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ABSTRACT 

Let T be a tree with line graph T*. Define K = 21 + A(T*), where A de- 
notes the adjacency matrix. Then the eigenvalues of -2 K-’ interlace the 
eigenvalues of the distance matrix D. This permits numerous results 
about the spectrum of K to be transcribed for the less tractable D. 

Let T = ( V , E )  be a tree with vertex set V = { 1 , 2 , .  . . , n }  and edge set 
E = {e , , e , ,  . . . ,em}, m = n - 1. The distance matrix D = D ( T )  = (d,,) is the 
n-by-n matrix in which d,, is the number of edges in the unique path from 
vertex i to vertex j .  In 1971, R.  L. Graham and H. 0. Pollak showed that 
det(D) = (- l)”-’(n - 1)2”-*, a formula depending only on n.  It follows that D 
is an invertible matrix with exactly one positive eigenvalue. In spite of this ele- 
gant beginning, results on the spectrum of D have been few and far between. 

Since any bipartite graph is 2-colorable, we may assume each vertex of T has 
been given one of the “colors,” plus and minus, in such a way that each edge 
has a positive end and a negative end. The corresponding vertex-edge incidence 
matrix is the n-by-rn matrix Q = Q(T)  = (q,,), where qe = 1 if vertex i is the 
positive end of e,, -1 if it is the negative end, and 0 otherwise. Define 
K = K(T) = Q‘Q. Then K = 21, + A(T*) ,  where A(T*)  is the 0-1 adjacency 
matrix of the line graph of T. Like D, the determinant of K is a function only 
of n. Indeed, det(K) = n. In contrast to D, however, all the eigenvalues of K 
are positive. (It follows, as first observed by A. J .  Hoffman, that the mini- 
mum eigenvalue of A(T*)  is greater than -2. This has led to the notion of a 
“generalized line graph” and to an interesting connection with root systems 
[2, Section 1.11.) 

A close relation of K is the so-called Laplacian matrix L(T)  = QQr. It turns 
out that L ( T )  = A ( T )  - A ( T ) ,  where A ( T )  is the diagonal matrix of vertex de- 
grees. The Laplacian first occurred in the Matrix-Tree Theorem of Kirchhoff. 
More recently, its spectrum has been the object of intense study stimulated in 
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part by chemical applications [ 5 , 9 ,  191 and in part by M. Fiedler’s notion of 
“algebraic connectivity” [ 101. Of course, the m eigenvalues of K are precisely 
the nonzero eigenvalues of L ( T ) .  

Theorem. 
values of D .  

Let T be a tree. Then the eigenvalues of - 2 K - ’  interlace the eigen- 

The key to the proof is an elementary observation implicit in [7,8] and first 
proved explicitly by William Watkins (221. 

Lemma. If T is a tree on n vertices and m = n - 1 edges, then Q‘DQ = -21,. 

Proof. q1,d,qI, = 0 unless i is an end vertex of the sth edge e, and j is an 
end vertex of e,. Let e, = {w, x} and el = { y, z},  where x and z are the positive 
end vertices. Then CI, lE,  qlsd,lqll = d, - d,,, - d, + d,:. 

If s = t ,  then d, = dXz = 0 whiled,: = d, = 1, so the sum is - 2 .  If s # t ,  
it may still happen that w = y or x = z. If w = y, then d, = 0, dxz = 2, and 
d,, = d, = 1 ,  so the sum is zero. The case x = z is handled similarly. If w, x, 
y, and z are four distinct vertices then either x is on the (unique) path from w to 
e, or w is on the path from x to e,. These cases are similar. We argue the first, 
i.e., d,,, = d, + 1 and d,: = d,: + 1. In this case, the sum is 

To prove the theorem, note first that, as K has rank m, the m columns of Q 
are linearly independent. We wish to perform a Gram-Schmidt orthonormali- 
zation process on these columns. Noting that this can be accomplished by a 
sequence of elementary column operations, we establish the existence of a 
nonsingular m-by-m matrix M (depending on T )  such that the columns of the 
n-by-m matrix QM are orthonormal. 

Recall that the column spaces of Q and Q M  are the same. Now, each column 
of Q contains exactly 2 nonzero entries, one 1 and one - 1 .  Denote by F the 
n-by- 1 column matrix, each of whose entries is equal to 1.  Then F is orthogonal 
to every column of Q ,  and hence to every column of Q M .  In particular, the 
n-by-n partitioned matrix U = (QM I F I G )  is orthogonal. 

Now, 

U’DU = 

where R = D F  is the column vector of row sums of D ,  and W = F ‘ D F / 2  is the 
so-called Wiener Index from chemistry [ 1 6 , 2 0 , 2 1 ] .  Of course, the orthogonal 
similarity has preserved the spectrum of D. By the lemma, the leading m-by-m 
principal submatrix of U‘DU is -2M‘M.  If we could show that M‘M and K - ‘  
have the same spectrum, we could apply Cauchy interlacing and be done. Now, 
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recall that K = Q'Q and that M was chosen so that the columns of QM are 
orthonormal. Thus, M'KM = M'Q'QM = I,,,. But then M - ' K - ' ( M ' ) - '  = I,,,, 
i.e., K- '  = MM'. So, K-'  and M'M do have the same spectrum. 

Before applying the results, we note some applications of the technique. Re- 
turning to (l), a new proof that W = n(trace(K--')) emerges from the fact that 
trace (D) = 0. (B. McKay seems to have been the first to notice this formula 
for the Wiener Index. Previous proofs have appeared in [ 161 and [ 181. The first 
of these is based on an explicit graph-theoretic interpretation for the entries of 
K-I . )  Second, it follows from the lemma that D has at least m = n - 1 nega- 
tive eigenvalues. Since its Perron root is positive, we have a new proof that the 
inertia of D is (1, m, 0). (Similar arguments could be based on the observation 
that Q'(xD + yI,)Q = -2.~1, + y K . )  Finally, since Q'DQ and DQQ' have the 
same nonzero eigenvalues, the characteristic polynomial of DL(T) is x(x + 2)"-'. 

To illustrate the theorem itself, let d ,  > 0 > d2 2 . * -  2 d,  be the eigen- 
values of D = D ( T )  and A ,  2 A, 2 . - * 2 An- l  > 0 be the eigenvalues 
of K = K ( T ) .  Then An-'  = a ( T )  is Fiedler's algebraic connectivity, and 
l/A,, 1 5 i 5 n ,  are the eigenvalues of K-I.  Our theorem becomes 

I 

A pendant vertex of T is a vertex of degree 1. A pendant neighbor is a 
vertex adjacent to a pendant vertex. Suppose T has p pendant vertices and q 
pendant neighbors. 

Corollary 1. Let d be an eigenvalue of D ( T )  of multiplicity k .  Then k 5 p .  

Proof. By [15, Theorem 2.31, p - 1 is an upper bound on the multiplicity 
of any eigenvalue of K ( T ) .  I 

More information is available for certain specific eigenvalues. In [ 121, for ex- 
ample, the exact multiplicity of An-' was determined for "Type I" trees. It was 
shown in [ 15, Theorem 2.1 (ii)] that, apart from 1, K ( T )  has no multiple in- 
teger eigenvalue. Thus, no eigenvalue of D ( T )  of the form -2/t, t = 2,3,  . . . , 
can have multiplicity greater than 2. 

Corollary 2. 
ity at least p - q - 1. 

Among the eigenvalues of D ( T ) ,  d = -2 occurs with multiplic- 

Proof. Isabel Faria [6]  showed that the multiplicity of A = 1 as an eigen- 
value of K ( T )  is at least p - q. I 

Let s (T)  be the number of times A = 1 occurs as an eigenvalue of K ( T ) ,  in 
excess of Faria's bound. Section 111 of [ 151 establishes various bounds for s (T )  
in terms of the structure of T. It is proved, for example, that s ( T )  is at most 
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FIGURE 1 

the covering number of the forest induced by T on the vertices left after the 
pendants and their neighbors are removed. In [ 131, Faria-type bounds are 
obtained for other eigenvalues. Transcribing those for the distance matrix, it is 
clear from a glance at the tree in Figure 1 that (x2 - 6x + 4)2 exactly divides 
the characteristic polynomial of its distance matrix. (What is not clear is why 
(x2 - 6x + 4)3 should be a factor!) 

Corollary 3. Let 6 be the diameter of T. Then 

- 1  
d, 5 

1 - COS(T/(8 + 1)) 

Proof. M. Doob [3] showed that the right hand side is an upper bound for 
- 2 / 4 ~ ) .  m 

Many results are available in the literature concerning the algebraic connec- 
tivity a ( T )  = A n - , .  See, e.g., [ 1, 10-12, 14, 18, 191. 

Corollary 4. 
in 6/2 by k. Then 

Let T be a tree with diameter 6 and denote the greatest integer 

(i) dk > -1; 
(ii) d, > -1 (provided n > 2q); 

(iii) d,-,+, < -2; 
(iv) d, 2 -2; and 
(v) dn-p+2 5 -2. 

Proof. It is proved in [ 15, Corollary 4.31 that A, > 2, in [ 17, Theorem 21 
that A, > 2, and in [15, Theorem 3.111 that A n - , + ,  < 1 .  To prove (iv) and 
(v), note that I ,  is a principal submatrix of L ( T ) .  By interlacing, A, 2 1 and 
A,-,+, 5 1. I 

In the exceptional case n = 2q, it turns out that A, = 2. If n > 2q ,  it may 
still happen that A, = 2 for some (at most 1 )  value of t .  If so, Fiedler [ l l ,  
p. 6121 has shown how to determine t :  Let u be an eigenvector of L ( T )  afford- 
ing 2. Then the number of eigenvalues of L ( T )  greater than 2 is equal to the 
number of edges { i , j }  E E such that u,u, > 0. 
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