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In 1971, Graham and Pollack established a relationship 
between the number of negative eigenvalues of the distance 
matrix and the addressing problem in data communication 
systems. They also proved that the determinant of the 
distance matrix of a tree is a function of the number of vertices 
only. Since then several mathematicians were interested in 
studying the spectral properties of the distance matrix of 
a connected graph. Computing the distance characteristic 
polynomial and its coefficients was the first research subject 
of interest. Thereafter, the eigenvalues attracted much more 
attention. In the present paper, we report on the results 
related to the distance matrix of a graph and its spectral 
properties.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

There are mainly two versions of the distance matrix of a graph: graph-theoretical and 
geometric. For a connected graph, the distance matrix, in the case of graph-theoretical 
version, is a natural generalization, with more specificity, of the adjacency matrix. The 
distance between two vertices is defined as the length (number of edges) of a shortest path 
between them. In the case of the geometric version, we consider points in a plane and 
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the distances correspond to the Euclidean distance. In this case, we speak more about 
points in a metric space than about vertices in a graph. The origins of the distance 
matrix goes back to the very first paper of Cayley [34] in 1841. However, its study 
began formally during the 20-th century [120,146]. Graph theory researchers were first 
interested in the problem of realizability of the distance matrix. Namely, for a given 
real symmetric n × n-matrix D = (di,j) such that di,i = 0 and 0 ≤ di,j ≤ di,k + dk,j , 
1 ≤ i, j, k ≤ n, is there a graph G for which D is the distance matrix. This problem 
was first posed by Hakimi and Yau [70], and then studied by many mathematicians 
among which we cite Simões-Pereira [122,124,126,127], Buneman [28], Simões-Pereira 
and Zamfirescu [128], Varone [140], Boesch [18], Patrinos and Hakimi [109], Bandelt 
[13], and Nieminen [106]. Dress [52] proved that any shortest path distance matrix can 
be realized by a minimum weight graph. In the case of trees, efficient algorithms stating 
how to find this optimal solution have been developed [18,40,109,128]. However, in the 
case of general graphs, only a few results are known concerning the structure of optimal 
realizations (see e.g. [53,73,81,90]), and dealing with the problem is much harder. Indeed, 
although it is well-known that an optimal realization exists [52,125], Althöfer [1] and 
Winkler [143] showed that the problem is NP-complete if the distance matrix has integer 
entries. Actually, many heuristic methods were proposed [53,73,106,122,123,128,139], 
however, computing optimal realizations of general distance matrices is still difficult.

The second aspect of distance matrix that kept the attention of the mathematicians is 
the study of its spectral properties. In this case, the focus was more on the graph theoret-
ical version of the matrix. The interest began during the 70’s with the appearance of the 
paper [65] by Graham and Pollack. In that paper the authors established a relationship 
between the number of negative eigenvalues of the distance matrix and the addressing 
problem in data communication systems. In the same paper [65], it was proved that the 
determinant of the distance matrix of a tree is a function of the number of vertices only. 
This impressive result made distance matrix spectral properties a research subject of 
great interest. Graham and Lovász [63] computed the inverse of the distance matrix of 
a tree. Edelberg, Garey and Graham [56], Graham and Lovász [63], and Hosoya, Mu-
rakami and Gotoh [75] studied the characteristic polynomial. Actually, they calculated 
certain, and in some cases all, the coefficients of the distance characteristic polynomial. 
Merris [102] provided the first estimation of the distance spectrum of a tree. Many other 
authors studied the distance spectrum of a graph, we report about their works below. 
Recently, the maximum or the minimum values of the distance spectral radius of a given 
class of graphs has been studied extensively.

Several domains of application of the distance matrix, in an implicit or an explicit 
form, are known: the design of communication networks [57,65], network flow algorithms 
[51,60], graph embedding theory [49,56,63,64,66] as well as molecular stability [75,159]. 
Balaban, Ciubotariu and Medeleanu [9] proposed the use of the distance spectral radius 
as a molecular descriptor (see also [39,137]). Gutman and Medeleanu [69] used the dis-
tance spectral radius to infer the extent of branching and model boiling points of an 
alkane (see also [19]). For other applications in chemistry see [74,103,115–117] as well as 
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the books [8,87,138], and the references therein. Among other branches of sciences where 
the notion of distance in graphs (thus the distance matrix in an implicit form) is used 
extensively, we can cite psychology [41], phylogenetics [48,93], software compression [94], 
analysis of Internet infrastructures [35], modeling of traffic [29,30], and social networks 
[61,88,119,121,142].

In the present survey, we focus on the research related to the spectral properties of 
the distance matrix in its graph-theoretical version. Note that an excellent survey about 
spectral properties of distance matrix of graphs [132], authored by Stevanović and Ilić, was 
published in 2012, as a book chapter. The present paper can be seen as an improvement 
of that one in that we include papers were not considered in [132], a few of which were 
published prior and others subsequent to [132].

We begin by recalling some definitions. We consider only simple, finite and connected 
graphs, i.e., graphs on a finite number of vertices without multiple edges or loops and in 
which any two vertices are linked by a sequence of edges. A graph is (usually) denoted by 
G = G(V, E), where V is its vertex set and E its edge set. The order of G is the number 
n = |V | of its vertices and its size is the number m = |E| of its edges. The adjacency 
matrix of G is a 0–1 n × n-matrix indexed by the vertices of G and defined by aij = 1 if 
and only if ij ∈ E. For details on the adjacency matrix and its spectrum see the books 
[26,42–44,136]. The degree di of the vertex i ∈ V is the number of vertices adjacent to i, 
i.e., the sum of the i-th row (column) of the adjacency matrix of G. Let Δ and δ denote 
the maximum and minimum degrees of G, respectively. If G = (V, E) is a graph, v ∈ V

and e ∈ E, then v (resp. e) is a cut vertex (resp. edge) of G if G − v (resp. G − e) is 
disconnected. As usual, we denote by Pn the path, by Cn the cycle, by Sn the star, by 
Ka,n−a the complete bipartite graph and by Kn the complete graph, each on n vertices.

The distance matrix D of a graph G is the matrix indexed by the vertices of G where 
Di,j = dij = d(vi, vj) and dij = d(vi, vj) denotes the distance between the vertices vi
and vj , i.e., the length of a shortest path between vi and vj (for properties of distances 
in graphs see the book by Bukley and Harary [27] and the references therein). The 
maximum distance between two vertices is called the diameter of G and denoted by 
D = D(G), i.e., D = D(G) = max{d(u, v) : u, v ∈ G}. The characteristic polynomial of 
D(G) is defined by PD(t) = PD(G)(t) = Det(tI−D(G)), where I is n ×n identity matrix. 
It is called the distance characteristic polynomial of G. Since D(G) is a real symmetric 
matrix, all its eigenvalues, called distance eigenvalues of G, are real. The spectrum of D
is denoted by {∂1, ∂2, . . . , ∂n} and indexed such that ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. It is called the 
distance spectrum of the graph G. An example of a graph and its distance spectrum are 
given in Fig. 1. From matrix theory (see e.g. [42, Theorem 0.2 and 0.3]) and since D is 
an irreducible, non-negative, real and symmetric matrix, ∂1 is a simple eigenvalue and 
satisfies ∂1 ≥ |∂i|, for i = 2, 3, . . . , n, and there exists a positive eigenvector corresponding 
to ∂1. The largest eigenvalue ∂1 is called the distance spectral radius or distance index. 
The index of D is the most studied among the distance eigenvalues.
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Fig. 1. A graph with a distance spectrum {7, 0, 0,−2,−2,−3}.

Fig. 2. The smallest transmission regular but not degree regular graph.

The Wiener index W (G) of a graph is the sum of the distances between all unordered 
pairs of vertices of G, in other words W (G) is half the sum of all the entries of the 
distance matrix of G, i.e.,

W (G) =
∑

1≤i<j≤n

Di,j .

The transmission Tr(v) of a vertex v in G is the sum of the distances from v to all other 
vertices in G, i.e.,

Tr(v) =
∑
u∈V

d(u, v).

Note that the transmission of a vertex is the sum of the entries of D in the column (row) 
corresponding to v. For short, we write Tri for Tr(vi), when the vertices are labeled. We 
say that G is a k-transmission regular graph if Tr(v) = k for every v ∈ V . Note that 
there exist graphs which are transmission regular but not (degree) regular. Indeed, the 
graph on 9 vertices illustrated in Fig. 2 is 14-transmission regular but not degree regular. 
For more examples of transmission regular but not degree regular graphs see [5,7].

The remainder of the present paper is organized as follows. In the next section, we give 
an overview of the first papers devoted to the distance spectra of graphs. These papers 
deal mainly with the distance characteristic polynomials and their coefficients, and the 
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problem of characterizing the graphs whose distance spectra contain exactly one positive 
eigenvalue. Section 3 is devoted to the results related to the entries of the Perron vector. 
In Section 4, we report on the distance spectra of some particular classes of graphs; the 
distance characteristic polynomial of a graph obtained by means of operations involving 
two graphs or more; the behavior of some distance eigenvalues, especially the distance 
spectral radius, when some transformations are done on the graph. Section 5 is devoted 
to results involving the distance spectral radius, such as lower and upper bounds over 
the class of graphs with given order n. Results related to the distance spectral spread 
are presented in Section 6. The papers dealing with the distance energy (the sum of the 
absolute values of the distance eigenvalues) are overviewed in Section 8.

2. The distance matrix and its characteristic polynomial

Among the first results related to the distance matrix, we find the remarkable theorem 
proved by Graham and Pollack [65] that gives a formula for the determinant of the 
distance matrix of a tree depending only on the order n.

Theorem 2.1. (See [65].) If T is a tree on n ≥ 2 vertices with distance matrix D, then

det(D) = (−1)n−1(n− 1)2n−2.

The generalization of the above theorem for general graphs is that the determinant of 
the distance matrix depends only on the blocks of the graph. This generalization was first 
conjectured by Hosoya, Murakami and Gotoh [75] and then proved by Graham, Hoffman 
and Hosoya [62]. Before the statement of the result recall the following definitions. A 
graph that has no cut vertices is called a block. A block of a graph is a subgraph that is a 
block and maximal with respect to this property. Every graph is the union of its blocks. 
For a square matrix M , denote by cof (M) the sum of its cofactors.

Theorem 2.2. (See [62].) If G is a (strongly connected directed) graph with blocks 
G1, G2, . . . , Gk, then

cof
(
D(G)

)
=

k∏
i=1

cof
(
D(Gi)

)
and det

(
D(G)

)
=

k∑
i=1

det
(
D(Gi)

) k∏
j=1,j �=i

cof
(
D(Gj)

)
.

The inertia of a square matrix M with real eigenvalues is the triplet (n+(M), n0(M),
n−(M)), where n+(M) and n−(M) denote the number of positive and negative eigen-
values of M , respectively, and n0(M) is the (algebraic) multiplicity of 0 as an eigenvalue 
of M .

An immediate consequence of Theorem 2.1 is that the inertia of the distance matrix 
is the same for all trees on n ≥ 2 vertices.
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Corollary 2.3. (See [65].) If T is a tree on n ≥ 2 vertices with distance matrix D, then 
the inertia of D is (1, 0, n − 1).

The above corollary is related to and stated in the context of the addressing problem 
in communication systems.

Consider the characteristic polynomial of D of a tree T on n vertices,

PD(T )(t) =
n∑

k=0

akt
k.

The determinant of D is given by the distance characteristic polynomial at 0, i.e., 
det(D) = (−1)nPD(0) = (−1)na0. Considering this point of view, Theorem 2.1 gives 
the value of a coefficient of the distance characteristic polynomial. Thus, the study of 
the coefficients of PD is a natural extension of the work done in [65]. Edelberg, Garey and 
Graham [56], and Graham and Lovász [63] were the first authors to do such extensions. 
Edelberg, Garey and Graham [56] computed some coefficients and determined the sign 
of each coefficient. In order to state the next results, we recall the following notations. 
The unique tree on 5 vertices with a diameter D = 3 is denoted by Y . For a given tree 
T and a subtree H, NH(T ) is defined as the number of subtrees of G isomorphic to H. 
As usual, sgn(t) denotes the sign of a real number t.

Theorem 2.4. (See [56].) For any tree on n vertices, we have

sgn(ak) = (−1)n−1, for 0 ≤ k ≤ n− 2,

an−1 = 0,

an = (−1)n,

an−2 = (−1)n−1
∑
i<j

d2
ij ,

an−3 = (−1)n−1
∑

i<j<k

dijdjkdki,

ak ≡ 0
(
mod 2n−k−2) for 0 ≤ k ≤ n− 2,

a0 = (−1)n−12n−2NS2(T ),

a1 = (−1)n−12n−3(2nNS2(T ) − 2NS3(T ) − 4
)
,

a2 = (−1)n−12n−4(2(n2 − n− 4
)
NS2(T ) − (5n− 7)NS3(T ) + 6NS4(T ) − 2NP3(T )

)
,

a3 = (−1)n−12n−5
[
4
3
(
n2 − 4

)
(n− 3)NS2(T ) − 2

(
3n2 − 11n + 9

)
NS3(T )

+ 2(7n− 22)NS4(T ) − 4(n− 3)NP3(T ) − 2NP4(T ) − 24NS5(T ) + 4NY (T )

+ 2
(
NS3(T )

)2]
.
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Note that the results in the above theorem, except sgn(ak) and a3, have been found 
independently by Hosoya, Murakami and Gotoh [75].

In [63], Graham and Lovász showed, in a generalization of the above theorem, that 
the coefficients of the distance characteristic polynomial of a tree T depend only on the 
number of occurrences of subforests of T .

Theorem 2.5. (See [63].) Let T be a tree on n ≥ 2 vertices. The coefficients of the distance 
characteristic polynomial of T can be written in the form

ak = (−1)n−12n−k−2
∑
F

A
(k)
F NF (T ),

where F ranges over all subforests of T with k − 1, k or k + 1 edges and no isolated 
vertices, and A(k)

F is an integer depending only on k and F .

Explicit formulas for the integers A(k)
F are given in [63]. They turn out to depend only 

on the number of occurrences of various paths in the connected components of F .
The above theorem was generalized to the case of weighted trees by Collins in [38].
In [63], Graham and Lovász conjectured that the sequence of the distance character-

istic polynomial is unimodal with the maximum value occurring for k = �n/2�. Collins 
[37] confirmed the conjecture for the star Sn and showed that, in the case of a path Pn, 
the sequence is unimodal with a maximum value at (1 − 1/

√
5 )n. Thus, Collins [37]

reformulated the conjecture as follows.

Conjecture 2.6. (See [37].) The coefficients of the distance characteristic polynomial of 
any tree T with n vertices are unimodal with peak between n/2 and (1 − 1/

√
5 )n.

No more results are known about that conjecture.
The problem of finding the coefficients of the characteristic polynomial of the dis-

tance matrix was also studied by Mihalić et al. [103] in the context of the use of the 
distance matrix in Chemistry. Computer programs for calculating the distance charac-
teristic polynomials of graphs were developed by Balasubramanian [10,11].

The first application of the distance eigenvalues was expressed in terms of the num-
ber of positive and negative eigenvalues n+(G) and n−(G), respectively, of a graph 
G = (V, E). Suppose one wishes to label each vertex v of G with an N -tuple A(v) =
(a1, a2, . . . , aN ), where ai ∈ {0, 1, ∗}, so that

d
(
A(v), A

(
v′
))

= dG
(
v, v′
)

for all v, v′ ∈ V,

and where dG(v, v′) denotes the distance between v and v′ in G, and d(A(v), A(v′)) =
|{i : {ai, ai′} = {0, 1}}| (also called Hamming distance). Such a labelling exists for any 
simple connected graph, provided N is large enough. The problem is to determine the 
smallest N = N(G) satisfying that property. The following result is proved in [65].



308 M. Aouchiche, P. Hansen / Linear Algebra and its Applications 458 (2014) 301–386
Theorem 2.7. (See [65].) For any graph G, we have

N(G) ≥ max
{
n+(G), n−(G)

}
.

Graham and Lovász [63] proved that it is possible to compute the inverse of the 
distance matrix of a tree in terms of the degrees and the entries of the adjacency matrix.

Theorem 2.8. (See [63].) If T is a tree on n ≥ 2 vertices with distance matrix D = (dij), 
then the inverse matrix of D, D−1 = (d(−1)

ij ) is given by

d
(−1)
ij = (2 − di)(2 − dj)

2(n− 1) +
{
−di

2 if i = j
aij

2 if i 
= j,

where di denotes the degree of the vertex vi and A = (aij) is the adjacency matrix of T .

Theorem 2.1 and Theorem 2.8 were generalized to the case of trees with attached 
graphs (trees with graphs defined on its partitions) by Bapat [15], and to the case of 
weighted trees by Collins [38], and Bapat, Kirkland and Neumann [16]. Since the formulae 
in [15] are the same as in [63,65], we only recall the results related to weighted trees.

Theorem 2.9. (See [16,38].) Let T be a weighted tree on n vertices with edge weights 
α1, α2, . . . , αn−1 and let D be the corresponding distance matrix. Let L denote the Lapla-
cian matrix for the weighting of T that arises by replacing each edge weight by its 
reciprocal. For each i = 1, . . . , n, let di be the degree of the vertex i, let δi = 2 − di, 
and set δ = [δ1, . . . , δn]T . Then

D−1 = −1
2L + 1

2
∑n−1

i=1 αi

δδT . (1)

Observe that using the notation defined in Theorem 2.9, the inverse defined in Theo-
rem 2.8 can be written as

D−1 = −1
2L + 1

2(n− 1)δδ
T ,

and then the generalization becomes clear. Note also that Theorem 2.9 is formulated in 
[38] using a notation similar to that of Theorem 2.8.

The second generalization concerns the determinant of the distance matrix, however 
instead of calculating it in a straightforward way, the authors of [16] first proved more 
general results and then deduced the determinant. These are the results and then the 
determinant as a corollary.

Theorem 2.10. (See [16].) Let G be a t-transmission regular and weighted graph on n
vertices with distance matrix D. Form G∗ from G by adding weighted branches to G on 
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a total of p new vertices, with positive weights α1, . . . , αp on the new edges. Let D∗ be 
the distance matrix for G∗. Then for each x ∈ IR,

det
(
D∗ + xJ

)
= (−2)pdet(D)

(
p∏

i=1
αi

)(
1 + nx

t
+ n

2t

p∑
i=1

αi

)
.

Further, n0(D) = n0(D∗) and if, in addition, D is non-singular, then n+(D) = n+(D∗).

Theorem 2.11. (See [16].) Let T be a weighted tree on n ≥ 2 vertices with edge weights αi, 
for i = 1, . . . , n − 1. Let D be the distance matrix of T . Then for any real number x,

det(D + xJ) = (−1)n−12n−2

(
p∏

i=1
αi

)(
2x +

p∑
i=1

αi

)
.

Further, the inertia of D is (n+(D), n0(D), n−(D)) = (1, 0, n − 1).

The result about the inertia of D in the above theorem was also given in [14]. The 
next result was first proved in [14,38] and then obtained in [16] as a corollary from the 
above theorem.

Corollary 2.12. (See [14,16,38].) Let T be a weighted tree on n vertices with edge weights 
αi, for i = 1, . . . , n − 1. Let D be the distance matrix of T . Then

det(D) = (−1)n−12n−2

(
n−1∏
i=1

αi

)(
n−1∑
i=1

αi

)
.

Bapat, Kirkland and Neumann [16] extended their results about the distance matrix 
of a tree to that of a unicyclic graph, i.e., a connected graph containing exactly one 
cycle. The first result they proved is a formula for the inverse of the distance matrix of 
an odd cycle.

Theorem 2.13. (See [16].) Let D be the distance matrix for the cycle on 2k + 1 vertices. 
Then

D−1 = −2I − Ck − Ck+1 + 2k + 1
k(k + 1)J

where C is the cyclic permutation matrix of order 2k + 1 having Ci,i+1 = 1 for i =
1, . . . , 2k + 1, taking indices modulo 2k + 1.

An immediate corollary of the above theorem is the following result about the spec-
trum of an odd cycle.
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Corollary 2.14. (See [16].) The distance matrix for a cycle on 2k+1 vertices has exactly 
one positive eigenvalue.

They [16] also calculated the determinant, as well as the inertia, of the distance matrix 
of a unicyclic graph with an odd cycle.

Theorem 2.15. (See [16].) Let G be a unicyclic graph on 2k + 1 + p vertices and cycle 
length 2k + 1. Let D be the distance matrix of G. Then

det(D) = (−2)p
(
k(k + 1) + (2k + 1)p

2

)
,

while the inertia of D is given by (n+(D), n0(D), n−(D)) = (1, 0, 2k + p).

The inertia of a unicyclic graph with an even cycle is as follows.

Theorem 2.16. (See [16].) Let G be a unicyclic graph on 2k + p vertices with an 
even cycle of length 2k. Let D be the distance matrix of G. Then the inertia of D is 
(n+(D), n0(D), n−(D)) = (1, k − 1, k + p).

Note that to prove the above theorem, Bapat, Kirkland and Neumann [16] used the 
following lemma.

Lemma 2.17. (See [16].) Let G0 be a graph with distance matrix D0 and suppose that for 
all x > 0, D0 + xJ has a single positive eigenvalue (namely the Perron value). Form Gp

from G0 by adding unweighted branches at various vertices of G0, on a total of p new 
vertices. If D is the corresponding distance matrix, then Dp + xJ has just one positive 
eigenvalue for any x > 0.

Recently, Zhang and Godsil [154] computed the inertia of the family of cacti graphs. 
A cactus is a graph in which any two cycles have at most one common vertex, or similarly, 
a cactus is a graph in which every block of three or more vertices is a cycle.

Theorem 2.18. (See [154].) Let G be a cactus with blocks G1, G2, . . . Gk. Then the inertia 
of G is given by

n+ = 1; n0 =
k∑

i=1
n0(Gi); and n− =

k∑
i=1

n−(Gi).

A linear hexagonal chain denoted by Ln is a chain of n hexagons arranged in a linear 
manner. The inertia of Ln was computed in [154].

Theorem 2.19. (See [154].) Let Ln denote a linear hexagonal chain with n hexagons. 
Then the inertia of Ln is (1, 2n, 2n + 1).
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Fig. 3. The wheel graph W10.

The Cartesian product G1�G2 of two graphs G1 and G2 is the graph whose vertex 
set is the (set) Cartesian product V (G1) × V (G2), and in which two vertices (u, u′) and 
(v, v′) are adjacent if and only if either u = v and u′ is adjacent with v′ in G2, or u′ = v′

and u is adjacent with v in G1. Let Gu • vH denote the graph obtained from two graphs 
G and H by identifying a vertex u from G with a vertex v from H.

The inertia of the Cartesian product of two graphs is given in the next theorem.

Theorem 2.20. (See [154].) Let G�H denote the Cartesian product of connected graphs 
G and H, where V (G) = {u1, . . . , um} and V (H) = {v1, . . . , vn}. Then, the inertia of 
G�H is (n+(Gum • unH), (m − 1)(n − 1) + n0(Gum • unH), n−(Gum • unH)).

The authors of the above theorem deduced from its proof the following three corol-
laries.

Corollary 2.21. (See [154].) Let G and H be two graphs with vertex sets V (G) =
{u1, . . . , um} and V (H) = {v1, . . . , vn}. Then for 1 ≤ i, s ≤ m and 1 ≤ j, t ≤ n, we 
have

n+(Gui • ujH) = n+(Gus • utH), n0(Gui • ujH) = n0(Gus • utH), and

n−(Gui • ujH) = n−(Gus • utH).

Corollary 2.22. (See [154].) Let T1 and T2 be two trees on m and n vertices, respectively. 
Then the inertia of T1�T2 is (1, (m − 1)(n − 1), m + n − 2).

Corollary 2.23. (See [154].) If G and H are two cacti, then n+(G�H) = 1.

Zhang and Song [156] computed the determinant of the distance matrix, as well as 
the inertia, of the wheel graph. First, recall the following definition. The wheel graph Wn

on n ≥ 4 vertices is the join graph of Cn−1 and K1 (see Fig. 3 for W10). Regarding the 
wheel, we have the following theorem.
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Fig. 4. Some forbidden graphs.

Theorem 2.24. (See [156].) Let Wn be the wheel graph on n ≥ 4 vertices, then

det
(
D(Wn)

)
=
{

1 − n if n is even,
0 if n is odd.

Moreover, the inertia of Wn is (1, 0, n − 1) if n is even, and (1, 1, n − 2) if n is odd.

The next result gives the determinant of the distance matrix of a wheel from which 
an edge is deleted.

Theorem 2.25. (See [156].) Let Wn be a wheel on n ≥ 4 vertices and e an edge not 
incident to the central vertex of Wn. Then

det(Wn − e) =
{
−n2

4 if n is even,
n2−1

4 if n is odd.

The inertia of the graph obtained from a wheel Wn by the deletion of at least one 
edge not incident to the central vertex is next given.

Theorem 2.26. (See [156].) Let Wn be a wheel on n ≥ 4 vertices. Let Ek be a set of k
edges of Wn that are not incident to the central vertex, with 1 ≤ k ≤ n − 1. Then the 
inertia of Wn − Ek is (1, 0, n − 1).

Corollary 2.3 stated that trees have exactly one positive distance eigenvalue. This fact 
motivated the search and study of graph families having one positive distance eigenvalue. 
Ramane et al. [114] stated sufficient conditions on a graph such that its line graph L(G)
has exactly one positive distance eigenvalue. First, recall the following definition. Let G
be a graph. The line graph L(G) of G is the graph whose vertices correspond to the edges 
of G with two vertices of L(G) being adjacent if and only if the corresponding edges in 
G have a vertex in common. For instances, the line graph of a cycle on n vertices is a 
cycle on n vertices, i.e., L(Cn) ∼= Cn; the line graph of a path on n vertices is a path on 
n − 1 vertices, i.e., L(Pn) ∼= Pn−1; and the line graph of a star on n vertices is the clique 
on n − 1 vertices, i.e., L(Sn) ∼= Kn−1.

Theorem 2.27. (See [114].) If G is a k-regular graph on n vertices with diameter D ≤ 2
such that none of the graphs F1, F2 and F3 (Fig. 4) is an induced subgraph of G, then 
L(G) has exactly one positive distance eigenvalue ∂1(L(G)) = k(n − 2).
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Fig. 5. All the cubic distance-regular graphs on at most 10 vertices.

Fig. 6. A projection of the Gosset graph. Note that 
two vertices coincide in the center of this graph. 
Edges also coincide with this projection.

Fig. 7. The Schläfli graph.

The next corollary follows from and generalizes, in some way, the above theorem.

Corollary 2.28. (See [114].) Let G be a k-regular graph on n vertices with diameter D ≤ 2
and let none of the four graphs of Fig. 4 be an induced subgraph of G. Let np and kp
be the order and degree, respectively, of the p-th iterated line graph Lp(G) of G, p ≥ 1. 
Then Lp(G) has exactly one positive distance eigenvalue

∂1
(
Lp(G)

)
= np−1kp−1 − 2kp−1 = 2np − kp − 2

= 2n
p−1∏
i=1

(
2i−1k − 2i + 1

)
−
(
2pk − 2p+1 + 4

)
.

Let G = (V, E) be a graph. Let i, j, k be non-negative integers. G = (V, E) is called 
distance-regular if for any choice of u, v ∈ V with d(u, v) = k, the number of vertices 
w ∈ V such that d(u, w) = i and d(v, w) = j is independent of the choice of u and v. All 
the cubic (3-degree regular) distance-regular graphs on at most 10 vertices are illustrated 
in Fig. 5. For more details about distance-regular graphs see the book [25].
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Fig. 8. The cocktail party graph CP3. Fig. 9. The Johnson graph J(5, 2). Fig. 10. The halved cube Q′
8.

All the distance-regular graphs that have exactly one distance positive eigenvalue are 
characterized by Koolen and Shpectorov [91]. We first define the graphs and then state 
the result. The cocktail party graph CPk on 2k vertices, also called the hyperoctahedral 
graph [17], is the graph obtained from the complete graph K2k by the deletion of k
disjoint edges, i.e., the complement of the graph consisting of k disjoint edges. See Fig. 8
for an illustration of the cocktail party graph CP3. The Gosset graph (see e.g. [25]) 
has as vertices all the vectors of length 8, either consisting of two 1’s and six 0’s, or 
consisting of six 1

2 and two −1
2 ; e.g. (1, 1, 0, 0, 0, 0, 0, 0), (1

2 , 
1
2 , −

1
2 , −

1
2 , 

1
2 , 

1
2 , 

1
2 , 

1
2 ) and 

(1
2 , −

1
2 , −

1
2 , 

1
2 , 

1
2 , 

1
2 , 

1
2 , 

1
2 ) are vertices of the Gosset graph. Two vertices are adjacent if 

and only if their inner product is exactly 1 (so the first and the second, as well as the 
second and the third vector of the above three are adjacent). See Fig. 6 for a projection 
of the Gosset graph on a plane. The Schläfli graph (see e.g. [25]) is the subgraph of 
the Gosset graph consisting of the (0, 1)-vectors with one 1 at the last two places and 
the (1

2 , −
1
2 )-vectors with minus signs at the first six places only. The Schläfli graph 

is illustrated in Fig. 7. Let Qk be the k-cube and let V1 ∪ V2 be its bipartition as a 
bipartite graph. Then the halved cube Q′

k [25] is the graph with V (Q′
k) = V1, where u

is adjacent to v in Q′
k if and only if dQk

(u, v) = 2. Clearly, Q′
k has 2k−1 vertices and is 

(k(k− 1)/2)-regular. Note that Q′
3 is isomorphic to K4 and that Q′

4 is isomorphic to the 
cocktail party graph on 8 vertices (see Fig. 10). The Johnson graph J(n, k) is defined on 
the set of vertices composed of the k-element subsets of an n-element set, and where two 
vertices are adjacent if and only they share k − 1 elements. For instances, J(n, 1) is the 
complete graph Kn, J(4, 2) is the tripartite graph K2,2,2; and J(5, 2) (see Fig. 9) is the 
complement graph of the Petersen graph or equivalently the line graph of K5. A k-regular 
graph G on n vertices is said strongly regular if there exist two integers p and q such that 
any two adjacent vertices in G have p common neighbors and any non-adjacent vertices 
have q common neighbors. In this case n, k, p and q are the called the parameters of G, 
and then we speak about an (n, k, p, q)-strongly regular graph. There are exactly four 
(28, 12, 6, 4)-strongly regular graphs, one of which is the line graph of the complete graph 
K8 and the three others are known as Chang graphs. The Chang graphs are implemented 
in Mathematica as “GraphData[{“Chang”, n}]” for n = 1, 2, 3.

The Hamming graph (see Fig. 11) H(D, p), D ≥ 2 and p ≥ 2, of diameter D and 
characteristic p is the graph whose vertex set consists of all D-tuples of elements taken 
from a p-element set, in which two vertices are adjacent if and only if they differ in 
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Fig. 11. The Hamming graph H(2, 3). Fig. 12. The Shrikhande graph. Fig. 13. The double odd graph DO2.

Fig. 14. The icosahedron. Fig. 15. The dodecahedron.

exactly one coordinate. H(D, p) can also be defined as the Cartesian product of the 
complete graph Kp by itself D times, i.e.,

H(D, p) = Kp�Kp� · · ·�Kp︸ ︷︷ ︸
D times

.

The Shrikhande graph (see Fig. 12) is the graph whose vertex set is {0, 1, 2, 3} ×{0, 1, 2, 3}
and in which two vertices (a, b) and (c, d) are adjacent if and only if (a, b) − (c, d) ∈
{±(0, 1), ±(1, 0), ±(1, 1)}. A Doob graph D(m, n) is the Cartesian product of m copies 
of the Shrikhande graph and the Hamming graph H(n, 4).

A double odd graph (see Fig. 13) DOk is a graph whose vertices are k-element or 
(k+1)-element subsets of a (2k+1)-element set, where two vertices u and v are adjacent 
if and only if u ⊂ v or v ⊂ u, as subsets.

Theorem 2.29. (See [91].) Let G be a distance-regular graph. The distance matrix of 
G has exactly one positive eigenvalue if and only if G is one of the following graphs: 
a cocktail party graph; the Gosset graph; the Schläfli graph; a halved cube; a Johnson 
graph; one of the three Chang graphs; a Hamming graph; a Doob graph; the icosahedron 
(see Fig. 14); a polygon (cycle); a double odd graph; the Petersen graph (see Fig. 5); the 
dodecahedron (see Fig. 15).

In [102], Merris studied the distance spectrum of a tree with a given number of vertices. 
In order to estimate the distance eigenvalues of a tree on n vertices and m = n −1 edges, 
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he associated the matrix K = K(T ) = QTQ = 2Im + A(T ∗) to the tree T , where Q is 
the incidence matrix of T (arbitrarily oriented), Im is the unit m ×m-matrix, and A(T ∗)
denotes the adjacency matrix of the line graph T ∗ of T . Note the similarity between the 
matrix K and the Laplacian of T defined by L(T ) = QQT = Diag(T ) −A(T ). The main 
result proved in [102] is the following:

Theorem 2.30. (See [102].) Let T be a tree. Then the eigenvalues of −2K−1 interlace the 
distance eigenvalues of T .

To prove the above theorem, the following lemma was used.

Lemma 2.31. (See [102].) If T is a tree on n vertices and m = n −1 edges, then QTDQ =
−2Im, where D denotes the distance matrix of T .

A pendent vertex (also written pendant vertex) of T is a vertex of degree 1. A pendent 
neighbor is a vertex adjacent to a pendent vertex. Suppose T has n1 pendent vertices 
and n′

1 pendent neighbors. A series of corollaries for Theorem 2.30 were proved and they 
are gathered below.

Corollary 2.32. (See [102].) Let T be a tree with n1 pendent vertices and n′
1 pendent 

neighbors.

• Let ∂ be a distance eigenvalue of T of multiplicity k. Then k ≤ n1.
• Among the distance eigenvalues of T , ∂ = −2 occurs with multiplicity at least n1 −

n′
1 − 1.

• If D denotes the diameter of T , then

(i) ∂n ≤ −1
1 − cos( π

D+1 ) ;

(ii) ∂�D
2 � > −1;

(iii) ∂n′
1
> −1

(
provided n > 2n′

1
)
;

(iv) ∂n−n′
1+2 < −2;

(v) ∂n1 ≥ −2;

(vi) ∂n−n1+2 ≤ −2.

The second point of the above corollary was improved by Collins [36].

Theorem 2.33. (See [36].) Let T be a tree with n1 pendent vertices and n′
1 pendent 

neighbors. Then, among the distance eigenvalues of T , ∂ = −2 occurs with multiplicity 
at least n1 − n′

1.
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In some cases, it is possible to deduce some graph eigenvalues from the graph structure. 
It is the case for the distance matrix whenever the graph contains two vertices sharing 
the same neighborhood, as proved in the next theorem.

Theorem 2.34. (See [92].) If there are two vertices with the same neighborhood in a 
graph G, then one root of the distance polynomial is either −1 (if the two vertices are 
adjacent) or −2 (if the two vertices are not adjacent).

The results gathered in the next theorem and dealing with the characteristic polyno-
mial of the distance matrix of a graph, were proved by McKay in [101]. First, recall that 
the cone Ĝ of a graph G is the graph obtained from G by adding a new vertex joined to 
each vertex of G.

Theorem 2.35. (See [101].) Let G be a graph on n vertices.

• If G is a tree, then

PD(x) = −xn

4 ·
[
PL∗

(
2
x

)
+
(
n− 1 − 2

x

)
· P−L

(
2
x

)]
,

where L is the Laplacian matrix of G and L∗ is the symmetric (n +1) ×(n +1)-matrix 
obtained from L by adding, as the first row and first column, the (n + 1)-vector q
with q1 = 0 and qi+1 = 2 − di for i = 1, . . . , n.

• If G has diameter 2, then

PD(G)(x) = PÂ(x + 1) − xPA(x + 1),

where Â denotes the adjacency matrix of the cone graph of G.

In the same paper, McKay [101] studied the problem of finding cospectral but non-
isomorphic graphs. He constructed an infinite family of pairs of cospectral but non-
isomorphic trees. A pair of these trees is given in Fig. 16. First, we recall the definition 
of an operation on two trees. Let S and T be two rooted trees on m1 + 1 and m2 + 1
vertices respectively. The coalescence S • T of S and T is the (m1 +m2 + 1)-vertex tree 
formed by identifying the roots of S and T . The rooted trees S and T are called limbs
of S • T .

Theorem 2.36. (See [101].) Let Si = S • Ti for i = 1, 2, where S is any rooted tree on 
at least two vertices and T1 and T2 are the trees of Fig. 17 rooted at the white vertices. 
Then, S1 and S2 are not isomorphic and

PD(S1)(x) = PD(S2)(x) and PD(S1)(x) = PD(S2)(x).
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Fig. 16. The smallest two cospectral non-isomorphic trees (on 17 vertices).

Fig. 17. The trees T1 and T2 of Theorem 2.36.

McKay [101] also studied the proportion of trees on n vertices that can be character-
ized by their characteristic polynomial.

Theorem 2.37. (See [101].) Let p(n) be the proportion of the trees on n vertices which are 
characterized (amongst trees) by the characteristic polynomial of their distance matrix 
or that of their complements. Then p(n) → 0 as n → ∞.

Despite the fact proved in the above theorem, it seems that the distance spectral 
radius determines the spectrum of a tree. Stevanović and Indulal [134] experimentally 
confirmed it for all trees on at most 22 vertices, and for all chemical trees (trees with 
maximum degree at most 4) on at most 24 vertices. Then they suggested the following 
conjecture.

Conjecture 2.38. (See [134].) There exist no two distance non-cospectral trees T1 and T2
with ∂1(T1) = ∂1(T2).

3. The Perron vector of the distance matrix

In this section, we give a survey of the results related to (the entries of) the Perron 
vector of the distance matrix. By the Perron–Frobenius theorem, the distance spectral 
radius ∂1 has a unique unit positive eigenvector x, called the Perron vector or principal 
eigenvector (sometimes it is not required to be a unit vector, in which case, it is not 
unique).
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Let G = (V, E) be a graph containing a bridge (an edge whose removal disconnects 
the graph) e = uv. Let Vu = {w ∈ V : d(u, w) < d(v, w)} and Vv = {w ∈ V :
d(v, w) < d(u, w)}. In fact Vu and Vv define a partition of V and are the vertex sets of 
the connected components of G − e containing u and v respectively. The first result in 
this section provides a relationship between the sum of the Perron vector entries over Vu

and the sum of those over Vv.

Theorem 3.1. (See [132,133].) Let G be a graph containing a bridge e = uv. Let x be 
the distance principal eigenvector of G. Assume that the entries of x are indexed by the 
vertices of G. Then

∂1 · (xu − xv) =
∑
w∈Vv

xw −
∑
w∈Vu

xw =
∑
w∈V

xw − 2
∑
w∈Vu

xw.

The next result is about the Perron vector entries corresponding to three vertices 
forming two consecutive edges one of which is a bridge.

Theorem 3.2. (See [118].) Let vi−1, vi and vi+1 be vertices in a graph G such that 
vi−1vi, vivi+1 ∈ E(G), and let x be the Perron vector of G. If xi−1 < xi and one of the 
edges vi−1vi and vivi+1 is a bridge, then xi < xi+1.

The proof of the above theorem led to the next result.

Corollary 3.3. (See [118].) If vi−1 is a pendant vertex attached to a vertex vi, then 
xi−1 > xi.

For the particular case of a tree, and since any of its edges is a bridge, Theorem 3.2
is stated as follows.

Theorem 3.4. (See [118].) Let T be a tree on n ≥ 3 vertices with a Perron vector x. If 
xi−1 < xi, then the entries of x along any path of the form vi−1vi · · · form an increasing 
sequence of positive numbers.

As a corollary of the above theorem, Ruzieh and Powers [118] stated

Corollary 3.5. (See [118].)

• For a tree, the minimum value among the Perron vector entries occurs at an interior 
vertex. Moreover, this minimum may occur at two vertices at most, in which case 
they are adjacent.

• For a tree, the maximum value among the Perron vector entries occurs at a pendant 
vertex and may occur at several vertices.
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Fig. 18. The graph of Theorem 3.7.

Let G be a graph and v a vertex in G. For k ≥ 1, denote by G(v, k) the graph obtained 
from G ∪ Pk by adding an edge between v and an endpoint of Pk. For such a graph, we 
have the following result.

Theorem 3.6. (See [133].) Let x be the Perron vector of G(v, k), k ≥ 1, and ∂1 the distance 
spectral radius of G(v, k). Denote by x0 the component of x at v and x1, x2, . . . , xk the 
components of x along Pk starting from the endpoint adjacent to v. Then, there exist 
constants a and b depending on ∂1, x0, k and the sum of the entries of x such that

xi = ati + bsi, for 0 ≤ i ≤ k,

where

t = 1 + 1
∂1

−
√

2∂1 + 1
∂1

and s = 1 + 1
∂1

+
√

2∂1 + 1
∂1

.

The next two theorems are stated for the entries of the Perron vector of the distance 
matrix of a graph that contains (at least) two pending paths.

Consider the graph G(v, k, l) obtained from a graph G on at least two vertices and 
two paths Pk and Pl by joining one endpoint of each path to a fixed vertex v from G
(see Fig. 18), where k and l are two integers.

Theorem 3.7. (See [133].) Let x be the Perron vector of G(v, k, l), k, l ≥ 1 and ∂1 the 
distance spectral radius of G(v, k, l). Denote by x0 the component of x at v, x1, x2, . . . , xk

the components of x along Pk starting from the endpoint adjacent to v, and y1, y2, . . . , yl
the components of x along Pl starting from the endpoint adjacent to v (see Fig. 18). If 
k ≥ l, then

k∑
i=1

xi ≥
l∑

i=1
yi.

Zhang and Godsil [155] proved that the above result remains true if the vertex v is 
replaced by an edge in which each end vertex is an endpoint of one of the attached paths 
(see Fig. 19).

Theorem 3.8. (See [155].) Let vk and vl be two adjacent vertices of a graph G. Let Pk

and Pl be two paths attached to G at vk and vl, respectively. If k > l, then
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Fig. 19. The graph of Theorem 3.8.

∑
i∈V (Pk)

xi >
∑

i∈V (Pl)

xi.

The above theorems are stated for graphs with attached paths. If instead of two 
attached paths we have two sets of pendent vertices to the endpoints of a path, then the 
components of the Perron vector are also comparable. The related result was proved by 
Yu, Jia, Zhang and Shu [148].

Theorem 3.9. (See [148].) Let G be the graph obtained by attaching pendent vertices 
vn−r+1, vn−r+2, . . . , vn−r+s to the vertex v1 of a path P = v1v2 · · · vn−r and at-
taching pendent vertices vn−r+s+1, vn−r+s+2, . . . , vn to the vertex vn−r. Let X =
(x1, x2, . . . , xn)T be the Perron eigenvector corresponding to ∂1(G), in which xi cor-
responds to vi. Let

S1 =
n−r+s∑

i=n−r+1
xi and S2 =

n∑
i=n−r+s+1

xi.

If s ≥ p, then S1 ≥ S2, but xn−r+1 ≤ xn−r+s+1. In particular, xn−r+1 > xn−r+s+1 if 
s > p.

In a graph G, if the neighborhood of a vertex contains the neighborhood of another 
vertex, then the entries of the Perron vector of D(G) corresponding to the two vertices 
are comparable as stated in the following theorem.

Theorem 3.10. (See [95].) Let G be a graph on n vertices and let x be a Perron vector 
of the distance matrix D of G. Consider two vertices u and v in G.

(1) If N(u) \ {v} � N(v) \ {u}, then xu > xv.
(2) If N(u) \ {v} = N(v) \ {u}, then xu = xv.

Note that (2) of Theorem 3.10 was also proved in [100].
Das [45] investigated the problem of finding upper and lower bounds on the minimal 

and maximal entries of the Perron vector of distance matrix. The results of these inves-
tigations [45] are gathered in the next theorem. First, we need the following definition. 
The independence number of a graph G, denoted by α = α(G), is the size of a maximum 
independent set (a set of pairwise non-adjacent vertices) of G. A complete split graph
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with parameters n, q (q ≤ n), denoted by CS(n, q), is a graph on n vertices consisting 
of a clique (a set of pairwise adjacent vertices) on q vertices and an independent set on 
the remaining n − q vertices in which each vertex of the clique is adjacent to each vertex 
of the independent set.

Theorem 3.11. (See [45].) Let G be a graph on n vertices with p-norm normalized prin-
cipal eigenvector x = (x1, x2, . . . xn)T . Assume that the vertices of G indexed such that 
x1 ≥ x2 ≥ · · · ≥ xn. Let α, D, δ and S denote the independence number, the diameter, 
the minimum degree and the sum of the squares of the distances between all unordered 
pairs of vertices of G. Then

xn ≤ min
{(

(∂1 − n + α + 1)p

(n− α)αp + α(∂1 − n + α + 1)p

) 1
p

,

(
(∂1 − 2α + 2)p

(n− α)(∂1 − 2α + 2)p + α(n− α)p

) 1
p
}

with equality if and only if G is the complete split graph CS(n, n − α);

xn ≤ min
{( (

√
2(n−1)S

n − n + α + 1)p

(n− α)αp + α(
√

2(n−1)S
n − n + α + 1)p

) 1
p

,

( (
√

2(n−1)S
n − 2α + 2)p

(n− α)(
√

2(n−1)S
n − 2α + 2)p + α(n− α)p

) 1
p
}

with equality if and only if G is the complete graph Kn;

(
∂p−2
1

∂p−2
1 + ((n− 1)D − (D − 1)δ)p−1

) 1
p

≤ x1 ≤
(

D(∂1 − n + 2)p−1

∂1 + D(∂1 − n + 2)p−1

) 1
p

with equality at both bounds if and only if G is the complete graph Kn;

(
(n− 1)p−2

(n− 1)p−2 + ((n− 1)D − (D − 1)δ)p−1

) 1
p

≤ x1 ≤
( D(

√
2(n−1)S

n − n + 2)p−1√
2(n−1)S

n + D(
√

2(n−1)S
n − n + 2)p−1

) 1
p

with equality at both bounds if and only if G is the complete graph Kn.

A comet, also called a broom, COn,Δ is the tree obtained from a star SΔ+1 and a 
path Pn−Δ by the coalescence of an endpoint of Pn−Δ with a pendent vertex of SΔ+1. 
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A double comet, also called a double broom and dumbbell, DCn,Δ1,Δ2 is the tree obtained 
from a path Pn−Δ1−Δ2+2 by attaching Δ1 − 1 pendent vertices to one endpoint of the 
path and Δ2 − 1 pendent vertices to the other endpoint.

In order to characterize the graphs maximizing the distance spectral radius over the 
class of graphs with given matching number (see Theorem 5.53), Nath and Paul [104]
proved a series of results about the components of the distance Perron vector of a double 
comet.

Theorem 3.12. (See [104].) Let G = DCn,k+t+1,k+1 be a double comet of diameter D = 2d
and v0v1 · · · v2d a diametrical path in it, where t ≥ 0. If X = (x0, . . . , x0︸ ︷︷ ︸

k

, x1, x2, . . . ,

x2d−1, x2d, . . . , x2d︸ ︷︷ ︸
k+t

)T is the distance Perron vector of G, then xd−i ≥ xd+i, for 1 ≤ i ≤ d, 

with equality if and only if t = 0. Moreover, if t ≥ 1, then (xd−i − xd+i) > (xd−i+1 −
xd+i−1), for 1 ≤ i ≤ d − 1, and (x0 − x2d)(∂1(G) + 2) = (x1 − x2d−1)∂1(G).

Theorem 3.13. (See [104].) Let G = DCn,k+t+1,k+1 be a double comet of diame-
ter D = 2d + 1 and v0v1 · · · v2d+1 a diametrical path in it, where t ≥ 0. If X =
(x0, . . . , x0︸ ︷︷ ︸

k

, x1, x2, . . . , x2d, x2d+1, . . . , x2d+1︸ ︷︷ ︸
k+t

)T is the distance Perron vector of G, then 

xd−i ≥ xd+i+1, for 1 ≤ i ≤ d, with equality if and only if t = 0. Moreover, if t ≥ 1, then 
(xd−i − xd+i+1) > (xd−i+1 − xd+i), for 1 ≤ i ≤ d − 1, and (x0 − x2d+1)(∂1(G) + 2) =
(x1 − x2d)∂1(G).

The above two theorems were generalized by Wang and Zhou [141] to the class of all 
graphs as follows.

Theorem 3.14. (See [141].) Let u and v be two vertices in a graph G. Let u′ and v′ be two 
pendent neighbors of u and v, respectively. Then (∂1(G) +2)(xv′ −xu′) = ∂1(G)(xv−xu), 
where xw denote the component of the distance Perron vector corresponding to the ver-
tex w.

4. Transformations, operations and particular spectra

In this section, we give the distance spectra of some particular families of graphs. We 
also give an overview of the results about the distance spectrum of a graph obtained by 
means of some transformations from another graph. Of course, the distance spectrum 
of the new graph is given in function of that of the original graph. Similar overview is 
furnished for the graphs obtained using operations involving two graphs. Note that the 
results are stated as theorems, but most of them were originally stated as lemmas.

First, since the diagonal entries of the distance matrix are all 0, the distance spectrum 
of any graph contains at least two distinct eigenvalues. Indulal [83] showed that Kn is the 
only graph that contains exactly two distinct distances eigenvalues. The distance matrix 
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of the complete graph coincides with its adjacency matrix, and therefore, the distance 
spectrum of Kn equals its adjacency spectrum.

Hosoya, Murakami and Gotoh [75] calculated the distance characteristic polynomial 
for a path Pn:

PD(Pn)(t) = (−1)ntn

+ (−1)(n−1)
n∑

k=2

2(k−2)(k − 1)n
2(n2 − 1)(n2 − 2) · · · (n2 − (k − 1)2)

k2(k2 − 1)(k2 − 22) · · · (k − (k − 1)2) t
(n−k).

Hosoya, Murakami and Gotoh [75] computed the distance characteristic polynomial for 
the even cycles and Graovac [67] did it for both odd and even cycles (see also [59]):

If n = 2p (i.e., even)

PD(Cn)(t) = tp−1 ·
(
t− n2

4

)
·

p∏
j=1

(
t + csc2

(
π(2j − 1)

n

))
.

If n = 2p + 1 (i.e., odd)

PD(Cn)(t) =
(
t− n2 − 1

4

)
·

p∏
j=1

(
t + 1

4 sec2
(
πj

n

))
·

p∏
j=1

(
t + 1

4 csc2
(
π(2j − 1)

2n

))
.

Caporossi, Chasset and Furtula [32] computed partially the distance spectrum of a 
multipartite graph.

Theorem 4.1. (See [32].) For the complete multipartite graph Kn1,...,nk
, let mj = |{i :

ni = j}|, j ≥ 1. Whenever mj ≥ 2, the distance spectrum of Kn1,...,nk
contains the 

eigenvalue j − 2 with multiplicity at least mj − 1, and eigenvalue −2 with multiplicity at 
least 

∑
i≥2 mj(j − 1).

The cocktail party graph CPp on n = 2p vertices can be considered as a p-partite 
graph K2,...,2. Then, as a consequence of Theorem 4.1, the eigenvalues of CPp are 2p, 0
with multiplicity p − 1, and −2 with multiplicity p.

Collins [36] computed the distance characteristic polynomial of the star Sn on n
vertices:

PD(Sn)(t) = (−1)n−1(t2 − 2(n− 2)t− n + 1
)
(t + 2)n−2.

A double star SΔ1,Δ2 is the tree obtained from a K2 by attaching Δ1−1 pendent vertices 
to one vertex and Δ2 − 1 pendent vertices to the other vertex (see Fig. 20 for the double 
star S6,4). The double star SΔ1,Δ2 contains n = Δ1 + Δ2 vertices among which n − 2
are pendent, and the two non-pendent vertices have degrees Δ1 and Δ2 respectively. 
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Fig. 20. The double star S6,4.

Fig. 21. The full 4-ary tree of length 2: F2,4.

The distance characteristic polynomial of the double star SΔ,Δ on n = 2Δ vertices was 
computed by Collins [36]:

PD(SΔ,Δ)(t) = (t + n)(t + 1)
(
t2 − (5n− 1)t− 9n

)
(t + 2)2Δ−4.

The full k-ary tree of length r, denoted Fr,k, is defined recursively by: F1,k is the star 
Sk+1 on k+1 vertices, and Fr,k is obtained from Fr−1,k by attaching k new edges to each 
pendent vertex (see Fig. 21 for F2,4). Collins [36] computed the distance characteristic 
polynomial of the full k-ary tree to be

PFr,k
(t) = Qr+1,k(t) ·

k∏
i=1

R
(k−1)kk−i

i,k (t),

where Qr+1,k(t) is the polynomial of degree r + 1, defined by

Q1,k(t) = −t and
∞∑
p=1

Qp,k(t)xp = N(k, t, x)
M(k, t, x)

with

N(k, t, x) = −(ktx)5 + k3t3x4((3k + 1)t + (2k + 2)
)

+ k2tx3((3k + 3)t2 + (2k + 6)t + 3
)

+ kx2((k + 3)t2 + 4t + 1
)

+ tx,
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M(k, t, x) = (ktx + 1)
(
kt2x2 + x

(
2 + (k + 1)t

)
+ 1
)
·
(
k3t2x2 + kx

(
2 + (k + 1)t

)
+ 1
)
,

and the polynomials Ri,k(t) are defined recursively by

R0,k(t) = 1; R1,k(t) = −t− 2;

Ri+1,k(t) = −
(
(k + 1)t + 2

)
Ri,k(t) − kt2Ri−1,k(t).

The distance matrix of a graph G with diameter 2 can be written in terms of the 
adjacency matrices of G and its complement G: D = A + 2A. Such a relationship does 
not exist between the spectra of D, A and A in general. However, if in addition to have a 
diameter 2, G is regular, the distance spectrum of G can be obtained from its adjacency 
spectrum as stated in the next theorem.

Theorem 4.2. (See [57,86].) Let G be a k-regular graph on n vertices with diameter at 
most 2 and adjacency spectrum λ1 = k, λ2, λ3, . . . , λn. Then the distance spectrum of G
is 2n − 2 − k, −(2 + λ2), −(2 + λ3), . . . , −(2 + λn).

An n × n-matrix C is circulant [47] if it takes the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C1 Cn Cn−1 . . . C3 C2
C2 C1 Cn . . . C4 C3
C3 C2 C1 . . . C5 C4
...

...
...

. . .
...

...
Cn−1 Cn−2 Cn−3 . . . C1 Cn

Cn Cn−1 Cn−2 . . . C2 C1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

A graph is called circulant if its adjacency matrix is circulant. A graph is called integral if 
all eigenvalues of its adjacency matrix are integers. For more about integral graphs see [12]
as well as the references therein. An integral circulant graph is a circulant graph with an 
integral adjacency spectrum (see e.g. [129]). Let Div be a set of positive, proper divisors 
of the integer n ≥ 1. Define the graph ICGn(Div) to have vertex set V = {0, 1, . . . , n −1}
and edge set E = {{a, b} | a, b ∈ V, gcd(a −b, n) ∈ Div}. In the particular case Div = {1}, 
the graph ICGn(1) is called the unitary Cayley graph. Fig. 22 illustrates the unitary 
Cayley graph ICG10(1). Its distance spectrum is (15, 1, 0, 0, 0, 0, −4, −4, −4, −4).

Ilić [79] proved that the distance eigenvalues of an integral circulant graph are integers.

Theorem 4.3. (See [79].) An integral circulant graph ICGn(Div), where Div is an arbi-
trary set of divisors of n, has integral distance spectra.

Ilić [79] also calculated the spectrum of the unitary Cayley graph ICGn(1) on n
vertices according to the values of n.
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Fig. 22. The unitary Cayley graph ICG10(1).

• If n is a prime, then ICGn(1) is the complete graph Kn and therefore its distance 
spectrum is its adjacency spectrum: ∂1 = n − 1 and ∂2 = · · · = ∂n = −1.

• If n is a power of 2, then ICGn(1) is the complete bipartite graph Kn
2 ,n2

and its 
distance spectrum is ∂1 = 3n

2 − 2, ∂2 = n
2 − 2 and ∂3 = · · · = ∂n = −2.

• If n is odd composite number, then the distance spectrum of ICGn(1) is ∂1 =
2(n − 1) − k and ∂i = −2 − c(i − 1, n), for i = 2, . . . , n, where k denotes the degree 
of any vertex in (the regular) graph ICGn(1), and

c(r, n) =
n∑

a=1
gcd(a,n)=1

ωa·r
n

and where ωn denotes a complex primitive n-th root of unity.
• If n is even with an odd prime divisor, using the same notation as the previous 

case, the distance spectrum of ICGn(1) is ∂1 = 5n
2 − 2(k + 1), ∂2 = 2(k − 1) − n

2 , 
∂i = −2 −c(i −2, n), for i = 2, . . . , n2 +1, and ∂i = −2 −c(i −1, n), for i = n

2 +2, . . . , n.

Some families of graphs are defined using operations on other graphs. We next give 
descriptions of distance spectra of graphs obtained using operations, involving two graphs 
or more. We give the distance spectra of certain families.

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. Take another copy of G with 
set of vertices {u1, u2, . . . , un} labelled such that ui corresponds to vi for each i. Make 
ui adjacent to all the vertices in N(vi) in G, for each i. The resulting graph, denoted by 
D2G, is called the double graph of G (see Fig. 23 for the double graph of the cycle C5). 
The distance spectrum of the double graph of G was derived from the distance spectrum 
of G by Indulal and Gutman [85].

Theorem 4.4. (See [85].) Let G be a graph on n vertices with distance spectrum 
{∂1, ∂2, . . . , ∂n}. Then the distance eigenvalues of D2G are 2∂1 + 2, 2∂2 + 2, . . . , 2∂n + 2, 
and −2 with multiplicity n.
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Fig. 23. The double graph of the cycle C5: D2C5.

The distance spectrum of the Cartesian product G1�G2 of two transmission regular 
graphs G1 and G2 was derived from the distance spectra of G1 and G2 by Indulal [82].

Theorem 4.5. (See [82].) Let G1 and G2 be two transmission regular graphs on n1 and n2
vertices with transmission regularity k1 and k2 respectively. Let (k1, ∂1

1 , ∂
1
2 , . . . , ∂

1
n1

) and 
(k1, ∂2

1 , ∂
2
2 , . . . , ∂

2
n2

) be the distance spectra of G1 and G2, respectively. Then the distance 
spectrum of G1�G2 is {n1k2 + n2k1, n1∂

2
i , n2∂

1
j , 0}, where i = 2, . . . , n1, j = 2, . . . , n2

and 0 is with multiplicity (n1 − 1)(n2 − 1).

Note that Indulal and Gutman [85] proved the above theorem in the particular case 
where G2 ∼= K2. The next result, proved by Caporossi, Chasset and Furtula [32], can 
also be obtained as a corollary of the above theorem, since the graph for which the result 
is stated can be considered as the Cartesian product of a clique on k vertices and K2.

Corollary 4.6. (See [32].) Let G be a graph made of two k-cliques connected in such a 
way that each vertex of a clique is connected to exactly one vertex of the other, then the 
distance spectrum of G consists of 3k − 2, −k, 0 with multiplicity k − 1, and −2 with 
multiplicity k − 1.

Using Theorem 4.5, Indulal [82] computed the distance eigenvalues of the Ham-
ming graph H(D, p) which are D(p − 1)pD−1, 0 and −pD−1 with multiplicities 1, 
pD − D(p − 1) − 1 and D(p − 1) respectively. Another well-known graph defined us-
ing the Cartesian product of two cycles is the nanotorus Ck�Cm. To illustrate, the 
nanotorus C3�C4 is given in Fig. 24. The distance eigenvalues of the nanotorus Ck�Cm

were computed, also as a consequence of Theorem 4.5, by Indulal [82] when k and m are 
odd:

(m + k)(mk − 1)
4 , −m

4 sec2
(
πj

2k

)
, −m

4 cosec2
(
πr

2k

)
,

−k sec2
(

πt
)
, −k cosec2

(
πl
)
,
4 2m 4 2m
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Fig. 24. The nanotorus C3�C4.

Fig. 25. The corona graph of the cycle C6 with K1:Cor(C6).

where j ∈ {1, 2, . . . , k − 1} and even, r ∈ {1, 2, . . . , k − 1} and odd, t ∈ {1, 2, . . . , m − 1}
and even, l ∈ {1, 2, . . . , m − 1} and odd, together with 0 of multiplicity (m − 1)(k − 1).

The lexicographic product or graph composition G ◦H of two graphs G and H is the 
graph whose vertex set is the (set) Cartesian product V (G) × V (H), and in which two 
vertices (u, u′) and (v, v′) are adjacent if and only if either u is adjacent with v in G or 
u = v and u′ is adjacent with v′ in H. Indulal [82] showed that the distance spectrum 
of G ◦H, whenever H is regular, can be deduced from the distance spectrum of G and 
the adjacency spectrum of H.

Theorem 4.7. (See [82].) Let G and H be two graphs on p and n vertices respectively. 
Assume that H is k-regular. Let {∂1, ∂2, . . . , ∂p} and {λ1 = k, λ2, . . . , λn} be the distance 
and adjacency spectra of G and H respectively. Then the distance eigenvalues of G ◦H
are n∂i +2n −k−2 with multiplicity 1 and −λj −2 with multiplicity p, for i = 1, 2, . . . , p
and j = 2, 3, . . . , n.

Note that Indulal and Gutman [85] proved the above theorem in the particular case 
where H ∼= K2.

Let G be a graph. Attach a pendant vertex to each vertex of G. The resulting graph, 
denoted by Cor(G), is called the corona of G with K1 (see Fig. 25 for Cor(C6)). Indulal 
and Gutman [85] computed the distance spectrum of the corona of a transmission regular 
graph G from its distance spectrum.
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Fig. 26. The extended double cover graph of C4: EDC(C4).

Theorem 4.8. (See [85].) Let G be a k-transmission regular graph on n vertices with 
distance spectrum {∂1 = k, ∂2, . . . , ∂n}. Then the distance spectrum of Cor(G) consists 
of ∂i − 1 +

√
∂2
i + 1 and ∂i − 1 −

√
∂2
i + 1, for i = 2, 3, . . . , n together with n + k − 1 −√

(n + k)2 + (p− 1)2 and n + k − 1 +
√

(n + k)2 + (p− 1)2.

To prove the above theorem, Indulal and Gutman [85] first established the next result.

Theorem 4.9. (See [85].) Let D be the distance matrix of a k-transmission regular graph 
G on n vertices. Let ∂1 = k, ∂2, . . . , ∂n be the distinct distance eigenvalues of G. Then 
D is irreducible and there exists a polynomial P (x) such that P (D) = J , where J is the 
all 1’s n × n matrix. In this case

P (x) = n(x− ∂2)(x− ∂3) · · · (x− ∂n)
(k − ∂2)(k − ∂3) · · · (k − ∂n) .

Let G be a graph on the vertex set {v1, v2, . . . , vn}. Define the bipartite graph 
EDC (G), called extended double cover graph of G, with vertex set {v1, v2, . . . , vn,
u1, u2, . . . , un} in which vi is adjacent to ui for each i = 1, 2, . . . , n and vi is adja-
cent to uj if vi is adjacent to vj in G. For instance, the extended double cover graph 
of the complete graph Kn is the complete bipartite graph Kn,n. The graph EDC (C4) is 
illustrated in Fig. 26.

Indulal and Gutman [85] calculated the distance spectrum of the extended double 
cover graph of a k-regular graph of diameter 2 from its adjacency spectrum.

Theorem 4.10. (See [85].) Let G be a k-regular graph on n vertices with diameter 2 and 
adjacency spectrum {λ1 = k, λ2, . . . , λn}. Then the distance eigenvalues of EDC (G) are 
5n − 2k − 4, 2k − n, −2(λi + 2), and 2λi for i = 2, 3, . . . , n.

The join G∇H of two vertex-disjoint graphs G and H is the graph obtained from the 
union G ∪H by adding all possible edges between each vertex of G and each vertex of H. 
Stevanović and Indulal [134] proved that it is possible to deduce the distance spectrum 
of the join of two regular graphs from their adjacency spectra.
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Theorem 4.11. (See [134].) For i = 1, 2, let Gi be a ki-regular graph on ni vertices with 
adjacency eigenvalues λi,1 = ki, λi,2, . . . , λi,ni

. The distance spectrum of G1∇G2 consists 
of −λi,ji − 2, i = 1, 2 and 2 ≤ ji ≤ ni, and two more eigenvalues of the form

n1 + n2 − 2 − k1 + k2

2 ±

√(
n1 − n2 −

k1 − k2

2

)2

+ n1n2.

Stevanović and Indulal [134] computed (as a corollary of Theorem 4.11) the distance 
eigenvalues of a complete bipartite graph Kp,q. They are p + q − 2 ±

√
p2 − pq + q2 and 

−2 with multiplicity p + q − 2.
The distance spectrum of a wheel graph Wn, first calculated in [86], can be deduced 

from the adjacency eigenvalues of Cn−1, say t1 = 2 > t2 ≥ · · · ≥ tn−1, using Theo-
rem 4.11. The distance eigenvalues of Wn are n − 3 ±

√
n2 − 5n + 8 and −ti − 2 for 

2 ≤ i ≤ n − 1.
Also, as a consequence of Theorem 4.11, the distance eigenvalues of the complete split 

graph CS(n, q) = Kq∇Kn−q are −1 with multiplicity q−1, −2 with multiplicity n −q−1
and

n− q + 3
2 ±

√
(n− 3q + 1)2

4 + q(n− q).

Note that a particular case of Theorem 4.11, namely the distance characteristic poly-
nomial of the join of two graphs of diameter at most 2, was provided by Ramane, Gutman 
and Revankar [111].

Concerning the join of a graph with the union of two graphs Stevanović and Indulal 
[134] proved the next theorem.

Theorem 4.12. (See [134].) For i = 0, 1, 2 let Gi be a ki-regular graph on ni vertices 
with adjacency eigenvalues λi,1 = ki ≥ λi,2, . . . , λi,ni

. If k1 
= k2, the distance spectrum 
of G0∇(G1 ∪ G2) consists of −λi,ji − 2, i = 0, 1, 2 and 2 ≤ ji ≤ ni, and three more 
eigenvalues which are solutions of the cubic equation in t

(2n0 − k0 − 2 − t)(t + k1 + 2)(t + k2 + 2)

+
(
2(t + k0 + 2) − 3n0

)(
n1(t + k2 + 2) + n2(t + t1 + 2)

)
= 0.

Stevanović [131] generalized the notion of join of graphs to that of joined union of 
graphs as follows. Let G = (V, E) be a graph with vertex set V = {v1, v2, . . . , vn}, and 
for i = 1, 2, . . . , n, let Gi = (Vi, Ei) be a graph of order ni. The joined union graph of 
G1, G2, . . . , Gn with respect to G, denoted G[G1, G2, . . . , Gn], is the graph whose vertex 
set W and edge set F are

W =
n⋃

i=1
Vi and F =

(
n⋃

i=1
Ei

)⋃( ⋃
vivj∈E

Vi × Vj

)
.
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Fig. 27. The self-complementary grap P4(K3).

Theorem 4.13. (See [131].) Let G be a graph with vertex set V = {v1, v2, . . . , vn}, and for 
i = 1, 2, . . . , n, let Gi be a ki-regular graph on ni with adjacency eigenvalues λi,1 = ki ≥
λi,2 ≥ · · · ≥ λi,ni

. The distance spectrum of the joined union G[G1, G2, . . . , Gn] consists 
of the eigenvalues −λi,j − 2 for i = 1, 2, . . . , n and j = 2, 3, . . . , ni and the eigenvalues 
of the matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

2n1 − k1 − 2 d(v1, v2)n2 d(v1, v3)n3 . . . d(v1, vn)nn

d(v2, v1)n1 2n2 − k2 − 2 d(v2, v3)n3 . . . .

d(v3, v1)n1 d(v3, v2)n2 2n3 − k3 − 2 . . . .
...

...
...

. . .
...

d(vn, v1)n1 d(vn, v2)n2 d(vn, v3)n3 . . . 2nn − kn − 2

⎤
⎥⎥⎥⎥⎥⎥⎦ .

A graph G is said to be self-complementary if G ∼= G, where G denotes the comple-
ment of G. For a given graph G, consider the graph P4(G) obtained from a path P4 by 
replacing each of its endpoints by a copy of G, and each of its internal vertices by a copy 
of G, and then joining the vertices of these graphs by all possible edges whenever the 
corresponding vertices of P4 are adjacent (see Fig. 27 for P4(K3)). The graph P4(G) is 
a self-complementary graph.

Theorem 4.14. (See [84].) Let G be a k-regular graph on n vertices, with adjacency 
spectrum {λ1, λ2, . . . , λn}. Then the distance spectrum of P4(G) consists of −λi − 2 and 
λi − 1, for i = 2, 3, . . . , n, each with multiplicity 2, together with

7n− 3 ±
√

(2k + 1)2 + 45n2 − 12nk − 6n
2 and

n + 3 ±
√

(2k + 1)2 + 5n2 + 4nk + 2n
2 .

Now, we turn to the description of the behavior of the distance spectral radius of a 
graph when some transformations are performed within the graph itself. We begin with 
the transformation consisting of deletion or addition of an edge.

Let e = uv be an edge of a graph G such that G′ = G −e is connected. The removal of e
increases some distances and does not change some others, thus by the Perron–Frobenius 
theorem, one can conclude that ∂1(G) < ∂1(G′). In particular, for any spanning tree T
of G, we have that ∂1(T ) ≥ ∂1(G) with equality if and only if G is a tree, i.e., T = G. 
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Similarly, adding a new edge to G decreases the distance spectral radius. As immediate 
consequences of that fact,

• the complete graph Kn minimizes the distance spectral radius among all graphs of 
order n;

• the complete bipartite graph Kp,q minimizes the distance spectral radius among all 
bipartite graphs with a partition into two sets of p and q vertices respectively.

Let u, v and w be three vertices in a graph G = (V, V ) such that uv ∈ E and uw /∈ E. 
The rotation of the edge uv to uw is the operation that consists of the deletion of uv
and then the addition of uw. Under certain conditions, the rotation of a pendent edge 
increases the distance spectral radius.

Stevanović and Ilić [133] used Theorem 3.6 and Theorem 3.7 to prove the next result, 
stated using the notations of those theorems.

Theorem 4.15. (See [133].) Let G be a graph and v one of its vertices. If k ≥ l ≥ 1, then

∂1
(
G(v, k, l)

)
< ∂1
(
G(v, k + 1, l − 1)

)
.

Ning, Ouyang and Lu [107] used the above result to prove the next one.

Theorem 4.16. (See [107].) If a tree T minimizes the distance spectral radius over the set 
of all trees of order n with r pendent vertices, the lengths of any two adjacent pendent 
paths in T are almost the same.

Zhang and Godsil [155] showed that Theorem 4.15 remains true if the vertex v is 
replaced by an edge, i.e., two paths are attached to two adjacent vertices instead of to 
the same vertex.

Theorem 4.17. (See [155].) Let u and v be two adjacent vertices of a graph G and for 
positive integers k and l, let Gk,l denote the graph obtained from G by adding paths of 
length k at u and length l at v. If k > l ≥ 1, then ∂1(Gk,l) < ∂1(Gk+1,l−1); if k = l ≥ 1, 
then ∂1(Gk,l) < ∂1(Gk+1,l−1) or ∂1(Gk,l) < ∂1(Gk−1,l+1).

Instead of the rotation of an endedge of an appended path to an endedge of another 
appendent path, Bose, Nath and Paul [22] considered the rotation of a pendent edge 
belonging to a set of pendent edges with a common neighbor to another similar edge. 
They get the following result.

Theorem 4.18. (See [22].) Let G be a graph with a clique Ks of order s ≥ 2 and u, v be 
two vertices on the clique with p, q pendent vertices, respectively, where d(v) = q + s − 1
in G. If G′ = G − vw + uw (see Fig. 28), where w is a pendent vertex adjacent to v in 
G then for p ≥ q ≥ 1, ∂1(G) > ∂1(G′).
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Fig. 28. The graphs G and G′ in Theorem 4.18.

Fig. 29. The graphs G and G′ in Theorem 4.19.

Fig. 30. The graphs G and G′ of Theorem 4.20.

Bose, Nath and Paul [22] proved a result similar to that of Theorem 4.18 for a par-
ticular rotation.

Theorem 4.19. (See [22].) Let H1 be a path P ∼= uvw with p and q (p ≥ q) pendent 
vertices adjacent to u and w, respectively, one pendent vertex z adjacent to v, and H2
is any graph. If G is a graph obtained by identifying the vertex v with any vertex of H2
and G′ = G − vz + wz (see Fig. 29), then ∂1(G′) > ∂1(G).

Theorem 4.20. (See [21].) If G′ is the graph obtained from G by the rotation of the edge 
v1v2 to v1v4 as illustrated in Fig. 30, then ∂1(G) > ∂1(G′).

Theorem 4.21. (See [21].) Let v1v2v3 · · · vgv1 be a chain in a graph G of length at least 4. 
For 1 ≤ i ≤ g, let Gi be the graph attached at vi, and Si be the sum of the components of 
the Perron vector of G corresponding to the vertices in Gi. If S1 = max{Sj | 1 ≤ j ≤ g}
and G′ = G − v1vg + vgvg−2, then ∂1(G′) > ∂1(G).

Theorem 4.22. (See [21].) If G and G′ are the graphs as shown in Fig. 31, then ∂1(G) >
∂1(G′).

Another particular case of an rotation is considered by Wang and Zhou [141] in the 
next theorem.
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Fig. 31. The graphs G and G′ of Theorem 4.22.

Fig. 32. The graphs G and G′ in Theorem 4.23.

Theorem 4.23. (See [141].) Consider a comet COn,n−2d+1 with an odd diameter 2d + 1
whose vertices are labelled as in Fig. 32. Let G be the graph obtained form COn,n−2d+1

by the coalescence of the central vertex of its diametrical path with a vertex of a nontrivial 
connected graph H (see Fig. 32). Let G′ = G −ud−1ud + vd−1ud. Then ∂1(G′) < ∂1(G).

A natural generalization of the rotation of an edge is the rotation of two or more 
edges incident with the same vertex to edges incident to another vertex. The behavior 
of the spectral distance radius under this generalized rotation subjected to additional 
conditions was also studied. We begin by the particular case proved by Zhang and Godsil 
[155].

Theorem 4.24. (See [155].) Let C1 be a component of G − u and v1, . . . , vk, with 1 ≤
k ≤ dG(u) − dC1(u), be some vertices of NG(u) \ NC1(u). Suppose NC1(u) \ {v} =
NC1(v), where v is a vertex of C1 adjacent to u. Let G′ be the graph obtained from G
by deleting the edges uvs and adding the edges vvs (1 ≤ s ≤ k). If there exists a vertex 
w ∈ V (G) \ (V (C1) ∪ {u}) such that dG(w, vs) < dG′(w, vs), for all 1 ≤ s ≤ k, then 
∂1(G) < ∂1(G′).

Bose, Nath and Paul [21] generalized Theorem 4.18, which is their own theorem but in 
another paper [22], to the next one. The generalization consists in replacing the pendent 
edge attached to a vertex belonging to a clique by a subgraph attached to a vertex, also 
belonging to the clique.

Theorem 4.25. (See [21].) Let G be a graph on n vertices with a clique Ks such that 
G −E(Ks) has exactly s components of which at least two, say G1 and G2, are not trivial. 
Let u ∈ V (Ks) ∩V (G1) and v ∈ V (Ks) ∩V (G2). If G′ = G −{vw, w ∈ NG2(v)} +{uw, w ∈
NG2(v)}, then ∂1(G) > ∂1(G′) (see Fig. 33).
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Fig. 33. The graphs G and G′ of Theorem 4.25.

Fig. 34. The graphs G and G′ of Theorem 4.26.

Fig. 35. The graphs G and G′ of Theorem 4.27.

The above theorem can also be seen as a generalization of the next two results.

Theorem 4.26. (See [21].) If G and G′ are the graphs as shown in Fig. 34, where both Gu

and Gv are nontrivial graphs and Gv has at least three vertices, then ∂1(G) > ∂1(G′).

Theorem 4.27. (See [21].) If G and G′ are the graphs as shown in Fig. 35, where G1 is 
nontrivial, then ∂1(G) > ∂1(G′).

The next three theorems are stated on the behavior of the distance spectral radius 
under rotation of a set of edges, all incident with the same vertex, under conditions on 
the components of the Perron vector.

Theorem 4.28. (See [148].) Suppose the graph G =
⋃3

i=1 Gi such that Gi ∩ Gj = {v0}
for 1 ≤ i, j ≤ 3, i 
= j, and that |V (Gi)| ≥ 2 for i = 1, 2, 3 (see Fig. 36(a)). Let 
X = (x0, x1, . . . , xn−1)T be the Perron eigenvector corresponding to ∂1(G), in which xi

corresponds to vi. Let
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Fig. 36. Transformations in Theorem 4.28 and Theorem 4.29.

S1 =
∑

vi∈V (G1)

xi, S2 =
∑

vi∈V (G2)

xi

and for a vertex va ∈ V (G2), va 
= v0, let H = G − {v0vi, vi ∈ NG3(v0)} + {vavi, vi ∈
NG3(v0)}. If S1 ≥ S2, then ∂1(H) > ∂1(G).

Theorem 4.29. (See [148].) Assume that the graph G shown in Fig. 36(b) satisfies G1 ∩
G3 = {v1} and v1v2 is a cut edge. Let X = (x0, x1, . . . , xn−1)T be the Perron eigenvector 
corresponding to ∂1(G), in which xi corresponds to vi. Let

S1 =
∑

vi∈V (G1)

xi, S2 =
∑

vi∈V (G2)

xi,

and let H = G −{v1vi, vi ∈ NG3(v1)} +{v2vi, vi ∈ NG3(v1)}. If S1 ≥ S2 and |V (G3)| ≥ 2, 
then ∂1(H) > ∂1(G).

In [149], Yu, Wu and Shu considered the rotation of the edges incident to the same 
vertex and satisfying a given condition.

Theorem 4.30. (See [149].) Let G be a graph such that G = Gp∪G0 ∪G′ with Gp∩G0 =
Gp∩G′ = G0∩G′ = {v0} and Gp consisting of pendent edges v0v1, v0v2, . . . , v0vk (k ≥ 4). 
Let S′ = V (G′) and suppose that NG′(v0) = N1 ∪ N2 satisfying that N1 
= ∅, N2 
= ∅, 
N1 ∩N2 = ∅. Let

H = G−
∑

vi∈N1

viv0 +
∑

vi∈N1

vivk or H = G−
∑

vi∈N2

viv0 +
∑

vi∈N2

vivk.

For any vertex vj ∈ S′ \ {v0}, if all paths from v0 to vj with a length of dG(v0, vj) pass 
only through N1 or only through N2, then ∂1(H) > ∂1(G).

In the next two theorems, Yu, Wu and Shu [149] considered the rotation of a set of 
edges incident to the same vertex to two different vertices: the edges satisfying a given 
condition to one vertex and the other edges to another vertex.
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Fig. 37. The transformation of T to T ′ in Theorem 4.33.

Fig. 38. The transformation of T to T ′′ in Theorem 4.33.

Theorem 4.31. (See [149].) Let G be a graph such that G = Gp∪G0 ∪G′ with Gp∩G0 =
Gp∩G′ = G0∩G′ = {v0} and Gp consisting of pendent edges v0v1, v0v2, . . . , v0vk (k ≥ 3). 
Let S′ = V (G′) and suppose that NG′(v0) = N1 ∪ N2 satisfying that N1 
= ∅, N2 
= ∅, 
N1 ∩N2 = ∅. Let

H = G−
∑

vi∈N1

viv0 −
∑

vi∈N2

viv0 +
∑

vi∈N1

vivk−1 +
∑

vi∈N2

vivk.

If there exists vertex vj ∈ S′ \ {v0} such that there exist two different paths P1 and P2
from v0 to vj with the same length dG(v0, vj), where P1 passes through N1 and P2 passes 
through N2, then ∂1(H) > ∂1(G).

Theorem 4.32. (See [149].) Let G be a graph such that G = Gp∪G0 ∪G′ with Gp∩G0 =
Gp∩G′ = G0∩G′ = {v0} and Gp consisting of pendent edges v0v1, v0v2, . . . , v0vk (k ≥ 4). 
Let S′ = V (G′) and suppose that NG′(v0) = N1 ∪ N2 satisfying that N1 
= ∅, N2 
= ∅, 
N1 ∩N2 = ∅. Let

H = G−
∑

vi∈N1

viv0 −
∑

vi∈N2

viv0 +
∑

vi∈N1

vivk−1 +
∑

vi∈N2

vivk.

For any vertex vj ∈ S′ \ {v0}, if all paths from v0 to vj with a length of dG(v0, vj) pass 
only through N1 or only through N2, then ∂1(H) > ∂1(G).

Now, we consider the rotation of two sets of edges incident to two different vertices. 
First, we consider the transformation on a tree.

Let T be an arbitrary tree and let v be a vertex with degree p + q + 1. Suppose that 
w is a parent of v and that there are p paths P3 (two additional vertices) and q paths P2
(pendent edges) attached at v. We form two trees T ′ (see Fig. 37) and T ′′ (see Fig. 38) 
in the following way: T ′ has p pendent paths P3 and q + 1 pendent paths P2 attached 
at w, while T ′′ has p +1 pendent paths P3 and q−1 pendent paths P2 attached at w. Let 
G be the maximal subtree of T rooted at w, that does not contain the vertex v. Thus 
we have the following results.
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Fig. 39. The transformation of T into T ′ in Theorem 4.34.

Fig. 40. The transformation of T into T ′ in Theorem 4.35.

Theorem 4.33. (See [78].) Let T be a tree and T ′ and T ′′ the trees obtained from T as 
described above and illustrated in Fig. 37 and Fig. 38, respectively. Let G be the maximal 
subtree of T rooted at w, that does not contain vertex v. Then

• if G is a nontrivial graph, then ∂1(T ) > ∂1(T ′);
• if G has a pendent path P3 attached at some vertex u of G, or at least three pendent 

vertices, then ∂1(T ) > ∂1(T ′).

A weaker version of the above theorem, where only pendent edges are considered, is 
proved by Ilić [77] (see also [132,133]).

Theorem 4.34. (See [77,133].) Let T be a tree on n vertices and consider the tree T ′

obtained from T as illustrated in Fig. 39. Then ∂1(T ′) ≤ ∂1(T ) with equality if and only 
if T (and T ′) is the star Sn.

A generalization, in some way, of the above result is proved by Du, Ilić and Feng [54].

Theorem 4.35. (See [54].) Let T be a tree on n vertices and consider the tree T ′ ob-
tained from T as illustrated in Fig. 40, where P and Q are subtrees of T (and T ′). If 
dT (u), dT (v) ≥ 2, then ∂1(T ) > ∂1(T ′).

The behavior of the distance spectral radius under the replacement of non-pendent 
edge by a pendent one was studied by Wang and Zhou [141]. Their result is next stated.

Theorem 4.36. (See [141].) Let G be a graph and uv be a non-pendent cut edge of G. Let 
G′ be the graph obtained from G by contracting uv to a vertex u and attaching a pendent 
vertex v to u (see Fig. 41). Then ∂1(G′) < ∂1(G).

A closed necklace is a unicyclic graph, in which every vertex not on the cycle, is a 
pendent vertex. If G is a closed necklace with cycle v1v2 · · · vkv1 and mi (mi ≥ 0) pendent 
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Fig. 41. The transformation of G into G′ in Theorem 4.36.

Fig. 42. The graphs G and G′ of Theorem 4.37.

vertices at vi, then we denote G by N(m1, m2, . . . , mk). A chain in a graph G is a cycle C
in G, such that G −E(C) has exactly |V (C)| components. A generalized closed necklace
is a graph with a chain. The length of the chain is the length of the cycle C.

Theorem 4.37. (See [21].) Let G be a generalized closed necklace with a chain of even 
length. If G′ is the graph obtained from G by identifying two adjacent vertices on that 
chain, one of which has degree at least three, and creating a new pendent vertex at the 
identified vertex (see Fig. 42), then ∂1(G) > ∂1(G′).

The above theorem was generalized by the same authors to next one.

Theorem 4.38. (See [21].) Let G be a generalized closed necklace with a chain of odd 
length l with l ≥ 5. If G′ is the graph obtained from G by identifying three consecutive 
vertices on that chain, one of which has degree at least three, and creating two new 
pendent vertices at the identified vertex (see Fig. 43), then ∂1(G) > ∂1(G′).

In the next theorem, the rotation in question is done on three sets of edges incident to 
three vertices and all these edges are transformed into edges incident to the same vertex.

Theorem 4.39. (See [21].) If G and G′ are the graphs as shown in Fig. 44, where G0 is 
nontrivial. If at least one of the remaining Gi’s is nontrivial, then ∂1(G) > ∂1(G′).

We finish this section with a result where the considered rotation transforms several 
sets of pendent edges incident to different vertices to a set of pendent edges incident to 
a same vertex.
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Fig. 43. The graphs G and G′ of Theorem 4.38.

Fig. 44. The graphs G and G′ of Theorem 4.39.

Theorem 4.40. (See [149].) Let G1 be a complete graph with V (G1) = {v0, vk+1, vk+2, . . . ,
vn−1} (n − k ≥ 3). Let G be the graph consisting of G1 and the pendent edges 
v0v1, v0v2, . . . , v0vk. Let H be the graph on n vertices consisting of G1 and pendant stars 
Sti attached at each vertex vi (vi is the center of Sti) of the complete graph G1 where 
stars can be trivial (with only one vertex). Then we have

• if k = 0, 1, then ∂1(H) = ∂1(G);
• if k ≥ 2 and 2 ≤ t0 ≤ k, then ∂1(H) > ∂1(G).

5. The largest distance eigenvalue

In the present section, we give a survey of the results related to lower or upper bound-
ing the distance spectral radius of a graph. The bounds are expressed using several graph 
invariants. In most cases, the order n of the graph is involved. The problem of bounding 
the distance largest eigenvalue is, in some way, a recent research subject. Actually, first 
bounds on ∂1 go back to the paper [118] by Ruzieh and Powers in 1990. Since then, many 
researchers were interested in bounding the largest distance eigenvalue of a graph. We 
begin with the bound proved by Ruzieh and Powers [118].

Theorem 5.1. (See [118].) If G is a graph of order n, then n − 1 ≤ ∂1(G) ≤ ∂1(Pn). 
Moreover, the lower bound is reached if and only if G is the complete graph Kn, and the 
upper is reached if and only if G is the path Pn.
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In the same paper, Ruzieh and Powers computed the spectrum as well as the 
eigenspaces of the distance matrix of the path Pn.

Zhou and Ilić [158] proved some bounds on the distance spectral radius of a graph. 
First, they established a lower bound in terms of the order n, the maximum degree Δ1
and second maximum degree Δ2.

Theorem 5.2. (See [158].) Let G be a graph on n vertices with maximum degree Δ1 and 
second maximum degree Δ2. Then

∂1 ≥
√

(2n− 2 − Δ1)(2n− 2 − Δ2)

with equality if and only if G is a regular graph with diameter less than or equal to 2.

Then, they proved an upper bound in terms of the order n, diameter D, the minimum 
degree δ1 and second minimum degree δ2.

Theorem 5.3. (See [158].) Let G be a graph on n vertices with diameter D, minimum 
degree δ1 and second minimum degree δ2. Then

∂1 ≤
√(

Dn− D(D − 1)
2 − 1 − δ1(D − 1)

)(
Dn− D(D − 1)

2 − 1 − δ2(D − 1)
)

with equality if and only if G is a regular graph with diameter less than or equal to 2.

Let S = S(G) denote the sum of the squares of the distances between all unordered 
pairs of vertices in the graph, i.e.,

S = S(G) =
∑

1≤i<j≤n

d2
ij .

Zhou and Trinajstić [160] proved an upper bound using the order n in addition to the 
sum of the squares of the distances S(G), see also [159,161]. They also proved a lower 
bound on the distance spectral radius of a graph using only the sum of the squares of 
the distances S(G). The lower bound is over the set of graphs with exactly one positive 
distance eigenvalue.

Theorem 5.4. (See [159–161].) Let G be a graph on n ≥ 2 vertices with sum of the squares 
of the distances between all unordered pairs of vertices S(G). Then

∂1(G) ≤
√

2(n− 1)S(G)
n

with equality if and only if G is the complete graph Kn, and if G has exactly one positive 
distance eigenvalue, then
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∂1 ≥
√

S(G)

with equality if and only if G is K2.

Note that the bounds in the above theorem, as well as the third bound in the next 
theorem, were first proved by Zhou [157] in the case of trees.

Zhou and Trinajstić [160] proved a series of bounds on the distance spectral radius 
∂1 of a graph in terms number of vertices n, number of edges m, Wiener index W and 
transmissions Tr i, for i = 1, . . . , n. These bounds are gathered in the next theorem.

Theorem 5.5. (See [160].) Let G be a graph on n ≥ 2 vertices and m edges with Wiener 
index W and transmission sequence {Tr1, Tr2, . . . , Trn}. Then

∂1(G) ≤ max
1≤i≤n

n∑
j=1

Dij

√
Trj
Tr i

with equality if and only if G is a transmission regular graph;

∂1(G) ≥

√√√√ 1
n

n∑
i=1

Tr2
i

with equality if and only if G is a transmission regular graph;

∂1(G) ≥ 2
n
W (G)

with equality if and only if G is a transmission regular graph;

∂1(G) ≥ 2(n− 1) − 2m
n

,

where m denotes the number of edges in G, with equality if and only if G is a regular 
graph with diameter D ≤ 2.

Note that the second and third inequalities in the above theorem were also proved by 
Indulal [83].

In another paper, Zhou and Trinajstić [161] gave further bounds on the largest distance 
eigenvalue of a graph. The following theorem gives an upper bound on the distance 
spectral radius of a graph that is not transmission regular.

Theorem 5.6. (See [161].) Let G be a graph on n ≥ 2 vertices with distance spectral 
radius ∂1. Suppose the transmission sequence {Tr1, Tr2, . . . , Trn} is labeled such that 
Tr1 ≥ Tr2 ≥ · · · ≥ Trn and Tr1 > Trn−k+1 with 1 ≤ k ≤ n − 1. Then
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∂1 ≤ Tr1 − 1
2 +

√
(Tr1 + 1)2

4 − k(Tr1 − Trn−k+1)

with equality if and only if k ≤ n − 2, G is a graph with k vertices of degree n − 1 and 
the remaining n − k vertices have degree less than n − 1.

A bound similar to that in the above theorem, but involving the diameter in addition 
to the transmissions, was proved by Duan and Zhou [55].

Theorem 5.7. (See [55].) Let G be a connected graph on n ≥ 2 vertices with diameter D. 
Suppose that the transmission sequence {Tr1, Tr2, . . . , Trn} is labeled such that Tr1 ≥
Tr2 ≥ · · · ≥ Trn. For 1 ≤ l ≤ n,

∂1 ≤
Tr l −D +

√
(Tr l + D)2 + 4D

∑l−1
i=1(Tr i − Tr l)

2

with equality for some l if and only if Tr1 = · · · = Trn.

The next theorem gives a lower bound on the distance spectral radius of a graph that 
is not transmission regular.

Theorem 5.8. (See [161].) Let G be a graph on n ≥ 2 vertices with distance spectral 
radius ∂1. Suppose the transmission sequence {Tr1, Tr2, . . . , Trn} is labeled such that 
Tr1 ≥ Tr2 ≥ · · · ≥ Trn and Tr l > Trn with 1 ≤ l ≤ n − 1. Then

∂1 >
Trn − 1

2 +
√

(Trn + 1)2
4 + l(Tr l − Trn).

The above theorem was improved in [55] to get the following.

Theorem 5.9. (See [55].) Let G be a connected graph on n ≥ 2 vertices. Suppose that the 
transmission sequence {Tr1, Tr2, . . . , Trn} is labeled such that Tr1 ≥ Tr2 ≥ · · · ≥ Trn. 
Then

ρ
(
D(G)

)
≥

Trn − 1 +
√

(Dn + 1)2 + 4
∑n−1

i=1 (Tr i − Trn)
2

with equality if and only if Tr1 = · · · = Trn.

Combining the Wiener index W and the transmissions {Tr1, Tr2, . . . , Trn}, Indulal 
[83] proved the following bound.

Theorem 5.10. (See [83].) Let G be a graph on n vertices with Wiener index W and 
transmission sequence {Tr1, Tr2, . . . , Trn}. Then
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∂1(G) ≥ max
i

1
n− 1

(
(W − Tr i) +

√
(W − Tr i)2 + (n− 1)Tr2

i

)
.

Indulal [83] proved a lower bound on ∂1 using, besides the squares of the transmissions, 
the second distance degree sequence. For a vertex vi ∈ V , the second distance degree is 
defined by

Tr(2)
i =

n∑
j=1

dijTrj ,

where dij denote the distance between vi and vj in G.
A graph G is said to be pseudo k-distance regular if Tr(2)

i = kTr i for i = 1, 2, . . . , n.

Theorem 5.11. (See [83].) Let G be a graph on n vertices with transmission and second 
distance degree sequences {Tr1, Tr2, . . . , Trn} and {Tr (2)

1 , Tr (2)
2 , . . . , Tr(2)

n }, respectively. 
Then

∂1(G) ≥

√√√√∑n
i=1(Tr (2)

i )2∑n
i=1 Tr2

i

with equality if and only if G is pseudo distance regular.

Güngör and Bozkurt [68] obtained the above theorem as a corollary of a more general 
result. First, they generalized the notion of transmission and second distance degree 
as follows. For each i ∈ {1, 2, . . . , n} and fixed real number t, define the sequence 
{M (1)

i , M (2)
i , . . . , M (k)

i , . . .} by

M
(1)
i = (Tr i)t; M

(k)
i =

n∑
j=1

Di,jM
(k−1)
j for k ≥ 2.

For the particular case t = 1, we have M (1)
i = Tr i and M (2)

i = Tr (2)
i .

Theorem 5.12. (See [68].) Let G be a graph on n vertices, t be a real number and k be 
an integer. Then

∂1(G) ≥

√√√√∑n
i=1(M

(k+1)
i )2∑n

i=1(M
(k)
i )2

.

Equality holds for particular values of t and k if and only if M
(k+1)
1

M
(k)
1

= M
(k+1)
2

M
(k)
2

= · · · =
M(k+1)

n
(k) .
Mn
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He, Liu and Zhao [72] also used the transmission and second distance degree sequences 
for lower and upper bounding the distance spectral radius. First, they [72] used the 
minimum (resp. maximum) of the ratios Tr(2)

i /Tr i, for i = 1, . . . , n, for a lower (resp. an 
upper) bound.

Theorem 5.13. (See [72].) Let G be a graph on n ≥ 2 vertices with transmission and 
second distance degree sequences {Tr1, Tr2, . . . , Trn} and {Tr(2)

1 , Tr(2)
2 , . . . , Tr (2)

n } re-
spectively. Then

min
1≤i≤n

Tr (2)
i

Tr i
≤ ∂1(G) ≤ max

1≤i≤n

Tr(2)
i

Tr i
.

Moreover, any equality holds if and only if G is pseudo distance regular.

Second, they [72] used the minimum (resp. maximum) of the square roots 
√

Tr (2)
i , for 

i = 1, . . . , n, for a lower (resp. an upper) bound.

Theorem 5.14. (See [72].) Let G be a graph on n ≥ 2 vertices with distance spectral 
radius ∂1 and second distance degree sequences {Tr(2)

1 , Tr (2)
2 , . . . , Tr(2)

n }. Then

min
1≤i≤n

√
Tr (2)

i ≤ ∂1 ≤ max
1≤i≤n

√
Tr (2)

i .

Moreover, any equality holds if and only if G has same value of Tr(2)
i for all i.

Finally, they [72] used the maximum of the square roots of the products of the ratios 
of the second distance degrees and the transmissions 

√
(Tr (2)

i · Tr(2)
j )/(Tr i · Trj), for 

i, j = 1, . . . , n, for an upper bound.

Theorem 5.15. (See [72].) Let G be a graph on n ≥ 2 vertices with transmission and 
second distance degree sequences {Tr1, Tr2, . . . , Trn} and {Tr(2)

1 , Tr(2)
2 , . . . , Tr (2)

n }, re-
spectively. Then

∂1(G) ≤ max
1≤i,j≤n

√√√√Tr (2)
i

Tr i
·
Tr (2)

j

Trj
.

Moreover, any equality holds if and only if G is pseudo distance regular.

The average distance degree of a vertex vi is defined as Tr i = Tr(2)
i /Tr i. Thus, a 

graph is pseudo k-distance regular if Tr i = k for i = 1, 2, . . . , n.
Lin and Shu [96] proved lower and upper bounds on the distance spectral radius in 

terms of average distance degrees.
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Fig. 45. The graphs H1 and H2 in Theorem 5.18.

Theorem 5.16. (See [96].) Let G be a graph on n vertices with distance spectral radius 
∂1 and average distance degree sequence {Tr1,Tr2, . . . ,Trn}. Then

min
1≤i,j≤n

√
Tr i · Trj ≤ ∂1(G) ≤ max

1≤i,j≤n

√
Tr i · Trj .

Equalities hold if and only if G is pseudo distance regular.

Note that the upper bound in the above theorem is exactly that of Theorem 5.15.
Using the average distance degree, Xing and Zhou [144] proved a lower and an upper 

bound on the distance spectral radius of a graph.

Theorem 5.17. (See [144].) Let G be a graph on n ≥ 2 vertices with distance spectral 
radius ∂1, average distance degree sequence {Tr1,Tr2, . . . ,Trn}, such that Tr1 ≥ Tr2 ≥
· · · ≥ Trn, diameter D, and minimum and maximum transmissions Trmin and TrMax, 
respectively. Then,

∂1 ≥ 1
2

(
Trn − Trmin

TrMax
+

√√√√(Trn + Trmin

TrMax

)2

+ 4 Trmin

TrMax

n−1∑
i=1

(Tr i − Trn)
)

with equality if and only if Tr1 = Tr2 = · · · = Trn or Tr1 = n − 1 < Tr2 = · · ·Trn; and 
for 1 ≤ k ≤ n,

∂1 ≥ 1
2

(
Trk −D

TrMax

Trmin
+

√√√√(Trk + D
TrMax

Trmin

)2

+ 4DTrMax

Trmin

k∑
i=1

(Tr i − Trk)
)

with equality if and only if Tr1 = Tr2 = · · · = Trn.

Zhang [152] characterized the graphs minimizing the distance spectral radius among 
the class of graphs with given diameter. First, consider the following two graphs (see 
Fig. 45). For two fixed integers n and k, with 2k ≤ n, let H1 be the graph obtained 
from two paths, each on k vertices and two cliques on �n/2� − k and �n/2� − k vertices 
respectively, by adding all possible vertices between

• an endpoint of one path and all the vertices of one clique,
• an endpoint of the other path and all the vertices of the other clique,
• each vertex of one clique and all the vertices of the other clique.
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In a similar way, let H2 be the graph obtained from two paths, each on k vertices and 
a clique on n − 2k vertices, by adding all possible vertices between

• an endpoint of one path and all the vertices of the clique,
• an endpoint of the other path and all the vertices of the clique.

Theorem 5.18. (See [152].) Let G be a graph on n vertices with diameter D, and let 
k = �D/2�. Then

• if D = 2k + 1, ∂1(G) ≥ ∂1(H1) with equality if and only if G ∼= H1;
• if D = 2k, ∂1(G) ≥ ∂1(H2) with equality if and only if G ∼= H2.

A matching in a graph is a set of disjoint edges. The maximum possible cardinality of 
a matching in a graph G is called the matching number of G and denoted by μ = μ(G). 
A matching is perfect if it contains exactly n/2 edges.

For the general case, Liu [100] proved that complete split graphs minimize ∂1 among 
all graphs with a given matching number μ.

Theorem 5.19. (See [100].) Let G be a graphs on n vertices with matching number μ. 
Then

• if μ = �n/2�, then ∂1(G) ≥ n − 1 with equality if and only if G ∼= Kn;
• if 2 ≤ μ ≤ �n/2� −1, then ∂1(G) ≥ ∂1(CSn,μ), with equality if and only if G ∼= CSn,μ.

The complete split graphs minimize ∂1 among all graphs with a given independence 
number α as shown by Ilić [77] in the next theorem.

Theorem 5.20. (See [77].) Among all graphs on n vertices with given independence num-
ber α, the complete split graph CSn,n−α has the minimum value of distance spectral 
radius.

Recall that the chromatic number χ = χ(G) of a graph G is the smallest number of 
colors to be assigned to G’s vertices such that no pair of adjacent vertices have the same 
color. A subset of vertices assigned to the same color is called a color class, every such 
class forms an independent set. A graph in which the vertex set can be partitioned into 
two independent sets is bipartite; three sets tripartite; k sets k-partite or multipartite
with k independent sets. A k-partite graph is said to be complete if any two vertices 
are adjacent if and only if they belong to different partition classes. A k-partite graph 
is said to be balanced, and denoted by Tk(n), if for any two partition classes V ′ and 
V ′′, ||V ′| − |V ′′|| ≤ 1. It is also called Turán’s graph. Liu [100] studied the problem of 
characterizing the graphs with minimum distance spectral radius over the class of graphs 
with given number n of vertices and chromatic number χ, and showed the following.
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Theorem 5.21. (See [100].) Let G be a graph on n vertices with chromatic number χ, 
where 2 ≤ χ ≤ n − 1. Then ∂1(G) ≥ ∂1(Tk(n)) with equality if and only if G ∼= Tk(n).

The clique number ω = ω(G) of a graph G is the maximum cardinality of a clique 
in G. Recall that a kite Kin,ω is the graph obtained from a clique Kω and a path Pn−ω

by adding an edge between a vertex from the clique and an endpoint of the path. The 
problem of finding extremal values for the distance spectral radius of a graph was studied 
by Zhai, Yu and Shu [151].

Theorem 5.22. (See [151].) Let G be a graph on n vertices with clique number ω. Then

∂1
(
Tω(n)

)
≤ ∂1(G) ≤ ∂1(Kin,ω)

with equality for the lower (resp. upper) bound if and only if G ∼= Tω(n) (resp. Kin,ω).

Bose, Nath and Paul [22], and Yu, Jia, Zhang and Shu [148] studied the problem of 
characterizing graphs minimizing the distance spectral radius on the class Gr

n of graphs 
on n vertices with r pendent vertices. First recall the following definitions. A pineapple
with parameters n, q (q ≤ n), denoted by PAn,q, is a graph on n vertices consisting of 
a clique on q vertices and an independent set on the remaining n − q vertices, in which 
each vertex of the independent set is adjacent to a unique and the same vertex of the 
clique.

Theorem 5.23. (See [22,148].) For n ≥ 4 and 0 ≤ r ≤ n − 1, there is a unique graph in 
Gr
n with minimal distance spectral radius, namely the pineapple PAn,n−r for r 
= n − 2

and the double star Sn−2,2 for r = n − 2.

The authors of [22], as well as those of [148], were also interested in characterizing 
the graphs maximizing the distance spectral radius on the class Gr

n. Their results are 
gathered in the next theorem.

Theorem 5.24. (See [22,148].)

• The kite Kin,3 is the unique graph with maximal distance spectral radius in G1
n, for 

n ≥ 4.
• The path Pn is the unique graph with maximal distance spectral radius in G2

n, for 
n ≥ 3.

• The comet COn,3 has the largest distance spectral radius in G3
n, for n ≥ 4.

• The double comet DCn,�(n−1)/2�,�(n−1)/2� has the largest distance spectral radius in 
Gn−3
n , for n ≥ 6.

• The double star S�n/2�,�n/2� uniquely maximizes the distance spectral radius in Gn−2
n , 

for n ≥ 4.
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Fig. 46. The double long lollipop DL10,3,3.

The case where r is assumed to be in an interval was solved in [148].

Theorem 5.25. (See [148].) If a graph G maximizes ∂1 over Gr
n with 2 ≤ r ≤ n − 2, then 

G is a double comet DCn,s+1,p+1.

The above theorem was first stated for the class of trees (see Theorem 5.48 below). 
Finally, Yu et al. [148] made the following conjecture.

Conjecture 5.26. (See [148].) The maximum value of ∂1 over Gr
n, 2 ≤ r ≤ n − 2, is 

reached for the double comet DCn,�r/2�,�r/2�.

The above conjecture follows from a similar result proved by Nath and Paul [104] (see 
Theorem 5.54).

For the next result, we need the following definition. Let n, p, q be integers such that 
n ≥ p + q ≥ 6. The double lollipop DLn,p,q is the graph obtained form two cycles Cp and 
Cq and a path Pn−p−q+2 by the coalescence of one vertex from the cycle Cp and one 
endpoint of the path, and the coalescence one vertex from the cycle Cq with the other 
end point of the path. In the particular case where p = q = 3, we speak about a double 
long lollipop DLn,3,3 [4] (see Fig. 46).

After proving a series of lemmas, Bose, Nath and Paul [20] determined the family of 
graphs that maximize the distance spectral radius among the graphs without pending 
vertices, i.e., over the class G0

n.

Theorem 5.27. (See [20].) If n ≥ 6, then DLn,3,3 is the unique graph with maximal 
distance spectral radius in G0

n.

Recall that the vertex connectivity of a graph G, denoted by ν = ν(G), is the minimum 
number of vertices whose deletion disconnects the graph. For given integers n and ν, with 
1 ≤ ν ≤ n − 1, define Kν

n−1 to be the graph obtained from the complete graph Kn−1
and an isolated vertex by adding ν edges. The lower bound on ∂1 among all graphs with 
fixed vertex connectivity was proved in [100].

Theorem 5.28. (See [100].) Let G be a graph on n vertices with vertex connectivity ν. 
Then ∂1(G) ≥ ∂1(Kν

n−1) with equality if and only if G is the graph Kν
n−1.
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For ν = 1, as a result of Theorem 5.1, Pn is the only graph that maximizes ∂1. For 
ν = 2, Lin et al. [97] proved that the maximum of ∂1 is reached only for the cycle Cn.

Recall that the edge connectivity of a graph G, denoted by κ = κ(G), is the minimum 
number of vertices whose deletion disconnects the graph. Li, Fan and Wang [95] char-
acterized the graphs that minimize the distance spectral radius with given order n and 
edge connectivity κ.

Theorem 5.29. (See [95].) For given integers κ and n such that 1 ≤ κ ≤ n − 1, the graph 
Kκ

n−1 is the unique graph with minimum distance spectral radius among the graphs on n
vertices with edge connectivity κ.

Zhang and Godsil [155] studied the problem of characterizing the graphs with k cut 
vertices (resp. edges) with minimum distance index.

Let Gn,k be the graph obtained by adding paths Pl1+1, . . . , Pln−k+1 of almost equal 
lengths, i.e. such that |li − lj | ≤ 1 for all 1 ≤ i, j ≤ n − k, to the vertices of the complete 
graph Kn−k.

Zhang and Godsil [155] used Theorem 4.17 to prove the next result.

Theorem 5.30. (See [155].) Of all the graphs with n vertices and k cut vertices, the 
minimal distance spectral radius is obtained uniquely at Gn,k.

Again in [155], the authors used Theorem 4.24 to characterize the graphs minimizing 
the distance index when the numbers of vertices and cut edges are fixed.

Theorem 5.31. (See [155].) Of all the graphs with n ≥ 4 vertices and k cut edges, the 
minimal distance spectral radius is obtained uniquely at the pineapple PAn,n−k.

Now, we consider the problem of lower and upper bounding the distance spectral 
radius over the class of bipartite graphs.

Zhou and Ilić [158] characterized extremal graphs for the lower bound on ∂1 over all 
bipartite graphs with given number of vertices.

Theorem 5.32. (See [158].) Among bipartite graphs with n vertices, K�n/2�,�n/2� has 
minimum distance spectral radius.

In addition to the order n, Das [46] used the cardinalities of the partition sets of a 
bipartite graph to obtain a lower bound on its distance spectral radius.

Theorem 5.33. (See [46].) Let G be a bipartite graph with bipartition V (G) = A ∪B with 
|A| = p, |B| = q and p + q = n. Then

∂1(G) ≥ n− 2 +
√
n2 − 3pq

with equality if and only if G is a complete bipartite graph Kp,q.
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Zhou and Ilić [158] added the maximum degrees within the partition sets to their 
cardinalities and the order to improve the lower bound on ∂1 provided in the above 
theorem.

Theorem 5.34. (See [158].) Let G be a bipartite graph with bipartition V (G) = A ∪B with 
|A| = p, |B| = q and p + q = n. Let ΔA and ΔB be maximum degrees among vertices 
from A and B, respectively. Then

∂1(G) ≥ n− 2 +
√

n2 − 4pq + (3q − 2ΔA)(3p− 2ΔB)

with equality if and only if G is a complete bipartite graph Kp,q or G is a semi-regular 
graph with every vertex eccentricity equal to 3.

To the parameters used in Theorem 5.33, Das [46] added the diameter D to prove an 
upper bound on the distance spectral radius of a bipartite graph.

Theorem 5.35. (See [46].) Let G be a bipartite graph on n vertices with diameter D, 
minimum degree δ and bipartition V (G) = A ∪B such that |A| = p, |B| = q. Then

∂1(G) ≤ 1
2
(
D(n− 2) +

√
D2n2 − 4pq(2D − 1)

)
for even D, and

∂1(G) ≤ 1
2
(
(D − 1)(n− 2)

+
√

(D − 1)2n2 − 4(D − 1)2
(
pq − δ2

)
+ 4D2pq − 4D(D − 1)δn

)
for odd D. Moreover, the equality holds in the case of even D if and only if G is the 
complete bipartite graph Kp,q.

Again, Zhou and Ilić [158] added the minimum degrees δA and δB within the partition 
sets of a bipartite graph to improve the bounds given in Theorem 5.35.

Theorem 5.36. (See [158].) Let G be a bipartite graph on n vertices with diameter D and 
bipartition V (G) = A ∪B such that |A| = p, |B| = q. Let δA and δB be minimum degrees 
among vertices from A and B, respectively. Then

∂1 ≤ D(n− 1)
2 − D2

4

+
√
D2n2 + 4δAδB(D − 2)2 − 4pq(2D − 1) − 4(D − 1)(D − 2)(pδA + qδB)

2

for even D, and
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∂1 ≤ D(n− 1) + 1
2 − D2

4

+
√

(D − 1)2n2 + 4δAδB(D − 1)2 − 4pq(2D − 1) − 4D(D − 1)(pδA + qδB)
2

for odd D.

The problem of finding the extremal values of the distance spectral radius over the 
class of bipartite graphs with a fixed invariant was also considered by Nath and Paul 
[105]. They studied the cases fixed matching, independence, vertex covering and edge 
covering numbers. A vertex (resp. edge) cover of a graph G is a set of vertices (resp. edges) 
such that each edge (resp. vertex) of G is incident with at least one vertex (resp. edge) 
of the set. The vertex (resp. edge) cover number of G, denoted by β = β(G) (resp. 
β′ = β′(G)), is the minimum cardinality over all vertex (resp. edge) covers. The results 
proved in [105] are next gathered.

Theorem 5.37. (See [105].) The complete bipartite graph Kk,n−k is the unique graph 
that minimizes the distance spectral radius among the bipartite graphs on n vertices with 
given matching number, independence number, vertex covering number or edge covering 
number k.

Note that for any bipartite graph G, from König’s theorem [89], α(G) = β′(G) and 
μ(G) = β(G). Thus, the above theorem can be restricted to independence and matching 
numbers.

For k = 1, . . . , 4 and any integers p and s with s ≤ p, consider the bipartite graph 
Bp,p+k,s obtained from the complete bipartite graph Kp,p+k−1 and an isolated vertex v
by adding s edges between v and s vertices from the partition of Kp,p+k−1 that contains 
p vertices. Nath and Paul [105] considered the problem of finding a lower bound on ∂1

over the class of bipartite graphs with fixed vertex connectivity.

Theorem 5.38. (See [105].) Let G be a bipartite graph on n = 2p + k vertices, where 
1 ≤ k ≤ 4, with fixed vertex connectivity ν = s. Then

∂1(G) ≥ ∂1(Bp,p+k,s)

with equality if and only if G ∼= Bp,p+k,s.

We consider now the problem of bounding the distance spectral radius over the class 
of trees.

Among the first bounds on the largest distance eigenvalue of graphs, the lower and 
upper bounds proved by Gutman and Medeleanu [69] over the class of trees.
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Theorem 5.39. (See [69].) Let T be a tree on n vertices. Denote by S the sum of the 
squares of all the distances between all unordered pairs of vertices of T . Then

√
1
2S + n(n− 1)

(
n− 1

4

) 2
n

≤ ∂1(T ) ≤

√
n− 1

2 S + n

(
n− 1

4

) 2
n

.

In [133], Stevanović and Ilić used an operation on trees that increases the value of the 
distance spectral radius (see Theorem 4.34) to give a new proof of Theorem 5.1 (first 
proved in [118]). They used the same technique to prove an upper bound on ∂1 over the 
class of trees with given order n and maximum degree Δ. They also characterized the 
corresponding extremal trees.

Theorem 5.40. (See [133].) Let T be a tree on n vertices with maximum degree Δ such 
that T � COn,Δ. Then

∂1(T ) < ∂1(COn,Δ).

Ilić [77] (see also [54,133]) ordered the double stars according to their distance spectral 
radius.

Theorem 5.41. (See [54,77,132].) Let a and b be two integer with a ≥ b ≥ 1. Then

∂1(Sa,b) > ∂1(Sa+1,b−1).

The above result was used by Du, Ilić and Feng [54] to characterize the trees with the 
three first minimal distance spectral radii.

Theorem 5.42. (See [54].) Let T be a tree on n ≥ 6 vertices such that T /∈
{Sn−1,1, Sn−2,2, Sn−3,3}. Then

∂1(T ) > ∂1(Sn−3,3) > ∂1(Sn−2,2) > ∂1(Sn−1,1).

Ilić [77] and Stevanović and Ilić [133] also investigated the problem of finding lower 
bounds on the distance spectral radius over the class of trees. Their first lower bound 
was expressed in terms of the order n.

Theorem 5.43. (See [77,133].) Let T be a tree on n vertices. Then

∂1(T ) ≥ n− 2 +
√

(n− 2)2 + (n− 1)

with equality if and only if T is the star Sn.
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Fig. 47. The balanced starlike tree T (5, 4, 4, 4) on 18 vertices and the complete 3-ary tree on 19 vertices.

Stevanović and Ilić [133] also proved a lower bound on ∂1 over the class of starlike 
trees. A Δ-starlike tree T (n1, n2, . . . , nΔ) is a tree that consists of a root vertex v, and 
Δ paths P 1, P 2, . . . , PΔ of lengths n1, n2, . . . , nΔ attached at v. Therefore, the number 
of vertices of T (n1, n2, . . . , nΔ) is n = n1 + n2 + · · · + nΔ + 1. The Δ-starlike tree is 
balanced if all paths have almost equal lengths, i.e., |ni − nj | ≤ 1 for every 1 ≤ i, j ≤ Δ
(see Fig. 47 for the balanced starlike tree T (5, 4, 4, 4)). Note that the broom or comet 
COn,Δ is the Δ-starlike tree T (1, 1, . . . , 1, n − Δ − 1), which is balanced if and only if 
Δ = n − 2 or Δ = n − 1. The case Δ = n − 1 corresponds to the star Sn.

Theorem 5.44. (See [133].) The balanced Δ-starlike tree has the minimum distance spec-
tral radius among Δ-starlike trees of order n.

The complete Δ-ary tree is a tree on n vertices with maximum degree Δ constructed 
as follows. Fix a vertex to be a root. The root composes the level 0. Form level 1 by 
adding Δ neighbors (children) to the root. Form level 2 by adding Δ − 1 children to 
each vertex of level 1. We continue the construction of the levels till the n vertices are 
attached and such that (i) all the vertices that do not belong to the two last levels have 
degree Δ, (ii) at most one vertex of the level before the last one has degree different from 
Δ and from 1, and all the remaining vertices are pendent (see Fig. 47 for the complete 
3-ary tree on 19 vertices).

Finally, Stevanović and Ilić [133] conjectured that the Δ-ary trees minimizes ∂1 over 
the class of trees on n vertices with maximum degree Δ.

Conjecture 5.45. (See [133].) The complete Δ-ary tree has the minimum distance spectral 
radius ∂1 among all trees on n vertices with maximum degree Δ.

Note that the authors of the above conjecture showed it to be true for trees on up to 
24 vertices using computational experiments.

The problem of bounding the distance spectral radius over the set of trees with given 
order and diameter, was partially solved by Du, Ilić and Feng [54] and [153].

Theorem 5.46. (See [54,153].) Among trees with n vertices and even diameter D, where 
2 ≤ D ≤ n −1, Tn,D is the unique tree with minimal distance spectral radius, where Tn,D
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is the tree obtained from a path P = v0v1 · · · vD by attaching n −D− 1 pendent vertices 
to the vertex vD

2
.

For the case on an odd diameter, only a conjecture is stated by the authors of [54]
and [153].

Conjecture 5.47. (See [54,153].) Among trees with n vertices and odd diameter D, where 
3 ≤ D ≤ n −1, Tn,D is the unique tree with minimal distance spectral radius, where Tn,D

is the tree obtained from a path P = v0v1 · · · vD by attaching n −D− 1 pendent vertices 
to the vertex v�D

2 �.

The investigations of Yu, Jia, Zhang and Shu [148] on the problem of finding an upper 
bound on the distance spectral radius over all trees on n vertices with fixed number of 
pendent vertices led to the following result.

Theorem 5.48. (See [148].) The maximum of ∂1 over all trees on n vertices r pendent 
vertices (2 ≤ r ≤ n − 2) is reached for a double comet DCn,s,p for some integers s and 
p with r = s + p.

Note that the above result was also proved by Du, Ilić and Feng [54].
The problem of finding a lower bound on the spectral radius over the set of trees with 

fixed order n and number of pendent vertices r was solved by Du, Ilić and Feng [54], and 
Ning, Ouyang and Lu [107]. They independently proved the next theorem.

Theorem 5.49. (See [54,107].) Let T be a tree on n ≥ 6 vertices with r ≥ 3 pendent 
vertices. Then ∂1(T ) ≥ ∂1(ST (l1, l2, . . . , lr)), where ST (l1, l2, . . . , lr) is the r-starlike 
tree with �(n − 1)/r� ≤ li ≤ �(n − 1)/r� for i = 1, 2, . . . , r. Moreover, equality holds if 
and only if T ∼= ST (l1, l2, . . . , lr).

A spur Spn,p is the tree on n (n ≥ 2p) vertices obtained from the star Sn−p+1 by 
attaching a pendent vertex to each of p −1 non-central vertices of Sn−p+1. In fact, the spur 
pn,p is the balanced n − p-starlike tree with n ≥ 2p. Note that the matching number of a 
spur Spn,p is μ = p. It is known [76] that the spur Spn,μ is the only graph maximizing the 
(adjacency) spectral radius among the class of trees on n vertices with matching number 
μ. Ilić [78] studied the problem of finding extremal values of the distance spectral radius 
on the class of trees with given order n and matching number μ. For the minimum, he 
proved the following result.

Theorem 5.50. (See [78].) Let T be a tree on n ≥ 3 vertices with matching number μ. 
Then

∂1(T ) ≥ ∂1(Spn,μ)

with equality if and only if T ∼= Spn,μ.
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It is well-known that for a bipartite graph on n vertices with matching number μ and 
independence number α, μ + α = n (a consequence of König’s theorem [89]). Thus the 
next results follows immediately from the above theorem.

Corollary 5.51. (See [78].) Among trees on n vertices and with independence number α, 
Spn,n−α is the unique tree that has minimal distance spectral radius.

Instead of applying the condition of a fixed maximum degree to the class of all trees, 
Ilić [78] considered it on restricted class of trees with a perfect matching. He proved the 
following theorem.

Theorem 5.52. (See [78].) Among trees on n vertices with perfect matching and maximum 
degree Δ, the starlike tree T (1, n −2Δ +2, 2, 2, . . . , 2) has maximal distance spectral radius.

After experimental results on the set of all trees on at most 24 vertices, Ilić [78] stated 
a conjecture about the trees that maximize ∂1 when the order and the matching number 
are fixed. The conjecture was proved by Nath and Paul [104] in the next theorem.

Theorem 5.53. (See [104].) Over all trees on n vertices with matching number μ, the 
dumbbell DCn,Δ1,Δ2 is the unique tree that maximizes the distance spectral radius, where

Δ1 =
⌈
n + 1

2

⌉
− μ + 1 and Δ2 =

⌊
n + 1

2

⌋
− μ + 1.

Besides the above theorem, Nath and Paul [104] proved that the dumbbells also 
maximize the ∂1 over trees with given order and number of pendent vertices.

Theorem 5.54. (See [104].) Over all trees of order n with p pendent vertices, the dumbbell 
DCn,Δ1,Δ2 is the unique tree that maximizes the distance spectral radius, where

Δ1 =
⌈
p

2

⌉
+ 1 and Δ2 =

⌊
p

2

⌋
+ 1.

In order to prove Theorem 5.53 and Theorem 5.54, Nath and Paul [104] first proved 
Theorems 3.12 and 3.13 as well as the next lemma, that gives an ordering of the dumbbells 
with same number of pendent vertices, according to their distance spectral radii.

Lemma 5.55. (See [104].) If k ≥ 3, then

• ∂1(DCn,k,k) > ∂1(DCn,k+1,k−1) > · · · > ∂1(DCn,2k−2,2);
• ∂1(DCn,k+1,k) > ∂1(DCn,k+2,k−1) > · · · > ∂1(DCn,2k−1,2).

Regarding the ordering of the double comets using their distance spectral radii, Wang 
and Zhou [141] completed, in some way, the above lemma with the following result.
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Theorem 5.56. (See [141].) Let n, m1 and m2 be integers such that m1 < m2 < n/2 − 1. 
Then

∂1(DCn,�n+1
2 �−m1,�n+1

2 �−m1
) < ∂1(DCn,�n+1

2 �−m2,�n+1
2 �−m2

).

A dominating set of a graph G is a set S of vertices such that each vertex in V (G) \S
is adjacent to at least one vertex in S. For a graph G, the minimum cardinality of a 
dominating set is called the domination number of G and is denoted by γ(G). Denote 
by STn,m the n −m-starlike T (2, . . . , 2︸ ︷︷ ︸

m−1

, 1, . . . , 1︸ ︷︷ ︸
n−2m+1

). It is easy to see that γ(STn,m) = m.

Wang and Zhou [141] investigated the problem of bounding the distance spectral 
radius of trees with given order and domination number. For the lower bound, they 
proved the next theorem.

Theorem 5.57. (See [141].) Let T be a tree on n vertices with domination number γ. 
Then ∂1(T ) ≥ ∂1(STn,γ) with equality if and only if T is the starlike STn,γ.

The problem of upper bound is solved in the next result. First, we need some defini-
tions. A caterpillar is the tree in which removal of all pendent vertices gives a path. For 
integers n, a and b such that n ≥ 2(a + b), denote by CAn,a,b the particular caterpillar 
obtained from a path P = v1v2 · · · vn−a−b by attaching a pendent edge to each of the a
first vertices of P , and a pendent edge to each of the b last vertices of P .

Theorem 5.58. (See [141].) Let T be a tree on n vertices with domination number γ.

• If 1 ≤ γ < �n/3�, then

∂1(T ) ≤ ∂1(DCn,�n−3γ+2
2 �,�n−3γ+2

2 �)

with equality if and only if T is the double comet DCn,�n−3γ+2
2 �,�n−3γ+2

2 �.
• If �n/3� < γ ≤ �n/2�, then

∂1(T ) ≤ ∂1(CAn,� 3γ−n
2 �,� 3γ−n

2 �)

with equality if and only if T is the caterpillar CAn,� 3γ−n
2 �,� 3γ−n

2 �.

The validity of the upper bound in the above theorem was extended [141] to the class 
of all connected graphs on n vertices with domination number γ such that 1 ≤ γ < �n/3�.

To prove the above theorem, Wang and Zhou [141] used Theorem 3.14 as well as the 
next two lemmas.

Lemma 5.59. (See [141].) Let n, a and b be integers with n ≥ 2(a + b). Then

∂1(CAn,a+1,b−1) > ∂1(CAn,a,b).
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Lemma 5.60. (See [141].) Let T be a caterpillar of order n with p pendent vertices such 
that 2 ≤ p ≤ �n/2� and each vertex of T has at most one pendent neighbor. Then

∂1(T ) ≤ ∂1(CAn,� p
2 �,�

p
2 �)

with equality if and only if T is the caterpillar CAn,� p
2 �,�

p
2 �. Also, for p1 > p2,

∂1(CAn,� p1
2 �,� p1

2 �) < ∂1(CAn,� p2
2 �,� p2

2 �).

Du, Ilić and Feng [54], and Wang and Zhou [141] considered also the problem of 
bounding the distance spectral radius of trees with fixed bipartition size (number of 
vertices in each partition).

Theorem 5.61. (See [54,141].) Let T be a tree with bipartition size (p, q) such that 2 ≤
p ≤ q. Then

∂1(T ) ≥ ∂1(DCp+q,p,q)

with equality if and only if T is the double comet DCp+q,p,q. Moreover, if p ≤ q−2, then

∂1(T ) ≤ ∂1(DCp+q,� q−p+3
2 �,� q−p+3

2 �)

with equality if and only if T is the double comet DCp+q,� q−p+3
2 �,� q−p+3

2 �.

The validity of the upper bound in the above theorem was extended [141] to the class 
of all connected bipartite graphs with fixed bipartition size.

We saw above that over the class of all trees on n vertices, the distance spectral radius 
is maximum only for the path Pn (see Theorem 5.1) and is minimum only for the star Sn

(see Theorem 5.43). The natural extension of these results, namely the characterization 
of the extremal trees with the second and third minimum and maximum values of the 
distance spectral radius, was investigated by Wang and Zhou [141]. Regarding the second 
minimum and maximum values, they proved the following.

Theorem 5.62. (See [141].) Let T be a tree on n ≥ 5 vertices such that T � Sn and 
T � Pn. Then ∂1(COn,n−2) ≤ ∂1(T ) ≤ ∂1(COn,3) with equality if and only if T is the 
comet COn,n−1 for the lower bound, and if and only if T is the comet COn,3 for the 
upper bound.

Note that the upper bound in the above theorem can be seen as a corollary of Theo-
rem 5.40.

Regarding the third minimum and maximum value of ∂1, Wang and Zhou used The-
orem 4.23 to prove the following result.
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Fig. 48. The long lollipop DL8,3.

Theorem 5.63. (See [141].) Let T be a tree on n ≥ 6 vertices such that T /∈
{Sn, Pn, COn,n−2,COn,3}. Then ∂1(Sn−3,3) ≤ ∂1(T ) ≤ ∂1(Tn), where Tn is the tree 
obtained from a path P = v1v2v3 . . . vn−1 by attaching a pendent vertex vn to v3, with 
equality if and only if T is the double star Sn−3,3 for the lower bound, and if and only if 
T is Tn for the upper bound.

After a survey of the results related to the problem of bounding the distance spectral 
radius over general graphs, bipartite graphs and trees, we turn to some particular classes 
of graphs.

A lollipop Ln,p is the unicycle graph obtained from a cycle Cp and a path Pn−p by 
adding an edge between an endpoint of the path and a vertex form the cycle. Ln,3 is 
called the long lollipop and illustrated in Fig. 48 in the case n = 8. Yu, Wu, Zhang 
and Shu [149] characterized the extremal graphs for ∂1 over the unicyclic graphs i.e., 
connected graphs on n vertices with n edges.

Theorem 5.64. (See [149].) Let G be a unicyclic graph on n ≥ 4 vertices. Then we have

• if n ≥ 6, ∂1(G) ≥ ∂1(PAn,3) with equality if and only if G is the pineapple PAn,3;
• if n = 4, 5, ∂1(G) ≥ ∂1(Cn), with equality if and only if G ∼= Cn;
• ∂1(G) ≤ ∂1(Ln,3) with equality if and only if G is the long lollipop Ln,3.

Paul [110] investigated the problem of upper bounding the distance spectral radius of 
a bicyclic graph, i.e., a connected graph containing exactly two cycles.

Theorem 5.65. (See [110].) The bicyclic graph obtained by attaching a path on n − 4
vertices at a vertex of degree 2 of a K4−e (see Fig. 49) is the unique graph with maximal 
distance spectral radius over the class of all bicyclic graph on n ≥ 5 vertices.

To prove the above theorem, Paul first proved that the bicyclic graph maximizing 
∂1 must contain K4 − e as an induced subgraph, and then used lemmas among which 
Theorem 4.15 and Theorem 4.17.

The problem of lower bounding the distance spectral radius, together with the char-
acterization of the corresponding extremal graphs, over the class of all bicyclic graph 
on n ≥ 5 vertices was investigated by Xing and Zhou in [145]. In addition, they [145]
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Fig. 49. The bicyclic graph in Theorem 5.65.

Fig. 50. The graphs B1
n and B2

n.

determined the graphs with second-minimal distance spectral radius over the class of all 
bicyclic graph on n ≥ 5 vertices. The result is as follows:

For n ≥ 5 (n ≥ 4, respectively), let B1
n (B2

n, respectively) be the n-vertex bicyclic 
graph obtained by adding two nonadjacent (adjacent, respectively) edges to the star Sn, 
see Fig. 50.

For 0 ≤ s ≤ p ≤ q ≤ n −3 and s +p +q = n −2, let Tn(s, p, q) be the n-vertex bicyclic 
graph consisting of three internally disjoint paths Ps+2, Pp+2 and Pq+2 with common 
end vertices. Let H5 is the graph obtained by attaching a pendant vertex to a vertex of 
degree two in K4 − e.

Theorem 5.66. (See [145].) Let G be a bicyclic graphs of order n ≥ 5.

(i) For n = 5, ∂1(H5) > ∂1(B2
5) > ∂1(B1

5) > ∂1(T5(1, 1, 1)) > ∂1(T5(0, 1, 2));
(ii) For n = 6, if G � B1

6 , B
2
6 , T6(1, 1, 2), then

∂1(G) > ∂1
(
B2

6
)
> ∂1
(
B1

6
)
> ∂1
(
T6(1, 1, 2)

)
;

(iii) For n ≥ 7, if G � B1
n, B

2
n, then

∂1(G) > ∂1
(
B2

n

)
> ∂1
(
B1

n

)
.

The first Zagreb index M1(G) is defined to be the sum of squares of the degrees of all 
vertices in G, i.e.

M1(G) =
n∑

d2
i .
i=1
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Zhou and Trinajstić [160] proved a lower bound on ∂1(G) in terms of n, m and M1(G)
for the class of triangle-free and quadrangle-free graphs, i.e., graphs that do not contain 
C3 or C4.

Theorem 5.67. (See [160].) Let G be a triangle-free and quadrangle-free graph with n ≥ 2
vertices and m edges. Then

∂1(G) ≥ 3(n− 1) − M1(G)
n

− 2m
n

with equality if and only if G is a transmission regular graph with diameter at most 3.

A Benzenoid graphs, also called hexagonal system, is a 2-plane graph every interior 
face of which is bounded by a regular hexagon of unit length. A vertex of a hexagonal 
system belongs to, at most, three hexagons. A vertex shared by three hexagons is called 
an internal vertex of the respective hexagonal system. A hexagonal system H is said 
to be catacondensed if it does not possess internal vertices, otherwise H is said to be 
pericondensed. A hexagonal chain is a catacondensed hexagonal system which has no 
hexagon adjacent to more than two hexagons. A linear hexagonal chain denoted by 
Lh is a chain of h hexagons arranged in a linear manner. Zhang [152] characterized the 
graph with maximum distance spectral radius among the hexagonal systems with a fixed 
number of hexagons.

Theorem 5.68. (See [152].) Among all the catacondensed hexagonal systems on h
hexagons, the linear hexagonal chain Lh has the maximum distance spectral radius.

If all the cycles in a cactus have exactly one common vertex, then the graph is called 
a bundle. Let C(n, k) be a bundle of k triangles and n − 2k − 1 pendent vertices all 
attached at the common vertex.

Theorem 5.69. (See [21].) If n ≥ 6, then C(n, k) minimizes the distance spectral radius 
among all cacti on n vertices with k cycles.

The proof of the above theorem uses Theorems 4.25, 4.37 and 4.38. The technique of 
the proof led to the following corollary.

Corollary 5.70. (See [21].) If n ≥ 6, then {C(n, k) | k = �n
2 �, �

n
2 � − 1, . . . , 2, 1, 0} is the 

sequence of graphs with 1-st, 2-nd, . . . , (�n
2 � + 1)-th smallest distance spectral radius, 

respectively, among the class of all cacti on n vertices.

Theorem 5.71. (See [21].) Among the cacti of order n with r pendent vertices, the graph 
with minimal distance spectral radius is G0, when the parities of n and r are different; 
and G1, when the parities of n and r are the same, where G0 and G1 are the graphs as 
shown in Fig. 51.
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Fig. 51. The graphs G and G′ of Theorem 5.71.

Fig. 52. A saw graph.

A saw graph of order n and length k is a cactus obtained from a path Pn−k by replacing 
k of its blocks by k triangles, where 0 ≤ k ≤ �(n − 1)/2� (see Fig. 52). A saw graph of 
length k and order 2k+1 is a proper saw graph. An end in a proper saw graph is a vertex 
of degree 2, with a neighbor of degree 2. The saw graph obtained by joining an end of a 
proper saw graph of length p with an end of another proper saw graph of length q by a 
path of length l is denoted by Sw(p, q; l). If l = 0, then we have the proper saw graph of 
length p + q. Note that the Pn is a saw graph of length 0.

Theorem 5.72. (See [21].) If G is a graph with maximal distance spectral radius among 
the class of cacti on n with k triangles, then G ∼= Sw(p, q; l) for some p and q such that 
p + q = k and where l = n − 2k − 1.

Concerning the values of p and q (in the above theorem) for which the distance spectral 
radius is reached Bose et al. [21] conjectured the following.

Conjecture 5.73. (See [21].) Sw(�k/2�, �k/2�; 2n −k−1) uniquely maximizes the distance 
spectral radius among all cacti on n vertices with k triangles.

To end this section, we state some Nordhaus–Gaddum type inequalities for distance 
spectral radius. First, what is a Nordhaus–Gaddum type inequality?

In 1956, Nordhaus and Gaddum [108] gave lower and upper bounds on the sum and 
the product of the chromatic number of a graph and its complement, in terms of the 
order of the graph, namely, the following theorem.

Theorem 5.74. (See [108].) If G is a graph of order n, then

2
√
n ≤ χ(G) + χ(G) ≤ n + 1 and n ≤ χ(G) · χ(G) ≤ (n + 1)2

4 .

Furthermore, these bounds are best possible for infinitely many values of n.
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Since then, relations of a similar type are called Nordhaus–Gaddum type inequalities 
and have been proposed for many other graph invariants, in several hundred papers. For 
a recent survey of such inequalities see [6].

Zhou and Trinajstić [160,161] proved Nordhaus–Gaddum type inequalities for the 
distance spectral radius of a graph and its complement.

Theorem 5.75. (See [160,161].) Let G be a graph on n ≥ 4 vertices with a connected 
complement G. Then

∂1(G) + ∂1(G) ≥ 3(n− 1)

with left equality if and only if G and G are both regular graphs of diameter two. Moreover, 
if G or G has exactly one positive distance eigenvalue, then

∂1(G) + ∂1(G) <
√

(n + 1)n(n− 1)2
6 + 2n− 3.

The lower bound in the above theorem can be obtained as a corollary of a more 
general lower bound involving, besides the order n, the diameter D. Actually, this bound 
is proved by Das [45].

Theorem 5.76. (See [45].) Let G be a graph, with a connected complement, on n ≥ 4
vertices with diameter D. Then

∂1(G) + ∂1(G) ≥ 3(n− 1) + D(D − 1)(D − 2)
3n ≥ 3(n− 1)

with equality if and only if G and G are both regular graphs with diameter 2.

6. The distance spectral spread

The distance spectral spread sD(G) of a graph G is the difference between its largest 
and smallest eigenvalues, i.e., sD(G) = ∂1(G) −∂n(G). Yu, Zhang, Lin, Wu and Shu [150]
studied the problem of bounding the distance spectral spread of a graph. This problem 
remains to be explored.

The first result about the distance spectral spread is a lower bound in terms of the 
order n, maximum degree Δ, Wiener index W and average distance degree Tr i with 
1 ≤ i ≤ n.

Theorem 6.1. (See [150].) Let G be a graph on n vertices with maximum degree Δ and 
Wiener index W . Suppose that the vertices of G are labeled such that the degree sequence 
satisfies d1 = d2 = · · · = dk = Δ > dk+1 ≥ dk+2 ≥ · · · ≥ dn, for some k. He have:
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(i) if Δ ≤ n − 2, then

sD ≥ max
1≤i≤k

√
x2
i − 4yi(Δ + 1)(n− Δ − 1)

(Δ + 1)(n− Δ − 1)

where xi = 2(n −Tr i−1)Δ2+2(W−Tr i−1)Δ +2W and yi = Δ2(4W−Tr2
i−2Tr i−1)

and Tr i denotes the average distance degree of the vertex vi;
(ii) if Δ = n − 1, then

sD =

⎧⎨
⎩

0 if n = 1,
2 if n = 2,
n +

√
n2 − 3n + 3 if n ≥ 3.

For the particular case of graphs on n vertices with a given clique number ω, Yu et 
al. [150] proved the following bounds.

Theorem 6.2. (See [150].) Let G be a graph on n vertices with a clique number ω and 
Wiener index W . Suppose that G1, G2, . . . , Gk are all the cliques of G of order ω. For 
1 ≤ i ≤ k, let Wi =

∑
vj∈Gi

Trj and W i =
∑

vj /∈Gi
Trj. We have:

(i) if ω = n, then sD(G) = n;
(ii) if ω ≤ n − 1, then

sD(G) ≥ max
1≤i≤k

√
x2
i − 4y2

i ω(n− ω)
ω(n− ω)

where xi = ω(W i −Wi + n(ω − 1)) and yi = 2Wω(ω − 1) −W 2
i .

Using the above theorem, Yu et al. [150] deduced the next result (stated using the 
same notation).

Corollary 6.3. (See [150].) Let G be a graph on n vertices with clique number ω ≤ n − 1. 
Then

∂1(G) ≥ max
1≤i≤k

xi +
√
x2
i − 4y2

i ω(n− ω)
2ω(n− ω) and

∂n(G) ≤ max
1≤i≤k

xi −
√
x2
i − 4y2

i ω(n− ω)
2ω(n− ω) .

The bounds given in Theorems 6.1 and 6.2 are not sharp, but Yu et al. [150] provided 
sharp bounds under different conditions. First, the next result is a lower bound on the 
distance spectral spread over all graphs with given order.
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Theorem 6.4. (See [150].) Let G be a graph on n vertices. Then sD(G) ≥ n with equality 
if and only if G is the complete graph Kn.

For the case of bipartite graphs, we have

Theorem 6.5. (See [150].) Let G be a bipartite graph on n vertices. Then

sD(G) ≥

√⌊
n

2

⌋2
−
⌊
n

2

⌋⌈
n

2

⌉
+
⌈
n

2

⌉2

with equality if and only if G is the complete bipartite graph K�n
2 �,�n

2 �.

For the class of trees on n vertices, the bound is the following.

Theorem 6.6. (See [150].) Let T be a tree on n vertices. Then

sD(T ) ≥ n +
√
n2 − 3n + 3

with equality if and only if T is the star Sn.

Finally, a lower bound on the class of graphs with given order n and independence 
number α.

Theorem 6.7. (See [150].) Let G be a graph on n ≥ 2 vertices with independence number 
α ≥ 2. Then

sD(G) ≥ n + α + 1 +
√

(n− α + 1)2 + 2α(α− 1)
2

with equality if and only if G is the complete split graph CS(n, n − α).

7. Other distance eigenvalues and frequencies

In this section, we report on the results related to the distance eigevalues of a con-
nected graph, other that the largest eigenvalue. We also report about results related 
to the frequencies of the distances eigenvalues. Note that those topics attracted the at-
tention of the researchers less than the spectral radius or the characteristic polynomial 
did.

In a recent paper, Yu [147] studied some classes of graph that are characterized by 
their least distance eigenvalue ∂n.

Theorem 7.1. (See [147].) Let G be a graph on n vertices with least distance eigenvalue ∂n. 
Then we have
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(a) ∂n = 0 if and only if G ∼= K1;
(b) for n ≥ 2, ∂n = −1 if and only if G ∼= Kn;
(c) for n ≥ 3, ∂n = −2 if and only if G ∼= Kn1,n2,...,ns

for some 2 ≤ s ≤ n − 1 with 
n1 + n2 + . . . + ns = n;

(d) for n ≥ 3, if G � Kn and G � Kn1,n2,...,ns
for some 2 ≤ s ≤ n − 1 with n1 + n2 +

. . . + ns = n, ∂n < −2.383.

In the same paper [147], the author also stated analogous results for the class of 
bipartite graphs and for the class of trees. Regarding the bipartite graphs the differences 
are that in part (b) the only complete graph that is bipartite is K2; in part (c) s must 
be 2; and finally in part (d) we have ∂n < −3.414 instead of ∂n < −2.383. Thereafter, 
for the class of trees compared to bipartite graphs, the only difference is in part (c) in 
the theorem, since the only complete bipartite graph which is also a tree is the star Sn.

The following corollary is an immediate consequence of the above theorem.

Corollary 7.2. (See [147].)

(i) There exists no graph with ∂n ≥ −2.383 and ∂n /∈ {−2, −1, 0}.
(ii) There exists no bipartite graph with ∂n ≥ −3.414 and ∂n /∈ {−2, −1, 0}.

Let Dn,a = Sa+1,n−a−1 where 1 ≤ a ≤ �n−2
2 �.

For p ≥ 0 and q ≥ 2, let Hp,q be the graph obtained from the star Sp+q+1 by attaching 
a pendent vertex to each of q chosen pendent vertices.

For n ≥ 4 and r = 1, 2, let G(r, n) be the graph obtained from Sn−1 by adding a new 
vertex adjacent to the center and r pendent vertices.

For s ≥ 0, let G(s) be the graph obtained from Ss+5 by adding two independent edges.
Let F2 be obtained by adding an edge between two nonadjacent vertices of C5. Let 

F3 and F4 be obtained by adding a vertex adjacent to both two nonadjacent vertices of 
C4 and C5, respectively.

Lin and Zhou [98] proved the following results. First, they characterized all trees with 
least distance eigenvalue in [−3 −

√
5, −2 −

√
2 ].

Theorem 7.3. (See [98].) Let G be a tree with least distance eigenvalue ∂n. Then ∂n ∈
[−3 −

√
5, −2 −

√
2 ] if and only if

(i) G = Dn,1 for 4 ≤ n ≤ 25, or
(ii) G = Dn,2 for n = 6, 7, or
(iii) G = Hp,q for p ≥ 0, q ≥ 2, and p + q ≤ 23.

As a consequence of the above theorem, the authors of [98] determined all trees with 
the first 28 largest least distance eigenvalues.
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Corollary 7.4. (See [98].) S1, S2, Sn with n ≥ 3, D4,1 (= P4), D5,1, . . .D8,1, D6,2, D9,1, 
. . . , D16,1, D7,2, D17,1, . . . , D25,1, Hp,q for p ≥ 0, q ≥ 2 and p + q ≤ 23 are respectively 
the unique trees with the first 28 largest least distance eigenvalues.

All unicyclic graphs with least distance eigenvalue greater than −2 −
√

2 are charac-
terized in the next theorem.

Theorem 7.5. (See [98].) Let G be a unicyclic graph with least distance eigenvalue ∂n. 
Then

(i) ∂n ≤ −1 with equality if and only if G = C3,
(ii) ∂n ∈ (−2 −

√
2, −1) if and only if G = C4, C5 or G(1, n) for n ≥ 4.

The characterization of the extremal graphs corresponding to the maximum value of 
∂n follows immediately from the above theorem.

Corollary 7.6. (See [98].) Cn for n = 3, 4 and G(1, n) for n ≥ 5 are the unique unicyclic 
graphs of order n for which the least distance eigenvalues are maximal.

Another corollary that follows from the above theorem is as follows.

Corollary 7.7. (See [98].) C3, C4, G(1, 4), G(1, 5) and C5 are respectively the unique 
unicyclic graphs with the first 5 largest least distance eigenvalues. For n ≥ 6, G(1, n) is 
the unique unicyclic graph with the n-th largest least distance eigenvalue.

Regarding the bicyclic graphs with the maximum possible value of ∂n, Lin and Zhou 
[98] proved the next theorem from which they deduced the following two corollaries.

Theorem 7.8. (See [98].) Let G be a bicyclic graph with least distance eigenvalue ∂n. 
Then

(i) ∂n ≤ −2 with equality if and only if G = G(2, 4) or F3,
(ii) ∂n ∈ (−2 −

√
2, −2) if and only if G = F2, F4, G(s) for s ≥ 0 or G(2, n) for n ≥ 5.

Corollary 7.9. (See [98].) F3 for n = 5, G(2, n) for n = 4 and 10 ≥ n ≥ 6 and G(n −5) for 
n ≥ 11 are the unique bicyclic graphs of order n for which the least distance eigenvalue 
is maximal.

Corollary 7.10. (See [98].) G(2, 4) and F3 are the unique bicyclic graphs with the largest 
least distance eigenvalues. For n ≥ 2, Gn is the unique bicyclic graph with the nth largest 
least distance eigenvalue, where G2 = G(2, 5), G3 = G(2, 6), G4 = F2, G5 = G(2, 7), 
G6 = F4, G7 = G(2, 8), G8 = G(2, 9), G9 = G(2, 10), and G10 = G(s) for s ≥ 0, and 
Gn = G(2, n) for n ≥ 11.
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Using his computer program Graffiti, desingned for conjecture making in graph theory, 
Fajtlowicz [58] generated a series of conjectures relating graph invariants. In some of these 
conjectures the distance eigenvalues and/or their frequencies in the distance spectrum 
were involved. We next list and comment some of those conjectures.

The first conjecture we list is an inequality between the largest negative distance 
eigenvalue and the matching number of a connected graph.

Conjecture 7.11. (WOW-32 in [58].) For a connected graph G, − max{∂i : ∂i < 0} ≤ μ, 
where μ denotes the matching number of G.

As far as we known, the above conjecture remains open. Experiments using the Auto-
GraphiX system (a software devoted to conjecture-making in graph theory, see [2,3,31,
33]) confirm the above conjecture and suggest that for n ≥ 4, the extremal graph is the 
complete bipartite graph Kn−2,2. For n = 8, AutoGraphiX found two graphs K6,2 and 
the cube graph Q3.

The next Graffiti conjecture is an inequality between the largest negative distance 
eigenvalue and the diameter of a connected graph.

Conjecture 7.12. (WOW-35 in [58].) For a connected graph G, D ≤ − max{∂i : ∂i < 0}, 
where D denotes the diameter of G.

It is mentioned in [58] that the above conjecture was proved by James B. Shearer (no 
reference provided), however there is certainly a mistake. Indeed, as stated the conjecture 
is not true and there are so many families of graphs for which it does not hold. Even 
if we reverse the inequality the result is not true since for any integer p ≥ 4, the graph 
Kp,p −M , where M is a perfect matching, is a counterexample. Also, the cube graphs 
Qp are counterexamples for p ≥ 3.

Along these lines, we compared the diameter D with the negative of the least distance 
eigenvalue and get the following conjecture.

Conjecture 7.13. For a connected graph G, D ≤ −∂n, where D denotes the diameter 
of G. Equality holds if and only if G is a multipartite graph.

Note that the main focus in the above conjecture is on the case of equality. Actu-
ally, the inequality is true. Indeed, the least eigenvalue is the minimum of the Rayleigh 
quotient, i.e.,

∂n = min
X �=0

XTDX

XTX
.

If we consider the vector X with Xi = 1 and Xj = −1 for two vertices i and j such that 
d(i, j) = D, and Xk = 0 for k 
= i, j, then the quotient equals −D and the inequality 
follows.
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Fig. 53. The graph K5�K2.

The above statement is the best we can conjecture since there exist graphs with 
D ≤ −∂n−1 and others with D ≥ −∂n−1. For instance, the path Pn satisfies D ≥ −∂n−1
for n ≤ 14 and D ≤ −∂n−1 for n ≥ 15.

Conjecture 7.14. (WOW-313 in [58].) For a connected triangle free graph G, m/α ≤
p−(D), where m, α and p−(D) denote respectively the size, the independence number 
and the number of positive distance eigenvalues of G.

Experiments with AutoGraphiX confirm the above conjectures. It seems that equality 
holds only when n is even, in which case, the extremal graph is Kn

2 ,n2
−M , where M is 

a perfect matching, for n ≥ 8.

Conjecture 7.15. (WOW-404 in [58].) For a connected graph G, with independence num-
ber α ≤ 2, ∂2 ≤ tr, where tr denotes the number of triangles in G.

This conjecture was confirmed with AutoGraphiX and the gap between tr and ∂2 is 
arbitrarily large. Indeed, in the case of an even number of vertices n = 2p with p ≥ 3, 
the experiments suggest that the extremal graph is the Cartesian product of a clique Kp

and K2 denoted Kp�K2 (see Fig. 53 for K5�K2), for which ∂2 = 0 (see Corollary 4.6) 
and tr = p(p − 1)(p − 2)/3 = n(n − 2)(n − 4)/24.

The dual degree d∗(v) of a vertex v is the average degree of its neighbors. The minimum 
dual degree in a graph is denoted by δ∗. The girth g = g(G) of a graph G is the length 
of a smallest cycle in G, if any.

Conjecture 7.16. (WOW-284 in [58].) Let G be a connected graph on n ≥ 3 vertices with 
girth g ≥ 5 and minimum dual degree δ∗. Then δ∗ ≤ −∂n, where ∂n denote the least 
distance eigenvalue of G.

As far as we know, the above conjecture remains open. The Petersen graph is among 
the graphs for which δ∗ = −∂n (= 3) and g = 5.

We next give two proved Graffiti conjectures related to the distance spectrum.
The temperature of a vertex v in a graph G is defined as Tp(v) = d(v)/(n − d(v)), 

where d(v) denote the degree of v. The average temperature in a graph G is denote by 
Tp = Tp(G).
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Fig. 54. Counterexamples for Conjecture 7.19 and 7.22.

Theorem 7.17. (WOW-25 in [58].) Let G be a connected graph on n ≥ 2 vertices with 
average temperature Tp and distance matrix D. Then Tp ≤ p−(D), where p−(D) denotes 
the number of negative distance eigenvalues.

The extremal graphs for the above theorem seem to be only the complete graphs.

Theorem 7.18. (WOW-36 in [58].) For a connected graph G, D ≤ p−(D), where D
denotes the diameter of G.

The paths are among the extremal graphs for the above conjecture, and among the 
trees they are the only extremal trees. Indeed, the path Pn is the only tree (graph) with 
diameter D = n − 1, and according to Corollary 2.3, the path Pn has exactly n − 1
negative distance eigenvalues.

As mentioned in [58], the above two result were proved by Shearer, however, it seems 
that the proofs were not published.

Finally, we list some refuted Graffiti conjectures related to the distance spectrum.
The Randić index Ra = Ra(G) of a graph G = (V, E) is defined by

Ra = Ra(G) =
∑
uv∈E

1
d(u) · d(v)

where d(u) denotes the degree of u in G.

Conjecture 7.19. (WOW-29 in [58].) Let G be a connected graph on n ≥ 2 vertices with 
Randić index Ra. Then Ra ≤ p−(D).

Counterexamples for the above conjecture with 9 and 10 vertices are illustrated in 
Fig. 54.

Conjecture 7.20. (WOW-30 in [58].) Let G = (V, E) be a connected graph on n ≥ 2. 
Then

p+(D) ≤
∑
v∈V

Tp(v).

Counterexamples for the above conjecture with 10 and 12 vertices are illustrated in 
Fig. 55.
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Fig. 55. Counterexamples for Conjecture 7.20.

Fig. 56. Counterexamples for Conjecture 7.23 on 9 vertices.

Conjecture 7.21. (WOW-31 in [58].) Let G be a connected graph on n ≥ 2 vertices 
with independence number α and distance spectrum ∂1, ∂2, . . . , ∂n. Then α ≥ − max{∂i :
∂i < 0}.

The complement of the Petersen graph, which is also the line graph of the complete 
graph K5, is a counterexample for the above conjecture.

Conjecture 7.22. (WOW-33 in [58].) Let G be a connected graph on n ≥ 2 vertices with 
chromatic number χ and distance spectrum ∂1, ∂2, . . . , ∂n. Then χ ≥ − max{∂i : ∂i < 0}.

Conjecture 7.23. (WOW-166 in [58].) Let G be a connected graph on n ≥ 2 vertices and 
m edges. Then 

√
m ≤ p−(D) + p0(D).

Conjecture 7.23 was refuted in [24] and three counterexamples on 9 vertices are illus-
trated in Fig. 56, where the sign + means add an edge between each vertex on the right 
and each vertex on the left.

The energy En = En(G) of a graph is the sum of the absolute values of the adja-
cency eigenvalues of G, i.e., En = En(G) =

∑n
i=1 |λi|, where λ1, λ2, . . . , λn denote the 

adjacency eigenvalues of G.

Conjecture 7.24. (WOW-48 in [58].) Let G be a connected regular graph on n ≥ 2 vertices 
with energy En. Then En ≤ 2∂1.

A counterexample for the above conjecture is the complement of the graph on 15
vertices composed of the Petersen graph together with 5 isolated vertices.

Conjecture 7.25. (WOW-281 in [58].) Let G be a connected graph on n ≥ 3 vertices. 
Then max{μ, μ} ≤ p−(D), where μ and μ denote the matching number in G and G, 
respectively, and p−(D) denotes the number of negative distance eigenvalues of G.
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Fig. 57. Counterexamples for Conjecture 7.25 on 8 and 10 vertices.

Fig. 58. Counterexamples for Conjecture 7.27.

In Fig. 57 are illustrated two counterexamples for Conjecture 7.25 on 8 and 10 vertices.

Conjecture 7.26. (WOW-283 in [58].) Let G be a connected graph on n ≥ 3 vertices and 
m ≥ n edges with girth g ≥ 5. Then α ≤ p−(D) + p0(D), where α, p−(D) and p0(D)
denote respectively the independence number, the number of negative distance eigenvalues 
and the multiplicity of 0 as an eigenvalue of G.

Conjecture 7.27. (WOW-405 in [58].) Let G be a connected graph on n ≥ 3 vertices with 
independence number α ≤ 2. Then −∂n ≤ μ + μ, where μ and μ denote the matching 
number in G and G, respectively, and ∂n denotes the least distance eigenvalue of G.

The above conjectures was first disproved in [50]. Fig. 58 shows counterexamples on 
7 and 8 vertices.

8. The distance energy

Introduced by Indulal, Gutman and Vijayakumar [86], the distance energy of a graph 
G is defined as the sum of the absolute values of its distance eigenvalues, i.e.,

ED(G) =
n∑

i=1

∣∣∂i(G)
∣∣.

First conjectured in [32], the following theorem proved in [135] give the distance energy 
of a complete multipartite graph.
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Theorem 8.1. (See [135].) If n1, n2, . . . , nk ≥ 2, then the distance energy of the complete 
multipartite graph Kn1,n2,...,nk

is given by

ED(Kn1,n2,...,nk
) = 4(n1 + n2 · · · + nk − k).

Most of theorems given in Section 4 can be used to calculate the distance energy of 
some particular graphs. In [85], the authors computed the distance energy of

• the double graph of an even cycle from Theorem 4.4: ED(D2C2k) = 4k(k + 1);
• the corona of the cycle from Theorem 4.8:

ED

(
Cor(Cn)

)
=
{

2((n− 1)2 +
√

(n− 1)4 + 6n2) if n is even
2(n(n + 3) +

√
n2(n + 3)2 + 6n(n + 1) + 1) if n is odd;

• the Cartesian product of any graph G on p vertices with K2 from Theorem 4.5: 
ED(G�K2) = 2(ED(G) + p);

• the composition of the even cycle C2k with K2 from Theorem 4.7: ED(C2k ◦K2) =
2k(2k + 1);

• the extended double cover of Cp∇Cp from Theorem 4.10:

ED

(
EDC (Cp∇Cp)

)
=
{ 40 if p = 3,

4(E(Cp) + 5p− 10) if p ≥ 4,

where E(Cp) denotes the adjacency energy of Cp.

Since the diagonal entries of the distance matrix are 0’s, the sum of all the distance 
eigenvalues of a graph is 0, i.e., ∂1 + ∂2 + · · · + ∂n = 0. Thus, we have

ED(G) =
n∑

i=1

∣∣∂i(G)
∣∣ = 2

∑
∂i>0

∂i(G) = 2
∑
∂i<0

∣∣∂i(G)
∣∣.

As an immediate consequence of the above relation, ED(G) ≥ 2∂1, and therefore any 
lower bound on ∂1 is also a lower bound on ED(G)/2. This fact is more important for 
the class of graphs with only one positive distance eigenvalue such as trees. Indeed, for 
such a graph G, ED(G) = 2∂1(G). Using this fact and a lower bound on ∂1 proved by 
Das [46], Zhou and Ilić [158] stated the following theorem.

Theorem 8.2. (See [158].) Let G be a graph on n ≥ 2 vertices. Then

ED(G) ≥ 2

√√√√ 1
n

n∑
i=1

Tr2
i

with equality if and only if G a transmission regular graph wit exactly one positive distance 
eigenvalue.
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In the same paper [158] and again using bounds on ∂1, the authors provided lower 
bounds on ED: one in terms of the order and the Wiener index of G, and another in 
terms of the order and the size of G.

Theorem 8.3. (See [158].) Let G be a graph on n ≥ 2 vertices and m edges with Wiener 
index W . Then

ED(G) ≥ 4W
n

with equality if and only if G a transmission regular graph wit exactly one positive distance 
eigenvalue. Moreover,

ED(G) ≥ 4(n− 1) − 4m
n

with equality if and only if either G ∼= Kn or G is a (transmission) regular graph of 
diameter two with exactly one positive distance eigenvalue.

Note that the second bound in Theorem 8.3 was conjectured in [32].
In 2008, Ramane et al. [112] conjectured that among graphs on n vertices, the complete 

graph Kn minimizes the distance energy. In virtue of Theorem 8.3, the conjecture is true.
Ramane et al. [112] proved a series of upper and lower bounds on the distance energy 

of a graph on n vertices. These bounds are given in the next three theorems.

Theorem 8.4. (See [112].) Let G be a graph on n vertices and m edges. Then√
2M + n(n− 1)

∣∣det(D)
∣∣ 2n ≤ ED(G) ≤

√
2Mn,

where M = 2n(n − 1) − 3m.

In virtue of Graham’s result, Theorem 2.1, in the case of a tree T , the bounds in the 
above theorem depends only on the order n of T , i.e.√

(4n− 6)(n− 1) + 4n(n− 1)
(
n− 1

4

) 2
n

≤ ED(T ) ≤
√

(4n− 6)n(n− 1).

The next theorem provides a lower and an upper bounds depending only on the order 
n and size m of G.

Theorem 8.5. (See [112].) Let G be a graph on n vertices and m edges. Then

2
√
M ≤ ED(G) ≤

√
M(1 +

√
1 + 8M),

where M = 2n(n − 1) − 3m.
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The last theorem in [112] gives a lower and an upper bounds on ED in terms of the 
order n only.

Theorem 8.6. (See [112].) Let G be a graph on n vertices and m edges. Then

√
n(n− 1) ≤ ED(G) ≤

√
n3(n2 − 1)

6 .

Ramane et al. [113] proved a series of lower and upper bounds on the distance energy 
using the sum of the squares of the distances in addition to the order.

Theorem 8.7. (See [113].) Let G be a graph on n vertices. Then
√

2
∑

1≤i<j≤n

(dij)2 + n(n− 1)
∣∣det(D)

∣∣ 2n ≤ ED(G) ≤
√

2n
∑

1≤i<j≤n

(dij)2.

The upper bound in the above Theorem 8.7 was improved by Bozkurt, Güngör and 
Zhou [23].

Theorem 8.8. (See [23].) Let G be a graph on n vertices. Then

ED(G) ≤
√

2(n− 1)
∑

1≤i<j≤n

(dij)2 + n
∣∣det(D)

∣∣ 2n .
Note that the bounds corresponding to those of Theorem 8.7 and Theorem 8.8 for the 

case of trees, obtained using Theorem 2.1, were given in [113] and [23], respectively.
Another upper bound on ED was proved by Ramane et al. [113].

Theorem 8.9. (See [113].) Let G be a graph on n vertices and m edges. Then

ED(G) ≤ 2
n

∑
1≤i<j≤n

(dij)2 +

√√√√(n− 1)
[
2
∑

1≤i<j≤n

(dij)2 −
(

2
n

∑
1≤i<j≤n

(dij)2
)2]

.

For the case of graphs of diameter 2, the next corollary follows from Theorem 8.9.

Corollary 8.10. (See [113].) Let G be a graph on n vertices and m edges with diameter 
at most 2. Then

ED(G) ≤ 4n(n− 1) − 6m
n

+

√
(n− 1)

[
4n(n− 1) − 6m−

(
4n(n− 1) − 6m

n

)2]
.

Using the transmission and the second distance degree sequences, Indulal [83] proved 
a sharp upper bound on the distance energy ED(G) of a graph G.
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Theorem 8.11. (See [83].) Let G be a graph on n vertices with distance energy 
ED(G) and transmission and second distance degree sequences {Tr1, Tr2, . . . , Trn} and
{Tr (2)

1 , Tr(2)
2 , . . . , Tr (2)

n } respectively. Then

ED(G) ≤

√√√√∑n
i=1(Tr(2)

i )2∑n
i=1 Tr2

i

+

√√√√(n− 1)
(

2S −
∑n

i=1(Tr (2)
i )2∑n

i=1 Tr2
i

)
,

where S denotes the sum of the squares of all the distances between all unordered pairs of 
vertices of G. Equality holds if and only if G is the complete graph or a pseudo k-distance 

regular graph with three distinct eigenvalues k, 
√

S−k2

n−1 and −
√

S−k2

n−1 .

Similarly to the generalization of Theorem 5.11 to Theorem 5.12, Güngör and Bozkurt 
[68] generalized the above theorem.

Theorem 8.12. (See [68].) Let G be a graph on n vertices, t be a real number and k be 
an integer. Then

ED(G) ≤

√√√√∑n
i=1(M

(k+1)
i )2∑n

i=1(M
(k)
i )2

+

√√√√(n− 1)
(

2S −
∑n

i=1(M
(k+1)
i )2∑n

i=1(M
(k)
i )2

)
,

where S denotes the sum of the squares of all the distances between all unordered pairs of 
vertices of G. Equality holds if and only if G is the complete graph or a graph satisfying

M
(k+1)
1

M
(k)
1

= M
(k+1)
2

M
(k)
2

= · · · = M
(k+1)
n

M
(k)
n

= � ≥ 2S
n

with three distinct eigenvalues �, 
√

S−k2

n−1 and −
√

S−k2

n−1 .

Caporossi, Chasset and Furtula [32], after experiments using the AutoGraphiX system 
(a software devoted to conjecture-making in graph theory, see [2,3,31,33]), suggested the 
following conjecture. Before stating the conjecture, we need to recall the definition of 
the Soltés graph [130]. Let u be an isolated vertex or one end vertex of a path. Let us 
join u with at least one vertex of a complete graph. The graph so obtained is the Soltés 
graph PKn,m, also called the path-complete graph, where n is its order and m its size. 
There is exactly one PKn,m for given n and m such that 1 ≤ n − 1 ≤ m ≤ n(n − 1)/2. 
Among all graphs with given order n and size m, PKn,m maximizes (non-uniquely) the 
diameter [71] and (uniquely) the average distance [130].

Conjecture 8.13. (See [32].) Among all graphs of order n and size m with n ≤ m ≤
(n − 2)(n − 3)/2, the path-complete graph PKn,m maximizes the distance energy.
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Fig. 59. Some forbidden graphs.

Now, we turn to the survey of the results about bounding the distance energy over 
the class of graphs with diameter 2. First, we give lower and upper bounds on ED(G) in 
terms of order n and size m of G.

Theorem 8.14. (See [86].) Let G be a graph on n vertices and m edges of diameter 2. 
Then √

4n(n− 1) − 6m + n(n− 1)
∣∣det(D)

∣∣ 2n ≤ ED(G) ≤
√

2n
(
2n2 − 3m− 2n

)
.

Note that Theorem 8.14 can be obtained as a corollary from Theorem 8.4 or from 
Theorem 8.7.

Another upper bound in terms of the order n and size m is the following.

Theorem 8.15. (See [86].) Let G be a graph on n vertices and m edges with diameter 2. 
Then

ED ≤ 1
n

(
2n2 − 2m− 2n +

√
(n− 1)

(
(2n + m)

(
2n2 − 4m

)
− 4n2

))
In addition to have diameter 2, the graphs in the next result are assumed to be degree 

regular.

Theorem 8.16. (See [86].) Let G be a k-regular graph on n vertices with diameter 2. Then

Ed(G) ≤ 2n− k − 2 +
√

(n− 1)
(
n(k + 4) − (k + 2)2

)
Note that over the class of diameter 2, degree regular is equivalent to transmission 

regular.
The following result follows from Theorem 2.27 using the fact that if a graph has 

exactly one positive distance eigenvalue ∂1 then its distance energy is ED = 2∂1.

Theorem 8.17. (See [114].) If G is a k-regular graph on n vertices with diameter D ≤ 2
such that none of the graph F1, F2 and F3 (Fig. 59) is an induced subgraph of G, then 
the D-energy of L(G) is

ED

(
L(G)

)
= 2k(n− 2).

The next corollary follows from and generalizes, in some way, the above theorem.
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Corollary 8.18. (See [114].) Let G be a k-regular graph on n vertices with diameter D ≤ 2
and let none of the four graphs of Fig. 59 be an induced subgraph of G. Let np and kp
be the order and degree, respectively, of the p-th iterated line graph Lp(G) of G, p ≥ 1. 
Then the D-energy of Lp(G) is

ED

(
Lp(G)

)
= 2np−1kp−1 − 4kp−1 = 4np − 2kp − 4

= 4n
p−1∏
i=1

(
2i−1k − 2i + 1

)
− 2
(
2pk − 2p+1 + 4

)
.

Zhou and Ilić [158] proved an upper bound on the distance energy of a graph G of 
diameter 2 using the adjacency energy E(G) of its complement G.

Theorem 8.19. (See [158].) Let G be a graph on n vertices with diameter at most 2. Then

ED(G) ≤ 2(n− 1) + E(G),

where E(G) denotes the (adjacency) energy of G, the complement of G.

Two graphs G1 and G2 are said to be distance equienergetic or D-equienergetic if 
they have the same distance energy, i.e., ED(G1) = ED(G2). Evidently, two distance 
cospectral, or D-cospectral graphs are D-equienergetic. Thus the study of D-equienergetic 
focuses on non-D-cospectral graphs. Several authors were interested in the problem 
of finding D-equienergetic but non-D-cospectral graphs. Some infinite families of such 
graphs were constructed.

In order to construct D-equienergetic but non-D-cospectral graphs, Ramane et al. 
[114] proved the following lemma.

Lemma 8.20. (See [114].) Let G1 and G2 be two k-regular graphs on n vertices each, with 
diameters D1, D2 ≤ 2. Assume that none of the four graphs of Fig. 59 is an induced 
subgraph of Gi, i = 1, 2. Then for any p ≥ 1, the following holds:

• Lp(G1) and Lp(G2) are of the same order, same degree and have the same number 
of edges.

• Lp(G1) and Lp(G2) are D-cospectral if and only if G1 and G2 are cospectral.

Using Corollary 8.18 and Lemma 8.20, Ramane et al. [114] deduced the next theorem 
which is a way for constructing D-equienergetic but non-D-cospectral graphs.

Theorem 8.21. (See [114].) Let G1 and G2 be two k-regular graphs on n vertices each, 
with diameters D1, D2 ≤ 2. Assume that none of the four graphs of Fig. 59 is an induced 
subgraph of Gi, i = 1, 2. Then for any p ≥ 1, the iterated line graphs Lp(G1) and 
Lp(G2) form a pair of non-D-cospectral, D-equienergetic graphs of equal order and of 
equal number of edges.
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Ramane, Gutman and Revankar [111] computed the distance energy of the join of 
two regular graphs with diameters at most 2.

Theorem 8.22. (See [111].) For i = 1, 2, let Gi be a ki-regular graph on ni vertices, with 
respective diameters D1, D2 ≤ 2. For i = 1, 2, let ti = 2ni − ki − 2. Then

ED(G1∇G2)

=
{
ED(G1) + ED(G2) if t1t2 ≥ n1n2

ED(G1) + ED(G2) − (t1 + t2) +
√

(t1 + t2)2 − 4(t1t2 − n1n2) if t1t2 < n1n2.

The authors of the above theorem used it to construct an infinite family of 
D-equienergetic but non-D-cospectral graphs.

Stevanović and Indulal [134] computed the distance energy of the join of two regular 
graphs whose smallest eigenvalue is at least −2.

Theorem 8.23. (See [134].) For i = 1, 2, let Gi be a ki-regular graph on ni vertices, whose 
smallest eigenvalue of the adjacency matrix is at least −2 and such that Gi � Kn. Then

ED(G1∇G2) = 4(n1 + n2) − 2(k1 + k2) − 8.

Using the above result and Theorem 4.12, Stevanović and Indulal [134] constructed 
an infinite family of sets of D-equienergetic but non-D-cospectral graphs. For a fixed 
integer n, let Pn the set of integer partitions of n into parts of size at least three. For 
P = {p1, p2, . . . , pk} ∈ Pn, we denote CP the union of cycles of sizes p1, p2, . . . , pk.

Corollary 8.24. (See [134].) Let G be a k-regular graph. Then, the graphs K1∇(CP ∪G), 
P ∈ Pn, are D-equienergetic but non-D-cospectral.

Using Theorem 4.13, Stevanović [131] deduced a method for constructing an infinite 
family of pairs of D-equienergetic but non-D-cospectral graphs. This construction uses 
joined union of regular graphs.

Theorem 8.25. (See [131].) Let G be a graph with vertex set V = {v1, v2, . . . , vn}, and for 
i = 1, 2, . . . , n, let Gi and Hi be ki-regular graphs of order ni whose smallest adjacency 
eigenvalue is at least −2. Then ED(G[G1, G2, . . . Gn]) = ED(G[H1, H2, . . . Hn]).

Indulal and Gutman [85] constructed an infinite family of pairs of D-equienergetic 
non-D-cospectral bipartite graphs from pairs of non-A-cospectral cubic graphs.

Theorem 8.26. (See [85].) Let G1 and G2 be two cubic non-A-cospectral graphs 2n
vertices each. Then the extended double cover graphs EDC (L2(G1)∇L2(G1)) and 
EDC (L2(G1)∇L2(G1)) are D-equienergetic but non-D-cospectral graphs on 24n vertices 
each.
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After computing the D-energy of complete bipartite graphs, Liu [99] showed that for 
any three integers n, a and b such that n − b ≥ b > a ≥ 2, the two complete bipartite 
graphs Ka,n−a and Kb,n−b are D-equienergetic but non-D-cospectral. In the same paper 
[99], it was also shown that for any integer p ≥ 4, the two graphs Kp,p and Kp,p −M , 
where M is a perfect matching, are D-equienergetic but non-D-cospectral.

Ilić, Bašić and Gutman [80] constructed a family of pairs of integral circulant graphs 
equienergetic but non-cospectral with respect to the adjacency, Laplacian and distance 
spectra simultaneously.

To end this section, and therefore the present paper, we give a Nordhaus–Gaddum 
type inequality for the distance energy of a graph and its complement. It is proved by 
Zhou and Ilić [158].

Theorem 8.27. (See [158].) Let G be a graph on n ≥ 4 vertices with a connected comple-
ment G. Then

ED(G) + ED(G) ≥ 6(n− 1)

with equality if and only if G and G are both regular graphs of diameter two and both 
have exactly one positive distance eigenvalue.
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