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1 Optimal Transportation

Optimal transportation can be better described in the discrete case:
We are given “goods” sitting at k different locations, xj , in R

n, and we
want to transport them to k new locations yj .

We do not care which goods go to which point, and transporting them
from xi to yj incurs a cost C(xi − yj) (think of Cp(x− y) = 1

p |x− y|p).
We want to choose a delivery scheme y(x) that would minimize the total

cost:
J (y) =

∑
j

C
(
y(xj) − xj

)
,

among all admissible transportation plans y(x).
Of course, everything being finite, such a problem has a solution y0(x),

J (y0(x)) ≤ min
∑

C(y0(xj) − xj) (1)

Clearly, this imposes some geometric condition on the map. For instance,
suppose that C = Cp (and in particular rotationally invariant).

If we take two points x1, x2 and their images y0(x1), y(x2) we may wonder
what does it mean to switch them (that would increase cost). We can, for
instance, take a system of coordinates where x1 = 0, x2 = λe1. Then, y0(x1),
y0(x2) can be rotated with respect to this axis to make the configuration
coplanar without changing cost.

This reduces the question to a problem in the plane and we see that for each
position y0(x1) = αe1 + βe2, y0(x2) is forced to stay in some predetermined
region above y0 = Ry0. That is, the map has to have some monotonicity.

For instance, in the case p = 1 (the usual Euclidean distance) we see that
the vectors from xi to y0i should not cross. For p = 2, instead the map y0(x)
has to be monotone, i.e.,

〈y(x1) − y(x2), x1 − x2〉 ≥ 0 .
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2 The continuous case:

In the continuous case, instead of having two finite families of locations, we
are given two “goods densities”, f(x) and g(y); that is we have our goods
“spreaded” through R

n with density f(x) and we want to reorganize them, so
they become “spreaded” with density g(y). (There is an obvious compatibility
condition

∫
f =

∫
g.)

So, heuristically, we are looking for a map, y0(x), that will reorganize f into
g, and that, among all “admissible” maps will minimize the transportation
cost

J (y) =
∫

C(y − x)f(x) dx

Admissible means that for any set A, the total f -mass of A, be identical
to the g-mass of its image, or infinitesimally (if such a thing were allowed)

g
(
y(x)

)
detDxy = f(x) .

A weak way of expressing admissibility is that, for any continuous test
function η(y) ∫

η(y)g(y) dy “=”
∫

η
(
y(x)

)
g
(
y(x)

)
det yx(x) dx

be actually equal to ∫
η
(
y(x)

)
f(x) dx .

That is, we “allow” ourself to replace the formal term

g
(
y(x)

)
detDxy by f(x) .

A still “weaker” formulation of the problem can be proposed if we agree
that it is not necessary to require that whatever is located at the point x has
to be mapped to a single point y, but that we may “spread” it around and
vice versa that the necessary “quota” at y may be filled by a combination of
x’s.

In this case we could make a “table”, h(x, y) of how much of f(x) dx
goes into g(y) dy and the “shipping plan” becomes a joint probability density
h(x, y), with marginals

f(x) =
∫

h(x, y) dy

g(y) =
∫

h(x, y) dx

Our minimization problem is, then, minimize∫
C(x− y)h(x, y) dx dy
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among all such h.
Confronted with the problem one is of course tempted to look at the two

particular cases
C(x− y) = |x− y| or |x− y|2 .

The case |x−y| is the original Monge problem. The quadratic case arises in
many applications, particularly in fluid dynamics. Let us start by discussing
the case C(ξ) = |ξ|2:

The first observation or calculation that comes naturally to mind is that if
y0(x) is the minimizing map, any “permutation” of k images would increase
cost.

This can be better expressed in the discrete case, and we may hope it will
lead us to an “Euler like” equation for this variational problem.

If π is a permutation of the xj ’s it simply reads∑
|y0(xj) − xj |2 ≤

∑
|y0(xπj

) − xj |2

after some simplification∑
〈y0(xj), xj〉 ≥

∑
〈y0(xπj

), xj〉 .

This condition is called “cyclical” monotonicity of the map (in the case of two
points x1, x2, it is the classical monotonicity condition of the map 〈y(x2) −
y(x1), x2 − x1〉 ≥ 0) and a theorem of Rockafeller asserts that the map y(x)
is “cyclically” monotone if and only if it is the subdifferential of a convex
function ϕ(x), what we would call a “convex potential” in the spirit of fluid
dynamics.

To understand the meaning of ϕ(x), we should go to the dual problem,
that is the “shippers” point of view:

3 The dual problem:

Suppose that a shipping company wants to bid for the full transportation
business. It has to charge each initiation point xi, an amount µ(xi) and any
arrival point yj an amount ν(yj).

But it is constrained to charge µ(xi) + ν(yj) ≤ C(xi − yj).
If not xi and yj would leave the coalition and find another shipper. So the

shipper wants to maximize ∑
µ(xi) +

∑
ν(yi)

with the constraint that

µ(xi) + ν(yj) ≤ C(xi − yj) .
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In the continuous case, this becomes:
Maximize

K(µ, ν) =
∫

µ(x)f(x) dx+
∫

ν(y)g(y) dy

with the constraint that

µ(x) + ν(y) ≤ C(x− y) .

In principle, we would like to try and maximize this quantity K(µ, ν), for a
reasonable family of admissible functions, say continuous.

But we note that given an admissible pair (µ, ν), we can find a better one
µ, ν∗, by replacing ν(y) by

ν∗(y) = inf
x
C(x− y) − µ(x)

Indeed, ν∗ is again admissible and ν∗(y) ≥ ν(y) for any y.
Similarly we can change µ to µ∗.
Thus the minimization process can be done in a much better class of

functions, that we can call C-concave, that are of the form

µ = inf
y∈S

C(x− y) + ν(y)

(Note that if C(x− y) = (x− y)2

−ϕ(x) = µ(x) − |x|2 = inf
y∈S

−2〈x, y〉 + |y|2 − ν(y)

Thus ϕ(x) and ϕ(y) = |y|2 − ν(y) are regular convex functions).

4 Existence and Uniqueness:

Since, for x, y varying in a bounded set the family of functions C(x − y) is
(equi) Lipschitz, it is not hard to pass to the limit and obtain a maximizing
pair:

Theorem 4.1.

a) There exists a unique maximizing pair µ0, ν0.
b) For any x ∈ Ω, there exists at least a y(x), for which

C(x− y) = µ(x) + ν(y) .

Further, if C is strictly convex and smooth (C1,α), on can prove

Theorem 4.2.

a) y(x) is unique a.e. and the map x→ y(x) is the unique optimal transporta-
tion.
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b) y(x) is also defined by
∇C(x− y) = ∇ν(x)

or
y = x+

(
∇E

)(
∇ν(x)

)
where (∇E) is the gradient of the Legendre transform of C, (for instance,
for C = 1

p |x|p, E = 1
q + |x|q ( 1

p + 1
q = 1))

Theorem 1 is not hard, all we have to remember is that the minimization
process was originally done in the space of continuous functions, that we are
allowed to make just continuous perturbations of µ, ν, not necessarily C-
concave ones, and hence if for some x, ν(x) + µ(y) < C(x− y) for all y ∈ Ω̄2,
we can increase a little bit ν near x, and keep it admissible.

Theorem 2 is more delicate. The main ideas are due to Brenier:
To show that y(x) is admissible, that is, according to our definition, that∫

η(y)g(y) dy =
∫

η
(
y(x)

)
f(x) dx

corresponds basically to the Euler equation of the variational problem:
We perturb ν(y) to

νε = ν(y) + εη(y)

and µ(x) = infy C(x− y) − ν(y) to

µε(x) = inf
y
C(x− y) − νε(y)

to keep the pair µε, νε admissible. Thus by maximality∫
(ν − νε)(y)g(y) dy +

∫
(µ− µε)(x)f(x) dx = ε[I + II] ≥ 0

where
I = −

∫
η(y)g(y) dy

and
II =

∫
µ− µε

ε
(x)f(x) dx

But by definition ∣∣∣µ− µε

ε

∣∣∣ ≤ sup η < C .

When ε goes to zero, by dominated convergence IIε converges to the integral
of the a.e. limit of µ−µε

ε f(x).
But, if the y(x) for which the infimum in

µ(x) = inf C(x− y) − ν(y)

is attained is unique, then µ−µε

ε (x) converges to η
(
y(x)

)
.
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Once we know that y(x) is admissible, if z(x) is any other admissible map,
we write ∫

C
(
z(x) − x

)
f(x) dx ≥

∫ [
ν
(
z(x)

)
+ µ(x)

]
f(x) dx

=
∫

ν(y)g(y) dy + µ(x)f(x) dx

(since z is admissible) while∫
C
(
y(x) − x

)
f(x) =

∫ [
ν
(
y(x)

)
+ µ(x)

]
f(x)

= (by definition of y)

=
∫

ν(y)g(y) dy +
∫

µ(x)f(x) dx

(since y is also admissible).

5 The potential equation:

We find ourselves now in a very good position: Our mapping problem (usually
a relatively hard one) has been reduced to study a single function, the potential
µ(x).

The variational process made out of µ the potential of an admissible map.
That is, heuristically

g(y) detD
(
y(x)

)
= f(x) .

Replacing y(x) by its formula

y = x+ ∇E(−∇µ)

we obtain

g
(
x+ ∇(E(−∇µ(x)))

)
· det

(
I +D(∇E(−∇µ))

)
= f(x)

In the case in which

C(x) =
1
2
|x|2 = E(x)

writing x = ∇( 1
2 |x|2) and ϕ(x) = 1

2 |x|2 − µ(x) the equation becomes

g(∇ϕ) · detD2ϕ(x) = f(x) .

That is, ϕ is convex and it satisfies (formally) a Monge-Ampère type equation.
In the general case, always computing formally, we get

g(· · · ) det
[
I + Eij(−∇µ)Dijµ

]
= f

Or if we multiply by Cij , that happens to be the inverse matrix to Eij , we get

g∗ det
(
Dijµ+ Cij(∇µ)

)
= f
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6 Some remarks on the structure of the equation

This last equation has a structure similar to that of the Monge-Ampère equa-
tion in a Riemannian manifold but instead of having a first order term with
the structure aijDiµDjµ, has the more complex one

Eij(∇µ)

resembling a Finsler metric term.
In confronting this equation two issues arise.
The first one, in which sense are the equations satisfied, and the second

one, even if the equations are satisfied in the best of all possible senses, what
can we expect of the structure of the set of solutions.

Let us answer first the second question: what can we expect about “nice”
solutions of an equation of the form

det
(
D2µ+ Cij(∇µ)

)
= h

The left hand side satisfies heuristically a comparison principle (Given µ1, µ2
two solutions, the difference “should not” have a maximum in the interior)
and it is translation invariant. Therefore, directional derivative of µ should
have a “maximum principle”.

Once could explore, thus, monotonicity properties of the optimal map,
that is, what properties of f and g imply y(x) � x in some order, �, in the
spirit of [C].

On the other hand, in the spirit of the regularity theory for fully nonlinear
equations, one may ask if there are second derivative estimates. Here one
should draw a parallel with solutions of divergence type equations coming
from the calculus of variations. Indeed

divD∇E(∇µ) (a)

very much resembles a linearization of

det
(
I + εD(∇E(∇µ))

)
(b)

and in general (a) possess no second derivative estimates.
So we feel that one should not expect, in general, second derivative esti-

mates for (b) unless E is very special.
This is a very serious obstacle to a regularity theory for µ, since the lin-

earized equation involves, as usual, second derivatives of µ in its coefficients.
About the first question, in what sense is the equation satisfied, we also

have a serious difficulty. Let’s consider the simple quadratic case, in which the
equation is simple Monge-Ampère:

detD2ϕ . . .

and ϕ is convex.
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Since convex functions are in principle only Lipschitz, in order to make
sense of detD2ϕ, the natural approach has been, precisely to look at the
gradient map

∇ϕ : Ω → R
n

and give an interpretation of detD2 as the Jacobian of such a map, that is
the ratio between the volume of the image of a set and the volume of the set

|∇ϕ(S)|
|S|

The problem is that ∇ϕ(S) can be thought in the L∞ sense (i.e. ∇ϕ ∈ L∞
loc

and thus is defined a.e.) or in the maximal monotone map, i.e. ∇ϕ(S) is the
set of gradients of all supporting planes to the convex function ϕ, on the set
S.

The difference is clear in the case of ϕ(x) = |x| in just one variable.
In the a.e. sense ∇ϕ = ±1 and hence Dxxϕ = 0. In the maximal monotone

map ∇ϕ(0) is the full interval [−1, 1] and thus Dxxϕ is the expected Dirac’s
δ at the origin.

Of course, this second definition is the correct one from almost any point
of view, but unfortunately optimal transportation does not care much about
sets of measure zero:

ϕ(x) = |x| + 1
2
|x|2

is the optimal transportation from say Ω1 = [−1, 1] to Ω2 = [−2,−1] ∪ [1, 2],
with densities f(y) = g(y) = 1 but unfortunately D2ϕ has the extra density
δ0 at the origin.

Always in the particular case of C(x) = 1
2 |x|2, the natural geometric con-

dition to impose on Ω2 to avoid this difficulty is simple: Ω2 must be convex.
Indeed it is easy to see that the difference between detD2ϕ (a.e.) and

detD2ϕ (max. mon.) consists of a singular measure, whose image by the
gradient map is always contained in the (closure of) the convex envelope of
the image of the regular part.

Thus, if Ω2 is convex, and since we have the compatibility condition that∫
Ω2

f(x) =
∫

Ω2
g(y), any extra singular measure has nowhere to go inside Ω2.

Once we know that ϕ satisfies the equation in the maximal monotone
sense (Alexandrov sense) there exists a reasonable local regularity theory that
asserts that the map ∇ϕ is, as expected, “one derivative better” than f(x),
g(y).

For general cost functions is is not clear how to proceed both to find the
appropriate condition on Ω2, and how to develop at least the first steps on a
local regularity theory, asserting for instance that the map is continuous.

Part of the difficulty is that convexity is simultaneously a local (infinitesi-
mal) and global condition, that is D2ϕ ≥ 0 or the graph of ϕ stays below the
segment joining two points, while in the general case that does not seem to be
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the case (with −C(x − y) replacing linear functions and −
[
D2µ + Eij(∇µ)

]
replacing D2ϕ.

This becomes evident for instance with the issue of ∇µ (a.e.) versus ∇µ
(maximal monotone).

Since µ = infy C(x− y)− ν(y) one may suggest that ∇µ (maximal mono-
tone) should be the ∇µ(x) coming from all supporting cost functions C(x−y)
at the point x. But a cost function C(x − y) that supports µ locally near x
does not necessarily support it globally.

A possible way out is to study these cases for which both f(x), g(y) do
not vanish, thus Ω1 = Ω2 = R

n or periodic problems (f(x), g(y) periodic)
where hopefully, whatever singular part one should add to the a.e. definition
of the map, has nowhere to go again.

Finally, some remarks on the case C(x − y) = |x − y|, the classic Monge
problem.

In this case, strict convexity is lost and therefore ∇C is not anymore a
“nice” invertible map from R

n to R
n.

So if one tries to reconstruct the map from µ, ν the solution pair of the dual
problem, ∇µ only gives us the general direction of the optimal transportation,
i.e.

∇µ(x) =
y − x

|y − x|
but not the distance.

In fact, the optimal allocation is, in general, not unique: If we want to
transport, in one dimension the segment [−2,−1] = I0 onto [1, 2] = I1, the cost
function |y−x| becomes simply y−x, and from the change of variable formula,
we see that any measure preserving transformation y(x) is a minimizer.

So, for instance we can split I0, I1 into a bunch of little intervals and map
each other more or less arbitrarily and still have a minimizer.

On the other hand, in more than one dimension, optimal maps have a
strong geometric restriction: If x1 → x2 and y1 → y2, the segments [x1, y1],
[x2, y2] cannot intersect. (Remember the discrete case.)

Further, if x2 lies in the interior of [x1, y1], y2 must be aligned to [x1, y1].
Otherwise transportation can be improved.
Thus, transportation is aligned along “transportation rays”. That is, if x1

goes to y1, all points in Ω1∩ [x1, y1] are mapped to the line containing [x1, y1].
This is easy to visualize if for instance Ω1 is contained in {x : xn < 0} =

R
n
−, and Ω2 in {x : xn > 0} = R

n
+.

Then transportation occurs along rays going from left to right.
There are several geometrical quantities one can look at to try to under-

stand what is going on.
For instance, if Ω1 is a long vertical rectangle and Ω2 a horizontal one,

one can see that in general, we cannot expect a “nice, clean” foliation of Ω1,
Ω2 by transport rays, and that the domains must split in patches each one
foliated by these “transportation” rays.

Another observation, from the definition of µ, ν as
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µ(x) = inf
y∈S

C(x− y) − ν(y)

we see that if we define the two auxiliary functions

h(z) = inf
y∈Ω2

|z − y| − ν(y)

and
g(z) = sup

x∈Ω1

µ(x) − |z − x|

then h(z) = g(z) along transportation rays, where both are linear.
Since along xn = 0, h is C1,1 by above (quasiconcave) and g C1,1 by below

(quasiconvex). The direction T (x) of transportation rays is Lipschitz along
{xn = 0}.

Two possible ideas to construct a solution are then to write an equation
for the potential and the infinitesimal transportation along these rays, given
by the mass balance (this is the approach of Evans-Gangbo) or to pass to the
limit on a strictly ε-approximation of the limiting problem.

This last approach was worked out by Trudinger and Wang, and Feldman,
McCann and the author, and was recently completed by L. Ambrosio and
A. Pratelli by incorporating higher order T -convergence arguments to obtain
strong convergence of the map.
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