (p;;),
where p;; is the probability of stepping to j, given that we are at 7. In
the special case of random walks on a regular undirected graph we have
M = (1/d)A, where A is the usual adjacency matrix of the graph G. Note
that the all-1 vector 1 is an eigenvector of M belonging to the eigenvalue 1.

If o is the starting distribution (which can be viewed as a vector in RY),
then the distribution after ¢ steps is M*o. From this it is easy to see that the
speed of convergence to the stationary distribution (which is the eigenvector
(1/n)1), depends on the difference between the largest eigenvalue 1 and
the second largest eigenvalue A (the spectral gap). We could also define the
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spectral gap as the smallest positive eigenvalue of the matrix L = M — I.

We call this matrix L the Laplacian of the graph. For any vector
f €RY, the value of Lf at node i is the average of f over the neigh-
bors of 4, minus f;. This property shows that the Laplacian is indeed a
discrete analog of the classical Laplace operator.

Some properties of the Laplace operator depend on the fine structure
of differentiable manifolds, but many basic properties can be generalized
easily to any graph. One can define harmonic functions, the heat kernel,
prove identities like the analogue Green’s formula:

> (fi(Lg)i — gi(Lf):) =0

7
and so on. Many properties of the “continuous” Laplace operator can be
derived using such easy combinatorial formulas on a grid and then taking
limits. See Chung [Chu] for an exposition of some of these connections.

But more significantly, the discrete Laplacian is an important tool in
the study of various graph theoretic properties. As a first illustration of
this fact, let us return to random walks.

Often information about the spectral gap is difficult to obtain (this is
the case in both of our introductory examples). One possible remedy is to
relate the dispersion speed to isoperimetric inequalities in the state space.
To be more exact, define the conductance of the chain as

TiDij
® = max E .
QCSCViGS,jGV\S m(S)m(V\S)

(The numerator can be viewed as the probability that choosing a random
node from the stationary distribution, and then making one step, the first
node is in S and the second is in V'\ S. The denominator is the same proba-
bility for two independent random nodes from the stationary distribution.)
The following inequality was proved by Jerrum and Sinclair [JS]:

Theorem 3.

P <1-A<D.

This means that the mixing time (which we have to use informally
here, since the exact definition depends on how we start, how we measure
convergence, etc.) is between 1/® and 1/®2.

In the case of random walks in a convex body, the conductance
is very closely related to the following isoperimetric theorem
[LoSi|, [DyF]:
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Theorem 4. Let K be a convex body in R™, of diameter D.
Let the surface F' divide K into two parts Ky and Ks. Then

2 VOl(Kl)VOI(KQ)
volit(F) 2 5 k)
(A long thin cylinder shows that the bound is sharp.)
From Theorem 4, it follows that (after appropriate preprocess-
ing and other technical difficulties which are now swept under
the carpet) one can generate a sample point in an n-dimensional
convex body in O*(n3) steps.
In the case of matchings, Jerrum and Sinclair prove that for
dense graphs, the conductance of the chain described is bounded

from below by 1/n°" and hence the mixing time is bounded
by nconst.

How to establish isoperimetric inequalities? The generic method is to
construct, explicitly or implicitly, flows or multicommodity flows. Suppose
that for each subset ) C .S C V we can construct a flow through the graph
so that each node 7 € S is a source that produces an amount of m;w(V \ )
of flow, and each j € V'\ S is a sink that consumes 7;7(S) amount of flow.
Suppose further that each edge ij carries at most Km;p;; flow. Then a
simple computation shows that the conductance satisfies

1
o> L.

Instead of constructing a flow for each subset S of nodes, one might prefer
to construct a multicommodity flow, i.e., a flow of value m;m; for each i
and j. If the total flow through each edge ij is at most Km;p;;, then the
conductance is at least 1/K.

How good is the bound on the conductance obtained by the multicom-
modity flow method? An important result of Leighton and Rao [LR] implies
that for the best choice of the flows, it gets within a factor of O(logn). One
of the reasons I bring this up is that this result, in turn, can be derived
from the theorem of Bourgain [Bo] about the embedability of finite metric
spaces in £;-spaces with small distortion. Cf. also [LiLR], [DeL].

To construct the “best” flows or multicommodity flows is often
the main mathematical difficulty. In the case of the proof of
Theorem 4, it can be done by a method used earlier by Payne
and Weinberger [PW] in the theory of partial differential equa-
tions. We only give a rough sketch.



Visions in Math. DISCRETE AND CONTINUOUS: TWO SIDES OF THE SAME? 377

Suppose that we want to construct a “flow” from Kj to Ks. By
the “Ham—Sandwich” theorem, there exists a hyperplane that
cuts both K7 and K5 into two parts with equal volume. We can
separately construct the flows on both side of this hyperplane.
Repeating this procedure, we can cut up K into “needles” so
that each needle is split by the partition (S, V' \ S) in the same
proportion, and hence it suffices to construct a flow between
K7 and K> inside each needle. This is easily done using the
Brun—Minkowski theorem.

For the random walk on matchings, the construction of the mul-
ticommodity flow (called canonical paths by Jerrum and Sin-
clair) also goes back to one of the oldest methods in matching
theory. Given (say) a perfect matching M and a near-perfect
matching M’ we form the union. This is a subgraph of the
“small” graph G that decomposes into a path (with edges al-
ternating between M and M), some cycles (again alternating
between M and M’) and the common edges of M and M'. Now
it is easy to transform M into M’ by walking along each cycle
and the path, and replacing the edges one by one. What this
amounts to is a path in the “big” graph H, connecting nodes
M and M’. If we use this path to carry the flow, then it can be
shown that no edge of the graph H is overloaded, provided the
graph G is dense.

5.2 The Cage theorem and conformal mappings. It was proved
by Steinitz that every 3-connected planar graph can be represented as the
skeleton of a (3-dimensional) polytope. In fact, there is a lot of freedom
in choosing the geometry of this representing polytope. Among various
extensions, the most interesting for us is the classical construction going
back to Koebe [Ko| (first proved by Andre’ev [An]; cf. also [T)):

Theorem 5 (The Cage theorem). Let H be a 3-connected planar graph.
Then H can be represented as the skeleton of a 3-dimensional polytope, all
whose edges touch the unit sphere.

We may add that the representing polytope is unique up to a projective
transformation of the space that preserves the unit sphere. By considering
the “horizon” from each vertex of the polytope, we obtain a representation
of the nodes of the graph by openly disjoint circular disks in the plane so
that adjacent nodes correspond to touching circles.

The Cage theorem may be considered as a discrete form of the Riemann
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mapping theorem, in the sense that it implies the Riemann mapping the-
orem. Indeed, suppose that we want to construct a conformal mapping of
a simply connected domain K in the complex plane onto the unit disk D.
For simplicity, assume that K is bounded. Consider a triangular grid in
the plane (an infinite 6-regular graph), and let G be the graph obtained
by identifying all gridpoints outside K into a single node s. Consider the
Koebe representation by touching circles on the sphere; we may assume
that the circle representing the node s is the exterior of D. So all the other
circles are inside D, and we obtain a mapping of the set of gridpoints in
K into D. By letting the grid become arbitrarily fine, it was shown by
Rodin and Sullivan [RS] that in the limit we get a conformal mapping of
K onto D.

So the Cage theorem is indeed a beautiful bridge between discrete math-
ematics (graph theory) and continuous mathematics (complex analysis).
But where is the Laplacian? We’ll see one connection in the next section.
Another one occurs in the work of Spielmann and Teng [SpT]|, who use the
Cage theorem to show that the eigenvalue gap of the Laplacian of a planar
graph is at most 1/n. This implies, among others, that the mixing time
of the random walk on a planar graph is at least linear in the number of
nodes.

5.3 Colin de Verdiére’s invariant. In 1990, Colin de Verdiere [Co]
introduced a parameter p(G) for any undirected graph G. Research con-
cerning this parameter involves an interesting mixture of ideas from graph
theory, linear algebra, and analysis.

The exact definition goes beyond the limitations of this article; roughly
speaking, u(G) is the multiplicity of the smallest positive eigenvalue of the
Laplacian of GG, where the edges of G are weighted so as to maximize this
multiplicity.

The parameter was motivated by the study of the maximum multiplicity
of the second eigenvalue of certain Laplacian-type differential operators,
defined on Riemann surfaces. He approximated the surface by a sufficiently
densely embedded graph G, and showed that the multiplicity of the second
eigenvalue of the operator can be bounded by this value u(G) depending
only on the graph.

Colin de Verdiere’s invariant created much interest among graph the-
orists, because of its surprisingly nice graph-theoretic properties. Among
others, it is minor-monotone, so that the Robertson-Seymour graph minor
theory applies to it. Moreover, planarity of graphs can be characterized by
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this invariant: u(G) < 3 if and only if G is planar.

Colin de Verdiere’s original proof of the “if” part of this fact was
most unusual in graph theory: basically, reversing the above procedure,
he showed how to reconstruct a sphere and a positive elliptic partial dif-
ferential operator P on it so that p(G) is bounded by the dimension of the
null space of P, and then invoked a theorem of Cheng [C] asserting that
this dimension is at most 3.

Later van der Holst [Ho| found a combinatorial proof of this fact. While
this may seem as a step backward (after all, it eliminated the necessity of
the only application of partial differential equations in graph theory I know
of), it did open up the possibility of characterizing the next case. Verifying
a conjecture of Robertson, Seymour, and Thomas, it was shown by Lovész
and Schrijver [LoS2] that u(G) < 4 if and only if G is linklessly embedable
in R3.

Can one go back to the original motivation from p(G) and find a “con-
tinuous” version of this result? In what sense does a linklessly embedded
graph approximate the space? These questions appear very difficult.

It turns out that graphs with large values of u are also quite interesting.
For example, for a graph G on n nodes with u(G) > n—4, the complement
of GG is planar, up to introducing “twin” points; and the converse of this
assertion also holds under reasonably general conditions. The proof of the
latter fact uses the Koebe-Andre’ev representation of graphs.

So the graph invariant pu(G) is related at one end of the scale to elliptic
partial differential equations (Cheng’s theorem); on the other, to Riemann’s
theorem on conformal mappings.
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