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Let G be a finite connected graph. If x and y are vertices of G, one may 
define a distance function d, on G by letting d&x, y) be the minimal length of any 
path between x and y in G (with d&, x) = 0). Thus, for example, d&x, y) = 1 

if and only if {x, y} is an edge of G. Furthermore, we define the distance matrix 
D(G) for G to be the square matrix with rows and columns indexed by the 
vertex set of G which has d&x, y) as its (x, y) entry. In this paper we are con- 

cerned with properties of D(G) for the case in which G is a tree (i.e., G is acyclic). 
In particular, we precisely determine the coefficients of the characteristic poly- 
nomial of D(G). This determination is made by deriving surprisingly simple 

expressions for these coefficients as certain tied linear combinations of the 
numbers of various subgraphs of G. 

If G is a finite connected graph,l one can define a metric d, on G as follows: 

For vertices x, y of G, &(x, y) is a t k en to be the length of the shortest 

path in G between x and y (where d,(x, x) is defined to be 0). 

Thus, for example, &(x, y) = 1 if and only if {x, y} is an edge of G. 

In this paper we are concerned with the distance matrix D(G) of G. This is 

formed by indexing the rows and columns with the vertex set of G and defining 

the (x, y) entry of D(G) to be C&(X, y). Specifically, we investigate in detail the 

characteristic polynomial d,(h) = det(D(G) - M) of D(G) in the special case, 

G is a tree (i.e., G is connected and acyclic). There are several reasons why it 

is of interest to do this. 

1 We generally follow the terminology of [9]. In particular, G has no loops or multiple 
edges. 
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In the first place, d,(h) arose (rather unexpectedly) from a data communication 
problem studied by one of the authors [6] in the following way. Suppose one 
wishes to label each vertex et of G with an N-tuple A(w) = (a,, a, ,..., ujy), 
where a, E (0, 1, *}, so that A “preserves distances.” Precisely, this means that 
if we defme the “distance”2 &J(w), A(o’)) between A() = (a, ,..., aN) and 
Jo’) = (a’, ,..., a’,,,) by 

d(A(w), A(w’)) = l{i: {Ui , Q’i} = (0, I}}\ 

then we require 

qqw), W)) = d&4 4 for all w, w’ E G. (1) 

For example, the labeling 

44 = (0, O), 

A(Y) = (0, 11, 

44 = (1, *>, 

satisfies (1) when X, y, and a are the vertices of a triangle. It is not hard to 
show that such a labeling is always possible for any connected graph G provided 
N is chosen large enough. The problem is to determine the minimum N = N(G) 
for which a labeling satisfying (1) exists. In [6] the following theorem is proved. 

THEOREM. 

N(G) 2 max(n+(G), n-(G)>, (2) 

where n+(G) and n-(G) derwte the ttumber of positiwe and negatiwe eigenwalues,g 
respectiwely, of D(G). 

In fact, equality in (2) seems to occur quite often, and the smallest known 
case of inequality is for the complete bipartite graph KgS8. 

Thus, the eigenvalues of D(G), i.e., the roots of d,(h), are intimately con- 
nected with the embeddability of G into “squashed cubes” (the use of * indicates 
some coordinate identification; see [fl for details). However, not much is known 
about d,(h) at present. For example, it is not even known which graphs G 
have n-(G) = 1 G 1 - 1 or whether there is a graph for which n+(G) > n-(G). 
It should be remarked that (2) p rovides the only known proof that the complete 
graph on n vertices cannot be decomposed into fewer than n - 1 edge-disjoint 
complete bipartite subgraphs (see [q). 

f d is not actually a metric. 
8 Since D(G) is real and symmetric, it has real eigenvalues. Also, since the trace of 

D(G) is zero, n+(G) and n-(G) are bounded above by 1 G 1 - 1, where 1 G 1 denotes the 
number of vertices of G. 
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In the other direction, it is suspected4 that the following inequality holds. 

Conjecture. 

N(G) < / G j - 1. (3) 

It is known that (3) holds with equality for complete graphs, odd cycles, 
trees, and most complete bipartite graphs (these have n-(G) = 1 G ] - 1) [6], 
and, in any case, (3) holds for all cycles, complete bipartite graphs, graphs 
with 6, < 2, and large classes of graphs with “spines” [l], [2]. 

In the second place, it is known [6] that for a tree T with n vertices, the 
determinant of D(T) is always equal to (-l)“-l (n - 1) 2n-2, independent of the 
structure of T. Since det(D( T)) is just the constant term S,(T) of the polynomial 

d,(h) = i S,(T) A”, 
k=O 

it was natural to inquire about the other coefficients of AT(A) as well. It was 
hoped that by analogy with the corresponding results for the adjacency matrix 
of T, the 6,(T) would have a natural interpretation in terms of the structure of 
certain subgraphs of T. What we mean by this is the following. 

The adjacency matrix A(G) of G is defined by setting the (x, y) entry of A(G) 
equal to 1 if {x, y} is an edge of G and 0 otherwise. Let us write the characteristic 
polynomial of A(G) as 

A,(h) = det(A(G) - XI) = 2 %(G) A’. 
k=O 

It is well known (see [II-131) that for a tree T, the ak(T) depend only on the 
numbers of occurrences of subgraphs of T consisting of disjoint edges. Specifi- 
cally, if N,(G) denotes the number of occurrences5 of a graph H in a graph G, 
i.e., the number of subgraphs of G which are isomorphic to H, and mP, denotes 
the graph consisting of m disjoint paths of length 1, then 

o&(T) = (- 1 )n+k’2~(ww~(T) if k is even, 
(4) 

= 0 otherwise. 

In [5] it was shown that at least for 0 < k < 3, 6,(T) can also be expressed in 
a form similar to (4). For example, we have already stated 

S,(T) = (-l>“-‘(n - 1) 2%~2 = (-1)+12+sN,I(T). (5) 

4 In fact, one of the authors is currently offering U.S. $100 for the first proof or counter- 
example. 

5 By convention, if H is the empty graph, we take N,(G) = 1. 
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It is also true that 

h(T) = (-V-12”-9(4&I(T) + 2h2(T) + 4KJT) - 4), (6) 

where Pz denotes the path of length 2, i.e., the unique tree with three vertices. 
However, with each new value of k, new and increasingly complicated arguments 
were required in [5] to obtain the expansion for 6,(T). 

The authors of [5] conjectured that similar expressions existed for all k, 
although they admitted that an attack on this problem by the same techniques 
seemed hopeless. 

In this paper we settle the conjecture by showing that all the coefficients 
6,(T) can be expressed in the form 

$(T) = (- l)n-12n--k--2 c A j,k’A$( T), 
P 

(7) 

valid for all trees T where n = 1 T I, the number of vertices of T, and F ranges 
over all acyclic graphs (i.e., forests) having k - 1, k, or k + 1 edges and no 
isolated vertices. Furthermore, the integer coefficients Art in (7) are unique 
and rather well behaved. We give explicit and surprisingly simple expressions 
for them (see Facts 5, 6, and 7). They turn out to depend only on the number 
of occurrences of various Pi in the connected components of F. 

Still another motivating force for this study was to attack the conjecture [l] 
that T is uniquely determined by d,(h), in sharp contrast to the situation for 
A,(h). Because of the simplicity of the expression for ‘Ids in (4), it is not 
surprising that the OL~( 2’) do not uniquely determine T. The smallest example [A 
of two nonisomorphic trees having the same “spectrum,” i.e., set of adjacency 
matrix eigenvalues, is shown in Fig. 1. For these trees, 

AT,(h) = A,,(X) = X8 - 7X6 + 9h4. 

Intuitively, since the entries of D(T) are generally much larger than those of 
A(T), the coefficients of AT(A) tend to be much larger than those of AT(X) and 
consequently, &(A) has a better chance of distinguishing nonisomorphic trees. 
However, this turns out not to be the case (see the discussion at the end of the 
paper. 

Tf T2 

FIGIJM 1 

607129lr-5 
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PRELIMINARIES 

We consider an arbitrary fixed tree T with vertex set V = {y ,,.., 03, where 
n > 1. We abbreviate dT(vi , vi) by dij and we let di denote the degree of vi , 
i.e., the number of edges of T incident to vi . 

Basically, the plan for determining the coefficients S,(T) consists of three 
steps: 

I. The inverse D-l of D = D(T) is found. 
II. The individual terms of the determinant expansion for the charac- 

teristic polynomial d*“,(A) of D-l are interpreted as enumerating the occurrences 
of certain marked subforests in T. 

III. The contribution each forest makes in II is determined. 

Because of the simple refationship between A*#) and d,(h), the expansion 
of 6,(r) into the form of (7) is immediate. 

FORMATION OF D-l 

Let us define the n x n matrix B by 

Let N = (ntr) be the 7~ x n matrix defined by 

f2i.j = 1 if & = dli + di, , 
= 0 otherwise. 

Thus, ni, = 1 if and only if the unique path from er, to w, contains et, . 

FACT 1. D = NTBN. 

Proof. First note that 

BN= = (cd 
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Writing NTBN = (cltf), we obtain 

n 
df = c lZkiCkf 

k-l 

G-4) 

= hf + i nkdtl - 2nkS). 
k-2 

It now follows at once from the definition of nu that clf3 = dif and the fact is 
proved. 1 

FACT 2. The inverse of N is g&n by N-l = (n*ff), where 

n*ff = 1 if i = j, 
= -1 if df, = 1 and dlf = 1 + dri , 
= 0 otherwi>e. 

Proof. Note that n*i, = 1 if and only if nf5 = 1 and i is adjacent to j. Since 
the (i,j? entry in the product NN* is xi-r n&*k$ , the only terms in the sum 
which have a nonzero contribution come from those k with both nik # 0 and 
rPk3 # 0. If i = j then we must have k = i and the entry is 1. If i #j then 
the only nonzero terms are for k = j with nfin*,, = 1 . 1 = 1 and k = k’, 
where d,:, = 1 and d, = 1 + hk’ with n&fl*kP, = 1(- 1) = - 1. Thus, for 
i # j the entry is 0. Hence NN* = I and the fact is proved. 1 

FACT 3. 

N*N*’ = - A(T), 

where A(T) = (aft) is the adjacency matrix of T. 

Proof. The (i,l> entry in the product, namely, 

has the values 

k-l 

(i) dl + 1 if i = j = 1, since all k with either k = 1 or ok adjacent to 
vr contribute 1 to sum; 

(ii) dfifi=j>l,sincenowwecannottakek=l; 

(iii) -qj if i #j, for we cannot have n*ik = t~*,~ # 0. 
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Thus, the only nonzero contribution can occur if n*,, = -1~*~~ , oi is adjacent 
to vi , and so u,~ = 1. This proves the fact. 1 

Since the inverse of B is given by 

B-1 = ’ 
2p.z - 1) 

a straightforward calculation of D-l = (NTBN)-l = N*B-lN*T using the 
preceding facts proves the following result. 

LEMMA 1. D-1 = (d*,j) is give92 by 

d+ = (2 - dd(2 - 4) 
1, 2(n - 1) 

if i =j, 
if i # j. 

At this point the reader may wonder if any progress has been made, since 
the structure of D-r is apparently not much nicer than that of D. However, it 
should be kept in mind that it is not D-l we are primarily interested in but 
rather its characteristic polynomial 

d,*(h) = det(D-l - hZ) = f S,*(T) X”. 
k=O 

Let D’(X) denote the (KZ + 1) x (n + 1) matrix defined by 

D’(h) = fffm). (10) 

n 

By performing elementary row and column transformations on D’(X), the 
following result is readily obtained. 

FACT 4. 

Let us write 

det D’(X) = -(n - 1) 2nA*T(X). (11) 

det D’(X) = 2 S;(T) X”. 
k=O 
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Then from elementary linear algebra we have 

A $) = (-A)“(det D) A r*(P) 

(12) 
= -(n - 1) 2”-ah~Ar*(h-1) by (6). 

Hence, by (10) and (ll), 

6,(T) = -(n - 1) 2”-%,*_,(T) 
(13) 

= %8:-,(T). 

Since for large n most of the entries in D’(h) are 0, it is reasonable to expect that 
the calculation of the S,(T) by means of (13) will be simpler than a direct expansion 
of det(D - AI). If we expand det D’(h) and collect the terms which contribute to 
the An-” term, we find 

Simk(T) = (-2)n-k C det 
il....& 

where the sum ranges over all choices of 1 < i1 < *.* < i, < n. 

MARKED SUBFORESTS OF T 

The next step is to interpret the individual terms in the expansion of the 
determinants in (14) as enumerating certain subforests F of T in which the 
vertices and edges of F have been marked in various ways. Before giving the 
general construction, we illustrate the ideas with a simple example. 

EXAMPLE. K = 1. From (14) we have 

b&(T) = (-2)“~~ T det (-(” - ‘) 
2 - di 

21d:), (15) 

where i ranges over 1 < i < n. Since 

-(n 1) 
- 

2 di 
- 

det - - - - 
2 - di -di = (n 1) d< (d, 2)(d, 2), 
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we can rewrite (15) as 

l)di--Cd,(d,-l)+3Cdi--C4. (15’) 
z , i I 

NOW, the term (n - 1) di can be thought of as counting the number of ways 
in which we can select an edge incident to Vi together with an arbitrary edge e 
(possibly the same one we chose incident to Vi)+ Since we sum over all i, the 

sum xi (n - 1) di just represents the number of ways of selecting an edge 
incident to some vi together with an arbitrary edge e. 

Consider a fixed subforest 2PI of T consisting of two disjoint edges shown 
in Fig. 2a. We claim it is counted four times in the sum ‘& (n - 1) di , for it 
contributes to the terms which correspond to choosing: 

(i) an edge from vjl and e = (vi, , vj,}, 

(ii) an edge from vi, and e = {q, , vi,}, 

(iii) an edge from vjs and e = {vi, , vi,}, 

(iv) an edge from vjr and e = {vi, , vi,}. 

e 
v,lo--ov, P v,l*+---OV, 2 V,10--V), * V,lO-DVi 2 

e e 
Vj80---OVj 4 V,3O-OV, 4 w,30-ov, 4 v,8*-Ovj 4 

(1) (11) (III) 

(4 (b) 

FIGURE 2. 

We can indicate this by “marking” the edges of 2P, as shown in Fig. 2b. 
The arrow on an edge indicates the vertex “responsible” for that edge. On 
the other hand a subforest PI of T consisting of a single edge (vi1 , vi,} is counted 
twice in the sum, corresponding to the choices i = jI , e = {vjI , vi,} and i = jz , 
e = {q, , q} (see Figs. 3a and 3b). 

e 
v,l*‘-ov, 

*I 2 
e 

*ll---o*~p 
e 

v,l+--ov, 2 v,~~~~~V, 
Vi P 

e 
v,lO+w, a v,l-----ovi 

*I 
* 

e 
vjl-.-v, 

*j 
e 

e 
vilO---o-.v,* 

*i 

(4 (b) (4 (4 

FIGURE 3. 
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Finally, a subforest Ps, a path of length 2, is counted four times, as shown 
in Figs. 3c and d. Thus, we must have 

T (n - 1) 4 = 4N,P,(T) + 2NP,W + 4NP,W. (16) 

Next, we interpret XI di(di - 1) as an ordered choice of two distinct edges 
incident to vi . The resulting subforest of T must be isomorphic to Pe . We 
show the corresponding marking convention in Fig. 4b. Hence, 

C 44 - 1) = ~NP,(T). 
i 

In a similar way, we obtain 

3 c 4 = ~NP,(T), 

C 4 =14n = 4N,,(T) + 4, 
t 

since T has n - 1 edges. 

(4 
FIGURE 4. 

W 

Combining the preceding expressions, we obtain by (13) 

6,(T) = w+,(T) = (-l)“-12”-s(4N~JT) + 2Np,(T) + ~NPJT) - 4), 

which is just (6). 
Let us now examine the expansion of the general determinant in (14), namely, 

det 

where we label the rows and columns with (0, l,..., k}. An important observation 
is that the only permutation choices from the above matrix which can contribute 
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nanzevo terms to the determinant correspond to permutations rr with the cycle 
structure 

This follows at once from the fact that since T contains TW cycles, the only 
nontrivial cycles r can have either involve row 0 and column 0 (i.e., (Ojrj, ..*jr)) 
or have length 2 (i.e., (j,j,+,)). Furthermore, all the terms ai,,jz , u~,,~, ,..., LZ~~-~,~, 
must be 1. 

The permutation rr in (18) corresponds to the term 

... (-41+z,+l) ..* (64,) (19) 

in the expansion of (17). Wh en I = 0, this has the slightly different form 

-(n - l)(U~,+,,j,+*U~,+,,j,+,) ... F-d~,+2m+,> **- (--d,J. (19’) 

We may expand the term in (19) into three similar terms formed by replacing 

(2 - 4p - 4,) bY 

&djl - 2(+ + 4,) + 4. 

Next, we describe how various edges and vertices of T are to be marked in 
order to correspond to contributions from the terms (19) and (19’). 

(i) For the factor uil,izujz,jg ... uil-l,jl we distinguish the endpoints and 
the direction of the path in T from ujl to vuil (if I >, 2) as follows: 

(ii) For the factor di , we mark an edge of T incident to q with an arrow 
pointing to the shaded vertex vi : 

(iii) For the factor (u,,~u~,~) we distinguish the edge {vi, v~} in T: 
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(iv) For the factor (n - l), we mark an edge with the symbol e: 

(v) For the factor djd, (which will occur only when I = l), we mark 
one edge incident to Vj with an arrow to v, and a symbol @ and we mark one 
edge (possibly the same edge) with an arrow to wj and a symbol 0; also, we 
circle and shade Vj . 

The terms (19) or (19’) now correspond exactly to the number of ways T 
can be marked according to rules just given. Of course, one must keep in mind 
the fact that degeneracies may occur; e.g., some edges of T may receive several 
marks. 

For example, from (ii) and (iv) we may have 

and from (v) we may have 

Vj ,O_ 

0 

The value of determinant (17) is now given by enumerating all possible ways 
of marking T according to (i) to (v) and summing the appropriate (signed) 
expressions over all choices of 1 <jl < ... < jlc < n. 

Of course, the terms of determinant (17) also have signs attached to them. 
Specifically, each term with the cycle structure of r in (18) has an additional 
sign factor of (- l)z+‘“L. 

A considerable simplification now results from the following observation. 
For each marking of T which contains an edge marked by (iii), i.e., 

(because of a factor (ai,gaj,i)), there is another marking of T which is identical 
except for the edge (wa , q}, now (degenerately) marked by (ii) as 
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Furthermore, the corresponding terms in the expansion of (17) from which 
the two markings come have opposite signs. This is obvious, since the two per- 
mutations differ only in that the factor (~,,~a~,~) in one is replaced by (--dJ(--d,) 
in the other and such a change certainly changes the sign of the permutation. 
Hence, all the contributions from the markings of the type in (iii) are canceled 
out by all the markings in which the edge {vi , q} has two arrows, one to r+ 
and one to q , and for which di and dj have been selected from the diagonal 
of (17) (i.e., di and d, do not come from the cycle (Ojr ... jJ = (Oi .**j) of a 
permutation). 

Thus, we may henceforth restrict our consideration to permutations in (18) 
for which m = 0, i.e., those 7r of the form 

r = (Oh -.-jl)(jlfl) -a* (id (20) 

provided the edges {vi , q} in T marked as 

come only from the factors (2 - di)(2 - dj) of a term. However, since for any 
permutation r in (20) there is at most one cycle (Oj, ... jr) containing 0, in the 
corresponding markings of T, at most one edge can have arrows at each of its 
endpoints. 

The specific terms of the determinant which come from the n in (20) are 

I. I = 0: -(n - 1)(--d,,) ... (-d,,>, sign v  = 1. 

II. I = 1: (2 - dil)(2 - dj,)(-di,) ... (-djk), sign CT = -1. 

We split this into the sum of the three terms: 

(0 d,,dj,(-4,) .*’ (--dj,>, 

(ii) --4dj,(-4,) ... (--djJ, 

(iii) 4(-d,,) ... (-d,,). 

III. 
(-l)Z. 

1 > 2: (2 - dj,) ajl,i, ... ajlel,gz(2 - d,J(-djl+l) 1.. (-dj,), sign ZT = 

We also split this into the sum of three terms: 

(9 (djl - 1) Ujl,ia ..’ ujLel,j~(4~ - l)(--dj~+J *.* (--djJ 

(4 -((4, - 1) + (4, - 1)) ujl.io ... uj,-l.j,(-4z+l) *** (-djJ, 

(iii> ujl,ja ... uj~-l.j,(-4~+l) .m. (--4J 

Our next task is to examine the number of ways a given subforest F of T 
can be marked so as to contribute to the nonzero terms in I and II. I f  F is a 
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forest with connected components C, ,..., C, (which of course are trees), we 
define 

j F ) = the number of vertices of F, 

]I F I] = the number of edges of F, 

We let & denote the set of all forests having no isolated vertices and exactly 
k edges. For the empty forest F*, we set ?s(F*) = 1. 

Since each factor dj and u$,~ corresponds to the marking of a unique edge of T, 
with the exception of dj, and 4, in II which may degenerate, it follows that we 
must have ]I F I\ = k + 1, k or k - 1. We remark that at this point, it follows 
readily that S,(T) can be expressed in the form (7). Furthermore, since the F 
have no isolated vertices, it follows from results of SzemerCdi and one of the 
authors [8] that the coefficients A, tk) will be unique. These coefficients we now 
proceed to determine. 

THE NUMBER OF MARKINGS OF F 

Let F be an arbitrary fixed subforest of T with components C, ,..., C, and 
no isolated points. We wish to determine in how many ways T may be marked 
according to the conditions of the preceding section so that the marked edges 
are exactly the edges of F. Because of the restrictions on marking T, it follows 
that all Ci except possibly one, which we denote by C*, have all edges marked 
according to (ii), i.e., as 

We say that Ci is marked normally in this case. The number of ways Ci can be 
marked normally is just 1 C, I, the number of vertices of C, . This is because 
each vertex of such a Ci , except for exactly one vertex w, must have an incoming 
arrow. All other vertices have exactly one incoming arrow and all other incident 
edges with outgoing arrow. Thus, w serves as a “source” and all other arrows 
are determined (see Fig. 5). Hence, it suffices to determine the number of ways 
the exceptional component C* can be marked. 

FIG. 5. A normally marked component. 
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As we have noted, F can have only k + 1, k, or k - I edges. We treat the 
three cases separately. We first interpret the absolute value of the terms and 
then determine the appropriate signs. 

IlFll = k + 1 

1. (n - w,) ... (4,) ( see Fig. 6). If the edge e corresponding to the 
choice for the factor (G - 1) is removed from C*, exactly two of the resulting 
components can be arbitrarily marked normally, i.e., using (ii). The directions 
of the arrows on all other edges are forced. Thus, for each choice of “source” 
vertices x and y in C*, there are dr(x, y) = d(~c, y) possible locations of the 
edge e. Therefore, there are exactly 

ways of marking C* in this case. Since the sign of the permutation r in (20) 
is $1, the total contribution to the determinant is 

(21) 

FIGURE 6 

II(i). dj,di,(di,) .*. (djh) (see Fig. 7). Since I/F jl = k + 1, there are no 
multiply marked edges. Using an argument similar to that in the preceding 
case (where an extra factor of 2 comes from the labeling of the edges with @ 
and @), we obtain a total contribution in this case of 

(22) 
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The summand here is d(x, y) - 1 instead of d(x, y), since we have a choice 
of a vertex on the path between the sources x and y instead of the edge we had 
in the preceding case. 

FIGURE 7 

III(i). (dil - 1) u~,,~, *.. ai,-,.j,(df, - l)(d,z+l) ... (d,,) (see Fig. 8). Now 
on the path between the sources x and y we must choose the two points vi, 
and v. as well as a direction. Thus, the total contribution in this case is ‘2 

(23) 

The remaining cases II( (iii) and III(ii), (iii) cannot contribute for 
IlFll =k+ 1. 

FIGURE 8 

Hence, combining (21), (22), and (23) we obtain the following result by the 
use of (7), (13), and (14). 

FACT 5. IfllFll =k+ 1, 

Note that (24) can be written alternatively as 

IIFII = k 
In some ways this is’the most difficult case. 
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I. (n - l)(d,l) ... (d,,). Th e multiply marked edge must be an edge 
which has both an arrow and the symbol e. All components are initially marked 
normally (i.e., using (ii)). Th en an arbitrary edge of F is selected for e. The total 
contribution is therefore 

(- 1)k+14F) IIF Il. (25) 

II(i). d,,di,(dj,) ... (d,,). Th ere are two ways an edge can be lost. They 
are shown in Fig. 9. In Fig. 9a, for each choice of a pair of points of C*, there 
are two ways of marking C*, corresponding to the choices of the vertex to be 
called x and the vertex to be called y. The total contribution is 

t 
(--l)k2?rfF) a?1 I ii I tz,~cct 1 = (--I)‘“?T(F) II F Il. (26) 

(b) 

FIGURE 9 

In Fig. 9b, the points x and y cannot be adjacent. Also, we have a factor of 
4 corresponding to the choice of the pair selected from C* to be called x and 
the assignment of @) and 0. Thus, the total contribution in this case is 

(27) 
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W). Nl - 1) +,J, *-* a,l-l,&l - M41+l) *** <4J The factor Ml - 1) 
is interpreted as choosing any edge of yi1 except the one on the path between v,~ 
and qz (with (c$ - 1) interpreted simdarly). The only possibility for marking 
C* is shown in Fig. 10. We, must have d(x, y) > 3, since I > 2. Once x and y 
and the direction are chosen, there are d(x, y) - 2 choices for qr . Thus, in 
this case the contribution is 

FIGURJJ 10 

II( 4d,1(d,p) a** (Q. This term has the property that it appears k times 
in the expansion of the determinant, once for each choice of the unparenthesized 
term d, . Since there are just k factors in it and 11 F II= k in thii case, no edges 
are lost: all components are marked normally, and the total contribution is 

(-I)k+14kn(F). (29) 

III@). -Wjl - 1) + (djz - 1)) Q~,J, -** ~~,-,,&41+,) *** (d$. The mark- 
ings corresponding to this case are shown in Fig. 11. As before, we must have 
d(x, y) > 2. The contribution is readily calculated to be 

= (-l)N%r(F) 
( 
4$r$-J ( ;c&W - 2lW$ W 

2. - 
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II(iii). 4(d,,) ... (djk). At first sight it would appear that there are no 
contributions to jj F 11 = K from this case. However, it must be recognized that 
this term actually occurs n - k + 1 times in the expansion of 6’,-,(T). We 
can write this as 

4(?2 - k + I)(&) ... (d&) = 4(n - K)(d,,) ... (djJ + 4(&J e** (&). (31) 

We interpret the term 4(n - k)($,) ... (d,,) as selecting distinct edges incident 

to vj, ,..., vjK (as usual) together wrth another distinct edge e* (since T has n - 1 
edges altogether). The corresponding marking is shown in Fig. 12. This therefore 
contributes 

(32) 

There are no other contributions to jl F jl = k. We may now sum all the 
preceding expressions for the case 11 F /[ = K to obtain the following result. 

FIGURE 12 

(33) 

There are no contributions here from I. 

II(i). djldil(dj,) **. (Q. Th ere are two possibilities here. They are shown 
in Fig. 13. In Fig. 13a, an edge of C* is chosen and one end is distinguished. 

Thus, this case contributes 

t IIW 
WP=(F)*~ 1 Ci, * (34) 

(0 1 (b) 

FIGURE 13 
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In Fig. 13b, a pair of points X, y with d(x, y) = 2 is chosen and the two edges 
between them are ordered. Hence, this case contributes 

(35) 

II( 4d,l(d,p) *** (Q Th e marking shown in Fig. 14 can contribute to 
only two terms, namely, 4(d,,) ... di --* (4) .a- (djk) and4(d,J ... (dJ ... dj .a. (%), 
since the parenthesized d{s cannot place arrows on the same edge. Hence, to 
mark C*, we simply choose a distinguished edge. The factor of 2 comes from 
the two terms to which this marking contributes. The resulting expression is 
therefore 

(--l)“fl8?r(F) il # . (36) 

FIGURE 14 

II(iii). 4(d,,) e-m (d3,). F rom the discussion of case II(iii) for 11 F 11 = k, 
we may use expansion.(31). In particular, the second term 4(d,B) *:a (d,J now 
summed just over 1 < ja < .a* < jk < n, results in a contribution of 

(-ur 44-9. (37) 

1110. MI - 1) +2 0.. q--l,&4z - N4,+,) --a (4J The marhzs of 
C* contributing to 11 F 11 = K - 1 are shown in Fig. 15. Since I > 2, we must 
have d(x, y) > 3. The contribution here is 

1). (38) 

Roum 15 

607/29/I-6 
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Wii). ((4, - 1) + (d,! - 1)) ajl.i, ..* ajz-l,jl(4g+l) --a (Q. The corre- 
sponding marking is shown m Fig. 16. We must have d(x, r) > 2. Thus, we 
obtain a contribution of 

= (-l)““n(+~ll-4~1-#). (39) 

FIGURE 16 

III(iii). ajl,jp *** ~~~-~,~1(d~,+,) -** (%). We show the marking in Fig. 17. 
The contribution is 

= (-1)*+9II~II. (40) 

FIGURE 17 

By combining the expressions in (34)-(&l) we obtain the following result. 

FACT 7. Ifl(Fj( =k- 1 then 

(41) 

In Table III (see Appendix) we list the values of A;*) for FE 9, , m < 5. 
We combine Facts 5, 6, and 7 into the main result of the paper. 
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THEOREM. L.et T be a tree with n > 2 vertices and distance matrix D(T). 
Zf we write 

then 

d,(h) = det(D( T) - M) = 2 b,(T) A* 
k-=0 

(42) 

where C ranges over all com..ts of F. 

It follows from the theorem that we can rephrase (42) in the following 
appealing recursive form. 

THEOREM’. For all trees T with n >, 2 vertices 

a,(T) = (-l)n--l2’+-k--1 

x F~~~+la~~~ NFW + & bW N&O + 
I 

C 
k PE%k-l 

w(F) WI1 

where aF , b, , cF are dejned as follows: 

(i) For the empty tree F*, a, = b,* = 0, cFa = -4. 

(ii) Zf F is a tree T’ with n’ > 2 vertices and distance matrix (d&) then 

aF’ = -j- C 4,(2 - dt,), 
t-3 

b,v = -$ C (2 - d;,), 
tc.i 

(iii) Zf F is the disjoint union of forests FI andF, then 

UP = aF, f aF,, 

bF = b, + b, , 

cF = cPl + cFn + 4. 
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CONCLUDING REMARKS 

From Table II (see Appendix), it is apparent that in many cases Ag) = 4&-l) 
when 11 F/I = k. The following result explains this phenomenon. By a star S, 
we mean a tree having m edges and at most one vertex of degree exceeding 1. 

FACT 9. If F z’s a union of stars and II F II = k then 

&d = 4,y-1) 

Proof. We first calculate 

&Z-l’ = m, AL? = 4m, 7+%z) = m, 

which implies 

gy-1, zzz 1, B$z’ = 4. 

The desired result now follows by Fact 8. g 

Note that by Fact 7, for 11 F I[ = k - 1, 

A’,‘<0 i f f  F is a tree, 

A&() i f f  F = 2P,. 

We remark that it is possible to have two different forests F and F’ such that 
Ajj”) = A$) for all k. An example of such a pair is 

for which 

F = S, u 3S3 v 3S, u S,, , 
F’ = 4s, u 4s, ) 

IIFII = IIF’II = 36, n(F) = r(F’) = 21234, 

Aip35) = A’,3;’ = 211 . 33. 37, 

AI,““’ = A$) zzz 213 * 33 * 37 (by Fact 9), 

@’ = A!$?) = p-33.31. 

Since we know 6,-,( 2’) = 0 for all T, then for k = n - 1 the theorem reduces 
to the simple identity 

c 0, Y) - c 4el , e2) = II Tl12, (43) 
(x.v)CT {e,,e&edges of T  

where d(el , e2) is defined to be the length of the path joining the edges e, and e2 . 
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In’ [4, it is shown that for all trees T, 

(-l)“-‘S,(T) > 0 for O<K<n--1, (44 

where n = 1 T I. It appears that in fact for each tree T, the quantities 
(- 1),-r a,( T)/2”-k-a are unimodal with the maximum value occurring for 

k = [n/2]. We see no way to prove this, however. 
As we noted in the Introduction, it has recently been shown that noniso- 

morphic trees can have the same distance matrix polynomial. The smallest 
such pair, due to McKay [15], is shown in Fig. 18. In fact, just as in the cor- 

FIG. 18. ‘The smallest pair of nonisomorphic trees T and T’, &(A) = &(A). 

responding case for adjacency matrix polynomials of trees [13], McKay has 
shown that almost all large trees T have (exponentially) may distance cospectral 
mates, i.e., nonisomo+hic trees which share the same distance matrix poly- 
nomial d,(h). 

More generally, one might consider do(X) for general graphs G. It would 
be interesting to know the result which corresponds to the theorem in this case. 
It has been shown [14] that in general the determinant det(D(G)) of the distance 
matrix of a connected graph G depends only on the blocks (= maximal 2- 
connected subgraphs) of G and not on how they are interconnected. In partic- 
ular, this gives a particularly lucid explanation of why det(D(T)) depends 
only on the size of T and not on its structure. 
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APPENDIX 

In Tables I, II, and III we give short lists of the trees on at most eight vertices 
(Table I) (see [lo]), the d,(X) for these trees (Table II), and the coefficients A$) 
for k < 5 (Table III). 

TABLE I 

Trees on n Vertices, n < 8 
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TABLE II 

CodWenta of A#) for All Trees on at Most Eight Vezticcsm 

85 

k 

ti 0 1 2 3 4 5 6 7 8 

n=l 

t1 0 -1 

n=2 

h 1 0 -1 

n=3 

t1 2 6 0 -1 

Tl=4 

t1 
ta 

3 16 20 0 -1 

3 14 15 0 -1 

n=5 

t1 
ta 
t-4 

4 30 70 50 0 -1 

4 28 58 38 0 -1 
4 24 44 28 0 -1 

n=6 

t1 5 48 162 224 105 0 

ta 5 46 145 184 84 0 

t-a 5 46 143 178 77 0 

t4 5 44 126 148 65 0 

t5 5 42 117 136 60 0 

to 5 36 90 100 45 0 

n=7 

t1 
tn 
ts 
t4 

6 70 308 630 588 196 
6 68 286 552 488 164 
6 68 284 540 464 148 
6 68 282 528 438 132 

-1 
-1 
-1 
-1 
-1 
-1 

0 -1 
0 -1 
0 -1 
0 -1 

Table contid 
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TABLE II (continued) 

k 

ti 0 1 2 3 4 5 6 7 a 

$5 

t0 

t7 

ta 

to 

ho 

t11 

n=8 

t1 

tz 

t3 

h 

t5 

t, 

t7 

ts 

to 

ho 

t11 

ha 

t1s 

h 

t15 

he 

t17 

h6 

ho 

ho 

hl 

ha 

t-A3 

6 64 248 438 366 122 0 

6 64 244 442 340 108 0 

6 58 200 324 208 86 0 

6 50 156 240 190 66 0 

6 66 264 476 402 134 0 

6 66 260 460 376 120 0 

6 62 222 366 292 96 0 

7 96 530 1408 1980 1344 336 

7 94 493 1280 1721 1134 291 

7 94 491 1264 1672 1068 264 

7 94 489 1246 1611 984 228 

7 94 491 1262 1662 1056 255 

7 90 445 1080 1365 875 227 

7 90 441 1052 1293 790 195 

7 90 437 1026 1227 720 172 

7 a4 426 852 1011 624 164 

7 84 376 822 948 564 143 

7 76 310 636 715 432 116 

7 66 245 476 525 322 91 

7 92 466 1156 1483 952 248 

7 92 464 1138 1432 892 223 

7 92 460 1110 1356 808 191 

7 92 460 1112 1368 824 200 

7 92 462 1128 1411 872 216 

7 88 418 960 1159 720 188 

7 88 410 920 1075 640 160 

7 88 412 930 1096 660 167 

7 82 349 732 829 498 131 

7 84 362 764 867 520 136 

7 90 433 996 1185 714 179 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

D The ti refer to trees listed in the order of Table I. The automatic factor of 2n-K-2 has 
been removed from all coefficients except S,(tJ, which is always - 1. 
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TABLE III 

Coefficients A?’ in the Expansion S,(T) = ZF A$’ NAT) for 11 F II < 5 Q 

87 

(empty) 

- 

0 c 0 
- - 

A 
0 3 c 0 

- 0 f 0 
- 
zz 

x 

A- 
- - 
- 0 - 3 0 
- - 0 t 0 

-- -- 

I 
*(Of 

F 

A(I I 
F 

A(2l 131 (4) 

F AF AF 

,(5) 

F II 
F 

16 

32 

S The shaded regions are 0. 
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