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ABSTRACT

Let T be a tree with line graph T*. Define K = 2/ + A(T*), where A de-
notes the adjacency matrix. Then the eigenvalues of —2K™" interlace the
eigenvalues of the distance matrix D. This permits numerous results
about the spectrum of K to be transcribed for the less tractable D.

Let T = (V,E) be a tree with vertex set V = {1,2,...,n} and edge set
E ={e,e,...,e,}, m=n — 1. The distance matrix D = D(T) = (d;) is the
n-by-n matrix in which d; is the number of edges in the unique path from
vertex i to vertex j. In 1971, R. L. Graham and H. O. Pollak showed that
det(D) = (—1)"'(n — 1)2""%, a formula depending only on n. It follows that D
is an invertible matrix with exactly one positive eigenvalue. In spite of this ele-
gant beginning, results on the spectrum of D have been few and far between.

Since any bipartite graph is 2-colorable, we may assume each vertex of T has
been given one of the “colors,” plus and minus, in such a way that each edge
has a positive end and a negative end. The corresponding vertex-edge incidence
matrix is the n-by-m matrix Q = Q(T) = (q;), where g; = 1 if vertex i is the
positive end of e¢;, —1 if it is the negative end, and O otherwise. Define
K = K(T) = Q'Q. Then K = 2I, + A(T*), where A(T*) is the 0—1 adjacency
matrix of the line graph of 7. Like D, the determinant of X is a function only
of n. Indeed, det(X) = n. In contrast to D, however, all the eigenvalues of K
are positive. (It follows, as first observed by A.J. Hoffman, that the mini-
mum eigenvalue of A(T*) is greater than —2. This has led to the notion of a
“generalized line graph” and to an interesting connection with root systems
[2, Section 1.1].)

A close relation of K is the so-called Laplacian matrix L(T) = QQ°. It turns
out that L(T) = A(T) — A(T), where A(T) is the diagonal matrix of vertex de-
grees. The Laplacian first occurred in the Matrix-Tree Theorem of Kirchhoff.
More recently, its spectrum has been the object of intense study stimulated in
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part by chemical applications [5,9, 19] and in part by M. Fiedler’s notion of
“algebraic connectivity” [10]. Of course, the m eigenvalues of K are precisely
the nonzero eigenvalues of L(T).

Theorem. Let T be a tree. Then the eigenvalues of —2K ™' interlace the eigen-
values of D.

The key to the proof is an elementary observation implicit in [7, 8] and first
proved explicitly by William Watkins {22].

Lemma. If Tis atree on n verticesand m = n — 1 edges, then Q’'DQ = —21,,.

Proof. gq,d;q;, = O unless i is an end vertex of the sth edge e, and j is an
end vertex of e, Let e, = {w,x} and e, = {y, z}, where x and z are the positive
end vertices. Then El_je‘, q9:dyq;, = d,, —d,.—d, + d,.

If s =t thend,, = d, = Owhiled,. = d, = 1,sothe sumis —2. If s # 1,
it may still happen thatw = yorx = z. If w =y, then d,, = 0, d,, = 2, and
d,, = d, = 1, so the sum is zero. The case x = z is handled similarly. If w, x,
y, and z are four distinct vertices then either x is on the (unique) path from w to
e, or w is on the path from x to e,. These cases are similar. We argue the first,
ie.,d, =d,+ 1andd,. = d,.+ 1. In this case, the sum is

d,+1-(d,+1) —-d,+d,=0. §

To prove the theorem, note first that, as K has rank m, the m columns of Q
are linearly independent. We wish to perform a Gram-Schmidt orthonormali-
zation process on these columns. Noting that this can be accomplished by a
sequence of elementary column operations, we establish the existence of a
nonsingular m-by-m matrix M (depending on T) such that the columns of the
n-by-m matrix QM are orthonormal.

Recall that the column spaces of Q and QM are the same. Now, each column
of Q contains exactly 2 nonzero entries, one 1 and one —1. Denote by F the
n-by-1 column matrix, each of whose entries is equal to 1. Then F is orthogonal
to every column of Q, and hence to every column of QM. In particular, the
n-by-n partitioned matrix U = (QM |F/ Vn) is orthogonal.

Now,

(1)

M'Q'DOM  M'QR/Vn
R'OM/N'n 2W/n ’

UDU = (

where R = DF is the column vector of row sums of D, and W = F'DF/2 is the
so-called Wiener Index from chemistry [16, 20, 21]. Of course, the orthogonal
stmilarity has preserved the spectrum of D. By the lemma, the leading m-by-m
principal submatrix of U'DU is —2M'M. If we could show that M'M and K '
have the same spectrum, we could apply Cauchy interlacing and be done. Now,
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recall that K = Q'Q and that M was chosen so that the columns of QM are
orthonormal. Thus, M'’KM = M'Q'QM = 1I,. But then M'K~'M")™' =1,
ie., K™' = MM’ So, K" and M'M do have the same spectrum. 1

Before applying the results, we note some applications of the technique. Re-
turning to (1), a new proof that W = n(trace(K D)) emerges from the fact that
trace (D) = 0. (B. McKay seems to have been the first to notice this formula
for the Wiener Index. Previous proofs have appeared in [16] and [18]. The first
of these is based on an explicit graph-theoretic interpretation for the entries of
K ') Second, it follows from the lemma that D has at least m = n — 1 nega-
tive eigenvalues. Since its Perron root is positive, we have a new proof that the
inertia of D is (1, m, 0). (Similar arguments could be based on the observation
that Q'(xD + yI,)Q = —2xl,, + yK.) Finally, since Q'DQ and DQQ" have the
same nonzero eigenvalues, the characteristic polynomial of DL(T) is x(x + 2)"~'.

To illustrate the theorem itself, let d, > 0 > d, = - -+ = d, be the eigen-
values of D = D(T) and Ay, = A, = --- = \,_; > 0 be the eigenvalues
of K = K(T). Then A,_, = a(T) is Fiedler’s algebraic connectivity, and
1/\, 1 < i < n, are the eigenvalues of K~'. Our theorem becomes

0>—_22d22___2_>_...2 _2

A, A \

=d,. (2)

A pendant vertex of T is a vertex of degree 1. A pendant neighbor is a
vertex adjacent to a pendant vertex. Suppose T has p pendant vertices and ¢
pendant neighbors.

Corollary 1. Let d be an eigenvalue of D(T') of multiplicity k. Then & < p.

Proof. By [15, Theorem 2.3], p — 1 is an upper bound on the multiplicity
of any eigenvalue of K(T'). 1

More information is available for certain specific eigenvalues. In [12], for ex-
ample, the exact multiplicity of A,_, was determined for “Type I” trees. It was
shown in [15, Theorem 2.1 (ii)] that, apart from 1, K(T) has no multiple in-
teger eigenvalue. Thus, no eigenvalue of D(T) of the form —2/t, ¢t = 2,3,.. .,
can have multiplicity greater than 2.

Corollary 2. Among the eigenvalues of D(T'), d = —2 occurs with multiplic-
ity at leastp — ¢ — 1.

Proof. Isabel Faria [6] showed that the multiplicity of A = 1 as an eigen-
value of K(T) is at least p — q. 11

Let s(T) be the number of times A = 1 occurs as an eigenvalue of K(7), in
excess of Faria’s bound. Section III of [15] establishes various bounds for s(T)
in terms of the structure of T. It is proved, for example, that s(T) is at most
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FIGURE 1

the covering number of the forest induced by T on the vertices left after the
pendants and their neighbors are removed. In [13], Faria-type bounds are
obtained for other eigenvalues. Transcribing those for the distance matrix, it is
clear from a glance at the tree in Figure 1 that (x> — 6x + 4) exactly divides
the characteristic polynomial of its distance matrix. (What is not clear is why
(x* — 6x + 4)* should be a factor!)

Corollary 3. Let 8 be the diameter of 7. Then

-1

dy = 1 — cos(m/(8 + 1))’

Proof. M. Doob (3] showed that the right hand side is an upper bound for
=2/a(T). 1

Many results are available in the literature concerning the algebraic connec-
tivity a(T) = A,_,. See, e.g., [1,10-12, 14, 18, 19].

Corollary 4. Let T be a tree with diameter 8 and denote the greatest integer
in 8/2 by k. Then

() d. > —1;
(i) d, > —1 (provided n > 2g);
(i) d,oqer < =2
(iv) d, = —2; and
(v) a!,,_‘,,+2 = —2.

Proof. 1t is proved in (15, Corollary 4.3] that A, > 2, in [17, Theorem 2]
that A, > 2, and in {15, Theorem 3.11] that A,__,, < 1. To prove (iv) and
(v), note that I, is a principal submatrix of L(T'). By interlacing, A, =1 and
Npn=1.1

In the exceptional case n = 2g, it turns out that A, = 2. If n > 24, it may
still happen that A, = 2 for some (at most 1) value of . If so, Fiedler [11,
p. 612] has shown how to determine : Let u be an eigenvector of L(T) afford-
ing 2. Then the number of eigenvalues of L(T') greater than 2 is equal to the
number of edges {i,j} € E such that uu;, > 0.
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