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Abstract exhibit good performance in image retrieval [7, 11],

unsupervised texture segmentation [5], and in con-
junction with ak—nearest-neighbor classifier, color—or
texture—based object recognition [14, 10]. However,
most of these empirical evaluations provide only in-
complete and partial information. They either pit one
favorite dissimilarity measure against a small number
of others, or they provide merely anecdotal evidence,
or they only expose a small portion of the space of the
parameters that the various dissimilarity measures de-
pend on. Some benchmark studies [7, 11] are more
systematic, but apply to generic measures, and do not
“elucidate strengths and weaknesses of the various dis-
similarity measures for the specific tasks of classifica-
tion, retrieval, or unsupervised segmentation.

In this paper, we report on the results of a system-
. atic comparison of nine different families of dissim-
1. Introduction ilarity measures for color and texture. The plots in

Measuring the dissimilarity between images and this paper summarize over 1,000 hours of CPU time,
parts of images is of central importance for low—level spent in an exhaustive exploration of a rather large
computer vision. The following vision tasks directly space of parameters. First, in sections 2 and 3, we
rely on some notion of image dissimilarity: bhassi- review and categorize distribution-based dissimilarity
fication[4, 10], a new image sample is to be assigned measures, showing strengths and limitations of each
to the most similar of a given number of classes. A set with respect to the different vision tasks mentioned
of labeled training examples is availabl8upervised  above. Next, in section 4, we propose a methodol-
segmentatiopi.e.,, the assignment of image regions to ogy for the quantitative comparison of color and tex-
predefined classes, is also a classification taskmin  ture dissimilarity measures. A major contribution here
age retrieval[14, 1, 7, 11], the user searches a large is a statistically sound procedure to establish ground
collection of images for instances that are similar to a truth, against which the various dissimilarity measures
specified query. The search is based on perceptual simean be compared. This section also explains the prin-
ilarities of attributes such as color, texture, shape, andciples we adhered to in order to enforce fairness in our
composition. Inunsupervised segmentatify 6, 5], comparisons. Finally, section 5 provides quantitative
an input image is divided into regions that are homo- comparison results as a function of several parameters
geneous according to some perceptual attribute. Nosuch as number of histogram bins, query detail, size
predefined attribute classes are available in this case. of the response to a query, and dimensionality of the

In recent years, dissimilarity measures that are feature space. Comparisons are tailored to the specific
based on empirical estimates of distributionof fea- requirements of classification, retrieval, and segmen-
ture have been developed for classification [10], image tation. The results are interpreted in order to explain
retrieval [1, 14, 11, 12] and unsupervised segmenta- which measure works best for which task. We found
tion [2, 5]. Preliminary benchmark studies have con- no all-around winners or losers, but rather different
firmed that distribution—based dissimilarity measures tools for different tasks.

This paper empirically compares nine image dis-
similarity measures that are based on distributions
of color and texture features summarizing over 1,000
CPU hours of computational experiments. Ground
truth is collected via a novel random sampling scheme
for color, and via an image partitioning method for
texture. Quantitative performance evaluations are
given for classification, image retrieval, and segmen-
tation tasks, and for a wide variety of dissimilarity
measures. It is demonstrated how the selection of a
measure, based on large scale evaluation, substan
tially improves the quality of classification, retrieval,
and unsupervised segmentation of color and texture
images.



2. Image Representation the number of image pixels in bin A suitable set of

prototypes can be determined by a vector quantization
In this section we describe the color and texture fea- procedure, e.gk'—means [8].

ture spaces that we use in this paper, and our represen- For small sample sizes it may be better to estimate

tation of distributions in these spaces. solelymarginal histogramsWhile information about

Color: For human color perception it is sufficient to thejoint occurrenceof feature coefficients in the dif-

represent all colors by a three dimensional space [16]_ferent dimensions is lost, bin contents in the marginals

We use the CIEL*a*b* color space which was de- May be significant where those in the full distribu-

signed using psychophysical experiments touné tion would be too sparse. Formally, the marginal his-

form, in that the perceived differences between indi- tograms of the coefficients in feature dimensioare

vidual nearby colors correspond to the Euclidean dis- 9iven by

tances between the color coordinates. Some similarity . I . -

measures take advantage of the uniformity of a color rEn = @ <r@<gy - @

space. Here, bini is defined as the feature internv@]_,, /]
Texture: Over the past decades numerous approachesyf dimensionr. The cumulative histogramfor
for the representation of textured images have beenmarginal histograms is defined as

proposed [4, 2, 6, 7]. While color is a purely point-

wise property of images, texture involves a notion of Fris;I)y=|{z: I'(@) <t} . (3)
spatial extent: a single point has no texture. For each
image point, frequency-domain texture descriptors re-
fer instead to the frequency content in a local neigh-
borhood of the pointGabor filtersare often used for . o
texture analysis and have been shown to exhibit ex- N the following, D(1, J) denotes a dissimilarity
cellent discrimination properties over a broad range of Méasure between the imagesind /. A superscript
textures [6, 7, 5]. In this paper we used the family of " (/, /) indicates that the respective measure is ap-
Gabor filter in log-polar space as derived in [7]. Dic- Plied only to the marginal distributions along dimen-
tionaries with 4, 6 and 8 different orientations over 3, Sionr. We distinguish the following four categories of
4 and 5 different scales, respectively, are employed, dissimilarity measures:

leading to filter banks of 12, 24 and 40 filters. Heuristic histogram distanceshave been proposed

Distribution of Features: Color and texture descrip- MOStly in the context of image retrieval:

tors vary substantially over an image or image hart (/) The Minkowski-form distanc€,, is defined by:

both because of inherent variations in surface appear- \/p

ance and as a result of changes in illumination, shad- ) )

ing, shadowing, foreshortening, etc. Thus, the appear- (1, J) = (ZW“ ) = J(i5J) |p) )
ance of a region is best described by thstribution !

of features rather than by individual feature vectors. For example, theZ; distance has been proposed for
Histograms can be used as non—parametric estimatorgomputing the dissimilarity scores between color im-
of empirical feature distributions. HOWeVer, for h|gh— ages [14], and théoo was used for texture dissimilar-
dimensional feature spaces a regular binning often re-jty [15]. Histogram IntersectiorfHI) as proposed in
sults in poor performance: coarse binning dulls resolv- [14] provides a generalization df, to partial matches.
ing power, while fine binning leads to statistically in-  (jj) The Weighted—Mean—Variang@/MV) has been

Signiﬁcant Sample sizes for most bins. A partia| solu- proposed in [7] This distance is defined by
tion is offered byadaptive binningwhereby the his-

togram bins are adapted to the distribution. The bin-

3. Dissimilarity Measures

D= pr (N orI) —or(J)]

D'(I,J) = |t (

ning is induced by a set giototypes|; } and the cor- lo (g2 )] lo(a)] Q)
responding Voronoi tessellation. Adaptive histograms
are formally defined by where p. (1), ur-(J) are the empirical means and
or(I),0,(J) are the standard deviations of the dis-
fi; D) = {& :i=argmin||I(Z) — &} Q) tributions. &(-) denotes an estimate of the standard
J

deviation of the respective entity. For texture—based

Here 7(Z) denotes the feature vector at image loca- image retrieval this measure, based on a Gabor filter

tion Z. The histogram entryf(i; I) corresponds to IMage representation, has outperformed several para-
metric models. [7]

1n the following, we restrict the notation to complete images . .. .
I for convenience. However, the adaptation to image regions as NOnN—parametric test statisticsprovide a sound ba-

needed for segmentation is straight forward. sis for probabilistic procedures that test the hypothesis



| £° |WMV |KS/ICWM ]| * | KL [ JO | QF | EMD |

Symmetric yes yes yes yes no yes yes yes
Triangle inequality valid valid valid invalid | invalid | invalid | see text| see text
Computational complexity| medium| low medium | medium| medium| medium| high high
Exploits ground distance no no yes no no no yes yes
Individual binning no yes no no no no no yes
Multiple dimensions yes yes no yes yes yes yes yes
Partial matches see text no no no no no no yes
Non-parametric yes no yes yes yes yes yes yes

Table 1. Characteristics and advantages of the different distribution—based dissimilarity measures.

that two empirical distributions have been generated the dissimilarity measure between two distributions.
from the same underlying true distribution. To some extent, the notion of ground distance is used
(i) The Kolmogorov—Smirnov distan¢&S) has orig- by measures like the Kolmogorov—Smirnov distance
inally been proposed in [2] for image segmentation. and the statistic of the Cramer/von Mises type, which
It is defined as the maximal discrepancy between theare based on the cumulative histograms. However,
cumulative distributions, these measures are defined only in one dimension and
cannot exploit the ground distance in the full feature
D"(1,J) =max|F.(i;1) — Fr(i;J)]  (6)  space.
' (i) The Quadratic Form (QFdistance [3] incorporates
and has the desirable property to be invariant to arbi- cross-bin information via a similarity matrix = [a;;]

trary monotonic feature transformations. wherea;; denote similarity between birisand;.
(i) A statistic of the Cramer/von Mises tyfevM) is
also defined based on cumulative distributions: D(I,J) = \/(ﬁ —MTAfI =), (10)

D'(1,J) =Y (F(i;1) = F,(i;J))* . (7)  wherefj andf; are vectors that list all the entries in
i f(# 1) and f(i; J) respectively. We refer to [9] for
more details including efficient implementations.
(i) The Earth Movers Distance (EMD|12] is based
N2 on the minimal cost to transform one distributionto the
(f(i; I) - f(i)) other. If the cost of moving a single feature unit in the
D(1,J)=) ) , where  (8)  feature space is the ground distance, then the distance
d between two distributions is given by the minimal sum
frs . . - . of the costs incurred to move all the individual fea-
1) = (1) + £(i; J)]/2 denotes the joint estimate. tures. The EMD can be defined as the solution of a

Information—theoretic divergences measure how  yansportation problem which can be solved by linear
compact one distribution can be coded using the Otheroptimization:

(i) The y?—statisticis given by

one as the codebook. Here we examine two special S giids;
cases: D(I,J) = 52— (11)
(i) The Kullback-Leibler divergencéKL) suggested 24 i

in [10] as an image dissimilarity measure is defined by whered;; denotes the dissimilarity between birand
J,andg;; > 0 is the optimal flow between the two dis-

D(1,J) =" f(i; 1) log AGEDR (9) tributions such that the total co3t, ; gi;d;; is mini-
; i J) mized, subject to the following constraints:
(i) The Jeffrey—divergenc€lD) is defined by Zgij < f(5; ), Zgij < f 1),
d J
) 5 1 ) 1 J
D(I,J) :Zf(z;[) log fj(;(l)) + f(i; J) log f;(l)) ) Zgij = min (f(j; 1), f(i; ) , (12)
i o

In contrast to the KL—divergence, JD is symmetric and for all ¢ and j. The denominator in (11) is a nor-
numerically more stable when comparing two empiri- malization factor that permits matching parts of distri-
cal distributions. butions with different total mass. If the ground dis-
Ground distance measuresare based on perceptually tance is a metric and the two distributions have the
meaningful distance measures between individual fea-same amounts of total mass, the EMD defines a met-
tures. Employing thiground distancenay improve ric. As a key advantage of the EMD each image may



be represented by a different binning that adapts to its (i) Performance comparisons showddcount for the
specific distribution. When marginal histograms are variety of parameterghat can affect the behavior of
used, the dissimilarity values obtained for the individ- each measure. These parameters include the size of
ual dimensions must be combined into a joint over- the images, queries and statistical samples; the number
all dissimilarity value. In [11] the Minkowski norms  of neighbors in a k-nearest-neighbor classifier and the
D(I,J) = (3, (D"(1,J))?)*/r were investigated, number of bins in a histogram; the shape of the bins

including the limiting casep = oo utilized in [2]. and their detailed definition; and, for texture, the di-

Based on their resulgs= 1 is used in the sequel. mensionality of feature gge. A fair comparisoninthe
face of this variability can be achieved by giving every

3.1. Properties measure the best possible chance to perform well.

(iiif) Processing steps that affect performance indepen-

Table 1 compares the properties of the different dently of each otheought to be evaluated separately
measures. KS, CvM and WMV are defined only for in order to both sharpen insight and reduce complex-
marginal distributions. Metric dissimilarity measures ity. For instance the effect of different image repre-
enable more efficient indexing algorithms for image Sentations can be understood separately from those of
retrieval, since the triangle inequality entails lower different dissimilarity measures. Also, for segmenta-
bounds that can be exploited to substantially alleviate tion, the grouping procedure can be evaluated sepa-
the computational burden. For thé, KL, JD the tri-  rately [5].
angle inequality does not hold, while for the QF and (iv) Ground truthshould be available which is a set
the EMD it holds only for specific ground distances. ©Of data for which the correct solution of a particu-
All the evaluated measures are symmetric except thelar problem is known. Collecting ground truth is ar-
HI and the KL divergence. A useful property forimage 9uably the hardest problem in benchmarking, because
retrieval is the ability to handlpartial matchesi.e. to  the data should represent a broad range of possible ap-
compute the dissimilarity score only with respect to Plications, the “correct solution” ought to be uncontro-
the most similar image part [12]. The ability for par- Versial, and the ground-truth data set should be large
tial matching is of minor importance for the other ap- €nough for a statistically significant performance eval-
plications. Only the HI and the EMD allow for partial uation. In the following, we summarize our choice of
matches directly. Computational complexity is an im- ground truth for color and texture.
portant consideration. For applications such as imageColor: Defining ground truth to measure color simi-
retrieval, itis important to differentiate between online larity over a set of color images is difficult. Our ap-
and off-line complexity. Especially for the WMV the Proach was to create disjoint sets of randomly sam-
standard deviations can be computed in advance andled pixels from an image and to consider these sets
the dissimilarity scores for a new query can be evalu- @s belonging to the same class. While for large sets
ated efficiently. The computational complexity of the Of pixels within a class the color distributions of their
EMD is the highest among the evaluated measures, adixels will be very similar, for small sets the variations
for each dissimilarity calculation a linear optimization are larger, mimicking the situation in image retrieval
is necessary. However, while using the EMD on large Where images ofnoderatesimilarity have to be iden-
histograms is prohibitive for certain applications, its tified. From a database of 20,000 color images com-
ability to represent differentimages by a different bin- Prising the Corel Stock Photo Library, we randomly
ning often yields good results even with small number chose 94 images. This is the same number of images
of bins, and consequently less computation. In our ex- as in the texture case, so that we can compare the re-
periments we have limited the number of bins for the sults from the two modalities. We defined set sizes

EMD to 32 bins, while for the other dissimilarity mea- 0f 4, 8,16, 32, 64 pixels, and for each image we ob-
sures we used up to 256 bins. tained 16 disjoint sets of random samples in all sample

sizes. For each of the five set sizes, this resulted into a
ground-truth data set db x 94 = 1504 samples in 94
different classes, one class per image. For the QF and

. . o the EMD that employ a ground distance, we use
Any systematic comparison of dissimilarity mea-

sures should conform at least to the following guide-  a;; = exp(—a||&; — ¢j||) andd;; = 1 — a;;  (13)
lines:

() A meaningful quality measuremust be defined. as the measure of similarity and dissimilarity of bins
Different tasks usually entail different quality mea- andj, where||¢; — ¢;|| is theL, distance between the
sures. The subdivision into classification, retrieval, bin centers in the CIE.*a*b* color space (see sec-
and segmentation makes it possible to define generaltion 2). The exponential map limits the effect of large
purpose quality criteria foeach task. distances, which otherwise dominate the result. This

4. Benchmark Methodology
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Figure 1. Classification results for theolor database for different sample sizes and different binning. For each result,
an optimal valué € {1, 3, 5, 7} for the k—nearest neighbor classifier has been chosen.

agrees with results from psychophysics [13]. Here we for color. For the QF and the EMD we again employ
seta to half the standard deviation of all the feature (13), with the only difference thaj; — ¢;|| is defined
values in the database. This makes closeness a relativas thel; distance between the Gabor responses. Un-
notion, and was found empirically to give good results. like with color, where thel, distance has a solid psy-
Texture: In our benchmark study we concentrated on chophysical justification, for texture itis not clear how
textured images from the Brodatz album as they are to relate the different (normalized) dimensions, so we
widely accepted within the texture research commu- Simply sum them.

nity and provide a joint database which is commonly performance Evaluationfor classification, retrieval,
available. To define ground truttach image is con- 54 segmentation. Falassification a k—NN classi-
sidered as a single, separate class. This is questiongg, is used, withk having the values 1, 3, 5, and 7.
able in a few cases, which are circumvented by a pré-\e yse only odd values to reduce the chances of ties.
selection of images. We selected 94 Brodatz texturespg 4 performance measure we use the average mis-
a priori by visual inspection. We excluded the tex-
tures d25, d30, d31, d39-d45, d48, d59, d61, d88, d89
d91, d94, d97 due to missing micro—pattern proper- . ] ]
ties. That is, those textures are excluded where the FOr image retrieval performance is usually mea-
texture property is lost when considering small im- Sured byprecisionandrecall. Precision is defined as
age blocks. From each of the Brodatz images we the number of relevant images retrieved relative to the
extracted sets of 16 random, non—overlapping blocks total number of retrieved images, while recall mea-
sizess x 8,16 x 16, ..., 256 x 256 pixel&. Foreach  Sures the number of relevant images retrieved, relative
sample size this resulted in a ground truth data set oft0 the total number of relevant images in the database.
16 x 94 = 1504 samples in 94 different classes, justas Since our goal is to compare the different methods and
not to measure performance of a retrieval system, we

2For a sample size af56 x 256 we only extracted 4 samples ~ ONly plot the precision vs. the number of retrieved im-
per class because of the limited size of the original image. ages.

classification rate in percent applying a leave—one—out
'estimation procedure.
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Figure 2. Results fortextureclassification for different sample sizes and different binning. In each case, the best
possiblek and the best number of filters has been chosen.

Forunsupervised texture segmentatwafollowed 5. Results and Interpretation
the approach of [5] and used a database of random

mixtures 12 x 512 pixels each) containing 100 enti-  Cjassification The classification performance has
ties of five Brodatz textures each (see Figure 4). Seg-peen estimated in a leave—one—out procedure for all
mentations are computed on a regular sub-grid of Sizecombinations of parametets € {1,3,5,7}, number

128 x 128 by assigning each site to one outléfseg-  of binse {4, 8, 16,32, 64,128,256} 3. In the texture
ments. For each site, a local histogram is extracted case, we tried three different filter banks with, 24

to estimate the local feature distribution. We com- and4o filters, respectively. The experiments resulted
pute marginal histograms which are proportional to jn an enormous amount of information, computed in
the Gabor filter Wavelength [6] For the multivariate over 1,000 CPU hours. Due to limitations inm1
histograms, the binning has been adapted to the spewe present here only the main results, and plot a few
cific image. Each local histogram is then compared jnformative cuts from the high-dimensional parame-
with 80 randomly selected images sites using the dis-ter space. The classification results are summarized in
similarity measure. To compute an optimal segmenta- Figure 1 (color) and Figure 2 (texture). We plot the
tion we implemented the approach of [5] which groups ¢|assification error of the dissimilarity measures as a
image sites with a high average similarity to obtain a fynction of the sample size both for the full distribu-
segmentation. As a performance measure we reportion (top) and for the marginal cases (bottom). The
the average median classification error evaluated overregyits are further separated into two cases: small his-
100images, where each site is labeled according to theiggrams with 8 bins (left), and large histograms with
majority rule of corresponding pixels. In addition, we 256 hins (right). An exception to these histogram sizes

report the percentage of images with more than 20% s the EMD which uses locally adapted histograms. As
errors. We consider these failures as structural seg-

mentation errors with typ|ca||y entire textures being 3For EMD because of computational limitations and the addi-
misclassified tional information carried by the local binning, we used only number

of binse {4,8,16,32}.
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Figure 4. Examples of segmentation results with= 5 clusters for the different similarity measures under consider-
ation. Misclassified image sites are depicted in black.

discussed in Section 3, these contain more informationcept for very large sample size856 x 256). This
than fixed histograms. For a fair comparison, we use 4 is explained by the fact that the binning is not well
bins for the small histogram case for the EMD (in con- adapted to the data, since it is fixed for all 94 texture
trast to 8 bins), and 32 bins for the large histogram (in classes. The EMD with its local adaptation does much
contrast to 256 bins). The following main conclusions better in this case. For color, multivariate histograms
can be drawn. perform better with the EMD performing best, since
(i) Two regimes can be distinguished based on the local histograms can be more reliably estimated even
sample size: for small sample sizes. We conclude that marginal dis-

For small sample sizes, the WMV measure per- tributions or measures that can use adaptive represen-
forms best in the texture case (last plot in figure 1). tations of the distributions should be used for large fea-
This behaviour is explained by the fact that WMV  ture spaces.
only estimates the means and variances of the marginal (i) The maximally allowed number of bins per-
distributions. These aggregate measurements are lestorms best for multidimensional histograms. More
sensitive to sampling noise. The WMV competes less bins might result in an increased performance, up to a
satisfactorily on color since histograms can be more point where close features fall in separate neighboring
reliably estimated in this case. The measures whichbins, but also result in a prohibitive run—time behav-
are based on cumulative distributions (KS and CvM) ior. Only for the EMD, the local adaptation allows to
and which thus incorporate ground distance informa- represent the distribution with a small number of bins
tion also perform well using marginal distributions. Which is an advantage if storage complexity is an is-
The EMD performed exceptionally well with full dis- sue. For marginal histograms, the binning details play
tributions, even for the hard case of small histograms a negligible role.
where other measures scored poorly. Thisis explained For the texture case, usually 12 Gabor filters have
by the local binning that provides additional informa- been sufficient. However, for small sample sizes ad-
tion, not available to the other measures. ditional filtersimplicitly provide more samples which

For large sample sizes, the classigaltest statis-  results in a better performance. We conclude that a
tic and the divergence measures perform best. Jef-Sma|| number of features is sufficient to diStingUiSh a
frey’s divergence behaves more stably than the KL— large number of texture classes.
divergence, as expected. The-statisticand JDyield  |mage Retrieval As we saw in the results for classi-
nearly identical results. Th€, does best from the fication, the EMD, WMV, CvM, and KS performed
class of heuristic measures. very well for the small sample sizes, while JR?,

(i) For texture classification, marginal distributions and KL usually performed better for the larger sample
do better than the multidimensional distributions ex- sizes. This is confirmed by the retrieval results



| || Median | 20% quantile | be efficiently adapted to the distribution. As a con-

£, marginal 8.2% 12% sequence, multivariate histograms performed best for
x? marginal 8.1% 13% color classification and color retrieval as well as tex-
JD marginal 8.1% 12% ture segmentation. If storage space is an important is-
KS marginal 10.8% 20% sue, the EMD is especially attractive since it allows
CvM marginal 10.9% 2204 superior classification and retrieval performance with
£, full 6.8% 9% a much more compact representation, but at a higher
2 Tl 6.6% 10% computational cost.
JD full 6.8% 10%
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