The Distance Spectrum of a Tree

Russell Merris

DEPARTMENT OF MATHEMATICS AND COMPUTER SClENCE **CALIFORNIA STATE UNIVERSITY** *HAYWARD, CAL lFORNlA*

ABSTRACT

Let *T* be a tree with line graph T^* . Define $K = 2I + A(T^*)$, where *A* denotes the adjacency matrix. Then the eigenvalues of $-2K^{-1}$ interlace the eigenvalues of the distance matrix *D.* This permits numerous results about the spectrum of *K* to be transcribed for the less tractable *D.*

Let $T = (V, E)$ be a tree with vertex set $V = \{1, 2, \ldots, n\}$ and edge set $E = \{e_1, e_2, \ldots, e_m\}, m = n - 1$. The distance matrix $D = D(T) = (d_{ij})$ is the n -by-n matrix in which d_{ij} is the number of edges in the unique path from vertex *i* to vertex *j.* In 1971, R. L. Graham and H. 0. Pollak showed that $det(D) = (-1)^{n-1}(n-1)2^{n-2}$, a formula depending only on *n*. It follows that *D* is an invertible matrix with exactly one positive eigenvalue. In spite of this elegant beginning, results on the spectrum of *D* have been few and far between.

Since any bipartite graph is 2-colorable, we may assume each vertex of T has been given one of the "colors," plus and minus, in such a way that each edge has a positive end and a negative end. The corresponding vertex-edge *incidence matrix* is the *n*-by-*m* matrix $Q = Q(T) = (q_{ii})$, where $q_{ii} = 1$ if vertex *i* is the positive end of e_i , -1 if it is the negative end, and 0 otherwise. Define $K = K(T) = Q'Q'$. Then $K = 2I_m + A(T^*)$, where $A(T^*)$ is the 0-1 adjacency matrix of the line graph of T . Like D , the determinant of K is a function only of *n*. Indeed, $det(K) = n$. In contrast to *D*, however, all the eigenvalues of K are positive. (It follows, as first observed by A. J. Hoffman, that the minimum eigenvalue of $A(T^*)$ is greater than -2 . This has led to the notion of a "generalized line graph" and to an interesting connection with root systems [2, Section 1.11.)

A close relation of K is the so-called *Laplacian matrix* $L(T) = QQ'$. It turns out that $L(T) = \Delta(T) - A(T)$, where $\Delta(T)$ is the diagonal matrix of vertex degrees. The Laplacian first occurred in the Matrix-Tree Theorem of Kirchhoff. More recently, its spectrum has been the object of intense study stimulated in

Journal of Graph Theory, **Vol.** 14, **No.** 3, 365-369 (1990) *0* 1990 by John Wiley & Sons, Inc. *CCC* 0364-9024/90/030365-05\$04 *.OO*

part by chemical applications *[5,9,* 191 and in part by M. Fiedler's notion of "algebraic connectivity" [**101.** Of course, the m eigenvalues of *K* are precisely the nonzero eigenvalues of $L(T)$.

Theorem. Let *T* be a tree. Then the eigenvalues of $-2K^{-1}$ interlace the eigenvalues of *D.*

The key to the proof is an elementary observation implicit in **[7,8]** and first proved explicitly by William Watkins *(221.*

Lemma. If *T* is a tree on *n* vertices and $m = n - 1$ edges, then $Q'DQ = -2I_m$.

Proof. $q_{i3}d_{ij}q_{ji} = 0$ unless *i* is an end vertex of the sth edge e_3 and j is an end vertex of e_i . Let $e_i = \{w, x\}$ and $e_i = \{y, z\}$, where x and z are the positive end vertices. Then $\Sigma_{i,j\in y} q_{is} d_{ij} q_{ji} = d_{wy} - d_{wz} - d_{xy} + d_{xz}$.

If $s = t$, then $d_{wy} = d_{xz} = 0$ while $d_{wz} = d_{xy} = 1$, so the sum is -2. If $s \neq t$, it may still happen that $w = y$ or $x = z$. If $w = y$, then $d_{wy} = 0$, $d_{xz} = 2$, and $d_{wz} = d_{xy} = 1$, so the sum is zero. The case $x = z$ is handled similarly. If *w*, *x*, y , and z are four distinct vertices then either x is on the (unique) path from w to *e,* or w is on the path from **x** to *e,.* These cases are similar. We argue the first, i.e., $d_{w} = d_{xy} + 1$ and $d_{yz} = d_{xz} + 1$. In this case, the sum is

$$
d_{xy} + 1 - (d_{xz} + 1) - d_{xy} + d_{xz} = 0.
$$

To prove the theorem, note first that, as *K* has rank m, the m columns of *Q* are linearly independent. We wish to perform a Gram-Schmidt orthonormalization process on these columns. Noting that this can be accomplished by a sequence of elementary column operations, we establish the existence of a nonsingular m-by-m matrix *M* (depending on *T)* such that the columns of the n-by-m matrix *QM* are orthonormal.

Recall that the column spaces of *Q* and *QM* are the same. Now, each column of *Q* contains exactly 2 nonzero entries, one 1 and one -1 . Denote by *F* the n-by- 1 column matrix, each of whose entries is equal to **1.** Then *F* is orthogonal to every column of *Q,* and hence to every column of *QM.* In particular, the *n*-by-*n* partitioned matrix $U = (QM | F/\sqrt{n})$ is orthogonal.

Now,

$$
U'DU = \begin{pmatrix} M'Q'DQM & M'Q'R/\sqrt{n} \\ R'QM/\sqrt{n} & 2W/n \end{pmatrix},
$$
 (1)

where $R = DF$ is the column vector of row sums of *D*, and $W = F'DF/2$ is the so-called Wiener Index from chemistry [*16,20,21].* Of course, the orthogonal similarity has preserved the spectrum of D . By the lemma, the leading m -by-m principal submatrix of $U'DU$ is $-2M'M$. If we could show that M'M and K^{-1} have the same spectrum, we could apply Cauchy interlacing and be done. Now, recall that $K = Q'Q$ and that *M* was chosen so that the columns of *QM* are orthonormal. Thus, $M'KM = M'Q'QM = I_m$. But then $M^{-1}K^{-1}(M')^{-1} = I_m$, i.e., $K^{-1} = MM'$. So, K^{-1} and $M'M$ do have the same spectrum. **I**

Before applying the results, we note some applications of the technique. Returning to (1), a new proof that $W = n(\text{trace}(K^{-1}))$ emerges from the fact that trace $(D) = 0$. (B. McKay seems to have been the first to notice this formula for the Wiener Index. Previous proofs have appeared in [**161** and [181. The first of these is based on an explicit graph-theoretic interpretation for the entries of K^{-1} .) Second, it follows from the lemma that *D* has at least $m = n - 1$ negative eigenvalues. Since its Perron root is positive, we have a new proof that the inertia of *D* is $(1, m, 0)$. (Similar arguments could be based on the observation that $Q'(xD + yI_n)Q = -2xI_m + yK$.) Finally, since $Q'DQ$ and DQQ' have the same nonzero eigenvalues, the characteristic polynomial of $DL(T)$ *is* $x(x + 2)^{n-1}$.

To illustrate the theorem itself, let $d_1 > 0 > d_2 \ge \cdots \ge d_n$ be the eigenvalues of $D = D(T)$ and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{n-1} > 0$ be the eigenvalues of $K = K(T)$. Then $\lambda_{n-1} = a(T)$ is Fiedler's *algebraic connectivity*, and $1/\lambda_i, l \le i \le n$, are the eigenvalues of K^{-1} . Our theorem becomes

$$
0 > \frac{-2}{\lambda_1} \ge d_2 \ge \frac{-2}{\lambda_2} \ge \cdots \ge \frac{-2}{\lambda_{n-1}} \ge d_n. \tag{2}
$$

A *pendant vertex* of *T* is a vertex of degree 1. **A** *pendant neighbor* is a vertex adjacent to a pendant vertex. Suppose T has p pendant vertices and q pendant neighbors.

Corollary 1. Let *d* be an eigenvalue of $D(T)$ of multiplicity *k*. Then $k \leq p$.

Proof. By [15, Theorem 2.3], $p - 1$ is an upper bound on the multiplicity **Proof.** By [15, Theorem 2.3] of any eigenvalue of $K(T)$.

More information is available for certain specific eigenvalues. In [12], for example, the exact multiplicity of λ_{n-1} was determined for "Type I" trees. It was shown in [15, Theorem 2.1 (ii)] that, apart from 1, $K(T)$ has no multiple integer eigenvalue. Thus, no eigenvalue of $D(T)$ of the form $-2/t$, $t = 2, 3, \ldots$, can have multiplicity greater than 2.

Corollary 2. Among the eigenvalues of $D(T)$, $d = -2$ occurs with multiplicity at least $p - q - 1$.

Proof. Isabel Faria [6] showed that the multiplicity of $\lambda = 1$ as an eigenvalue of $K(T)$ is at least $p - q$.

Let $s(T)$ be the number of times $\lambda = 1$ occurs as an eigenvalue of $K(T)$, in excess of Faria's bound. Section **111** of [151 establishes various bounds for *s(T)* in terms of the structure of *T*. It is proved, for example, that $s(T)$ is at most

the covering number of the forest induced by *T* on the vertices left after the pendants and their neighbors are removed. In [131, Faria-type bounds are obtained for other eigenvalues. Transcribing those for the distance matrix, it is clear from a glance at the tree in Figure 1 that $(x^2 - 6x + 4)^2$ exactly divides the characteristic polynomial of its distance matrix. (What is not clear is why $(x^2 - 6x + 4)^3$ should be a factor!)

Corollary 3. Let δ be the diameter of *T*. Then

$$
d_n \leq \frac{-1}{1 - \cos(\pi/(\delta + 1))}
$$

Proof. M. Doob [3] showed that the right hand side is an upper bound for $-2/a(T)$. **m**

Many results are available in the literature concerning the algebraic connectivity $a(T) = \lambda_{n-1}$. See, e.g., [1, 10–12, 14, 18, 19].

Corollary 4. Let T be a tree with diameter δ and denote the greatest integer in $\delta/2$ by k. Then

(i) $d_k > -1$; (ii) $d_q > -1$ (provided $n > 2q$); (iii) $d_{n-q+2} < -2$; (iv) $d_p \ge -2$; and (v) $d_{n-p+2} \leq -2$.

Proof. It is proved in [15, Corollary 4.3] that $\lambda_k > 2$, in [17, Theorem 2] that $\lambda_q > 2$, and in [15, Theorem 3.11] that $\lambda_{n-q+1} < 1$. To prove (iv) and (v), note that I_p is a principal submatrix of $L(T)$. By interlacing, $\lambda_p \ge 1$ and $\lambda_{n-p+1} \le 1$.

In the exceptional case $n = 2q$, it turns out that $\lambda_q = 2$. If $n > 2q$, it may still happen that $\lambda_t = 2$ for some (at most 1) value of *t*. If so, Fiedler [11, p. 612] has shown how to determine *t*: Let *u* be an eigenvector of $L(T)$ affording 2. Then the number of eigenvalues of $L(T)$ greater than 2 is equal to the number of edges $\{i, j\} \in E$ such that $u_i u_j > 0$.

References

- [**1 I** F. Bien, Constructions of telephone networks by group representations, *AMS Notices* **36 (1989), 5-22.**
- [2] D. Cvetković, M. Doob, I. Gutman, and A. Torgasev, *Recent Results in the Theory* of *Graph Spectra.* North-Holland, Amsterdam **(1988).**
- **[3]** M. Doob, An interrelationship between line graphs, eigenvalues, and ma troids. *J. Combinat. Theory B* **15 (1973) 40-50.**
- **[4]** M. Edelberg, M. R. Carey, and R. L. Graham, On the distance matrix of a tree. *Discrete Math.* **14 (1976) 23-39.**
- **[5]** B. Eichinger, Configuration statistics of Gaussian molecules. *Macro molecules* **13 (1980) 1-1 1.**
- **[6]** I. Faria, Permanental roots and the star degree of a graph. *Linear Algebra Appl.* **64 (1985) 255-265.**
- **[7]** R. L. Graham and L. Lovisz, Distance matrix polynomials of trees. *Adv. Math.* **29 (1978) 60-88.**
- **[8]** R. L. Graham and H. 0. Pollak, On the addressing problem for loop switching. *Bell System Tech. J.* **50 (1971) 2495-2519.**
- **[9]** I. Gutman, Graph-theoretical formulation of Forsman's equations. J. *Chem. Phys.* **68 (1978) 1321-1322.**
- **[lo]** M. Fiedler, Algebraic connectivity of graphs. *Czech. Math.* J. **23 (1973) 298-305.**
- **[ll]** M. Fiedler, Eigenvectors of acyclic matrices. *Czech. Math.* J. **25 (1975) 607-618.**
- [12] R. Grone and R. Merris, Algebraic connectivity of trees. *Czech. Math. J.* **37 (1987) 660-670.**
- **[13]** R. Crone and R. Mems, Cutpoints, lobes and the spectra of graphs. *Port. Math.* **45 (1988) 181-188.**
- [**141** R. Crone and R. Mems, Ordering trees by algebraic connectivity. *Graphs and Combinat.,* to appear.
- [**151** R. Crone, **R.** Menis, and V. S. Sunder, The Laplacian spectrum of a graph. *SIAM* J. *Matrix Anal. Appl.,* **11 (1990) 218-238.**
- [16] R. Merris, An edge version of the matrix-tree theorem and the Wiener index. *Linear and Multilinear Algebra,* **25 (1989) 291-296.**
- **[17]** R. Merris, The number of eigenvalues greater than two in the Laplacian spectrum **of** a graph. Submitted.
- [**181** B. Mohar, Eigenvalues, diameter, and mean distance in graphs. Preprint.
- [**191** B. Mohar, The Laplacian spectrum of graphs. Preprint.
- **[20]** D. H. Rouvray, Predicting chemistry from topology. *Sci. Am. 255* **(1986) 40-47.**
- **[21] D.** H. Rouvray, The role of the topological distance matrix in chemistry. *Mathematics and Computational Concepts in Chemistry.* Ellis Horwood, Chichester **(1986) 295-306.**
- **[22]** W. Watkins, unpublished.