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Abstract

This paper empirically compares nine image dis-
similarity measures that are based on distributions
of color and texture features summarizing over 1,000
CPU hours of computational experiments. Ground
truth is collected via a novel random sampling scheme
for color, and via an image partitioning method for
texture. Quantitative performance evaluations are
given for classification, image retrieval, and segmen-
tation tasks, and for a wide variety of dissimilarity
measures. It is demonstrated how the selection of a
measure, based on large scale evaluation, substan-
tially improves the quality of classification, retrieval,
and unsupervised segmentation of color and texture
images.

1. Introduction
Measuring the dissimilarity between images and

parts of images is of central importance for low–level
computer vision. The following vision tasks directly
rely on some notion of image dissimilarity: Inclassi-
fication[4, 10], a new image sample is to be assigned
to the most similar of a given number of classes. A set
of labeled training examples is available.Supervised
segmentation, i.e., the assignment of image regions to
predefined classes, is also a classification task. Inim-
age retrieval[14, 1, 7, 11], the user searches a large
collection of images for instances that are similar to a
specified query. The search is based on perceptual sim-
ilarities of attributes such as color, texture, shape, and
composition. Inunsupervised segmentation[2, 6, 5],
an input image is divided into regions that are homo-
geneous according to some perceptual attribute. No
predefined attribute classes are available in this case.

In recent years, dissimilarity measures that are
based on empirical estimates of thedistributionof fea-
ture have been developed for classification [10], image
retrieval [1, 14, 11, 12] and unsupervised segmenta-
tion [2, 5]. Preliminary benchmark studies have con-
firmed that distribution–based dissimilarity measures

exhibit good performance in image retrieval [7, 11],
unsupervised texture segmentation [5], and in con-
junction with ak–nearest-neighbor classifier, color– or
texture–based object recognition [14, 10]. However,
most of these empirical evaluations provide only in-
complete and partial information. They either pit one
favorite dissimilarity measure against a small number
of others, or they provide merely anecdotal evidence,
or they only expose a small portion of the space of the
parameters that the various dissimilarity measures de-
pend on. Some benchmark studies [7, 11] are more
systematic, but apply to generic measures, and do not
elucidate strengths and weaknesses of the various dis-
similarity measures for the specific tasks of classifica-
tion, retrieval, or unsupervised segmentation.

In this paper, we report on the results of a system-
atic comparison of nine different families of dissim-
ilarity measures for color and texture. The plots in
this paper summarize over 1,000 hours of CPU time,
spent in an exhaustive exploration of a rather large
space of parameters. First, in sections 2 and 3, we
review and categorize distribution-based dissimilarity
measures, showing strengths and limitations of each
with respect to the different vision tasks mentioned
above. Next, in section 4, we propose a methodol-
ogy for the quantitative comparison of color and tex-
ture dissimilarity measures. A major contribution here
is a statistically sound procedure to establish ground
truth, against which the various dissimilarity measures
can be compared. This section also explains the prin-
ciples we adhered to in order to enforce fairness in our
comparisons. Finally, section 5 provides quantitative
comparison results as a function of several parameters
such as number of histogram bins, query detail, size
of the response to a query, and dimensionality of the
feature space. Comparisons are tailored to the specific
requirements of classification, retrieval, and segmen-
tation. The results are interpreted in order to explain
which measure works best for which task. We found
no all-around winners or losers, but rather different
tools for different tasks.



2. Image Representation

In this section we describe the color and texture fea-
ture spaces that we use in this paper, and our represen-
tation of distributions in these spaces.

Color: For human color perception it is sufficient to
represent all colors by a three dimensional space [16].
We use the CIEL�a�b� color space which was de-
signed using psychophysical experiments to beuni-
form, in that the perceived differences between indi-
vidual nearby colors correspond to the Euclidean dis-
tances between the color coordinates. Some similarity
measures take advantage of the uniformity of a color
space.

Texture: Over the past decades numerous approaches
for the representation of textured images have been
proposed [4, 2, 6, 7]. While color is a purely point-
wise property of images, texture involves a notion of
spatial extent: a single point has no texture. For each
image point, frequency-domain texture descriptors re-
fer instead to the frequency content in a local neigh-
borhood of the point.Gabor filtersare often used for
texture analysis and have been shown to exhibit ex-
cellent discrimination properties over a broad range of
textures [6, 7, 5]. In this paper we used the family of
Gabor filter in log-polar space as derived in [7]. Dic-
tionaries with 4, 6 and 8 different orientations over 3,
4 and 5 different scales, respectively, are employed,
leading to filter banks of 12, 24 and 40 filters.

Distribution of Features: Color and texture descrip-
tors vary substantially over an image or image part1,
both because of inherent variations in surface appear-
ance and as a result of changes in illumination, shad-
ing, shadowing, foreshortening, etc. Thus, the appear-
ance of a region is best described by thedistribution
of features, rather than by individual feature vectors.
Histograms can be used as non–parametric estimators
of empirical feature distributions. However, for high–
dimensional feature spaces a regular binning often re-
sults in poor performance: coarse binning dulls resolv-
ing power, while fine binning leads to statistically in-
significant sample sizes for most bins. A partial solu-
tion is offered byadaptive binning, whereby the his-
togram bins are adapted to the distribution. The bin-
ning is induced by a set ofprototypesf~cig and the cor-
responding Voronoi tessellation. Adaptive histograms
are formally defined by

f(i; I) =

����f~x : i = argmin
j
k~I(~x) � ~cjkg

���� :(1)

Here ~I(~x) denotes the feature vector at image loca-
tion ~x. The histogram entryf(i; I) corresponds to

1In the following, we restrict the notation to complete images
I for convenience. However, the adaptation to image regions as
needed for segmentation is straight forward.

the number of image pixels in bini. A suitable set of
prototypes can be determined by a vector quantization
procedure, e.g.K–means [8].

For small sample sizes it may be better to estimate
solelymarginal histograms. While information about
the joint occurrenceof feature coefficients in the dif-
ferent dimensions is lost, bin contents in the marginals
may be significant where those in the full distribu-
tion would be too sparse. Formally, the marginal his-
tograms of the coefficients in feature dimensionr are
given by

fr (i; I) =
���~x : tri�1 < Ir(~x) � tri

	�� : (2)

Here, bini is defined as the feature interval(tri�1; t
r
i ]

of dimension r. The cumulative histogramfor
marginal histograms is defined as

F r(i; I) = jf~x : Ir(~x) � tri gj : (3)

3. Dissimilarity Measures

In the following,D(I; J) denotes a dissimilarity
measure between the imagesI andJ . A superscript
Dr(I; J) indicates that the respective measure is ap-
plied only to the marginal distributions along dimen-
sionr. We distinguish the following four categories of
dissimilarity measures:

Heuristic histogram distanceshave been proposed
mostly in the context of image retrieval:
(i) TheMinkowski-form distanceLp is defined by:

D(I; J) =

 X
i

jf(i; I) � f(i; J)jp
!1=p

: (4)

For example, theL1 distance has been proposed for
computing the dissimilarity scores between color im-
ages [14], and theL1 was used for texture dissimilar-
ity [15]. Histogram Intersection(HI) as proposed in
[14] provides a generalization ofL1 to partial matches.
(ii) The Weighted–Mean–Variance(WMV) has been
proposed in [7]. This distance is defined by

Dr(I; J) =
j�r(I) � �r(J)j

j�(�r)j
+
j�r(I) � �r(J)j

j�(�r)j
; (5)

where �r(I); �r(J) are the empirical means and
�r(I); �r(J) are the standard deviations of the dis-
tributions. �(�) denotes an estimate of the standard
deviation of the respective entity. For texture–based
image retrieval this measure, based on a Gabor filter
image representation, has outperformed several para-
metric models. [7]

Non–parametric test statisticsprovide a sound ba-
sis for probabilistic procedures that test the hypothesis

2



Lp WMV KS/ CvM �2 KL JD QF EMD

Symmetric yes yes yes yes no yes yes yes
Triangle inequality valid valid valid invalid invalid invalid see text see text
Computational complexity medium low medium medium medium medium high high
Exploits ground distance no no yes no no no yes yes
Individual binning no yes no no no no no yes
Multiple dimensions yes yes no yes yes yes yes yes
Partial matches see text no no no no no no yes
Non-parametric yes no yes yes yes yes yes yes

Table 1. Characteristics and advantages of the different distribution–based dissimilarity measures.

that two empirical distributions have been generated
from the same underlying true distribution.
(i) The Kolmogorov–Smirnov distance(KS) has orig-
inally been proposed in [2] for image segmentation.
It is defined as the maximal discrepancy between the
cumulative distributions,

Dr(I; J) = max
i
jFr(i; I) � Fr(i; J)j (6)

and has the desirable property to be invariant to arbi-
trary monotonic feature transformations.
(ii) A statistic of the Cramer/von Mises type(CvM) is
also defined based on cumulative distributions:

Dr(I; J) =
X
i

(Fr(i; I)� Fr(i; J))
2 : (7)

(iii) The �2–statisticis given by

D(I; J)=
X
i

�
f(i; I) � f̂ (i)

�2
f̂ (i)

; where (8)

f̂ (i) = [f(i; I)+f(i; J)]=2 denotes the joint estimate.

Information–theoretic divergences measure how
compact one distribution can be coded using the other
one as the codebook. Here we examine two special
cases:
(i) The Kullback–Leibler divergence(KL) suggested
in [10] as an image dissimilarity measure is defined by

D(I; J) =
X
i

f(i; I) log
f(i; I)

f(i; J)
: (9)

(ii) The Jeffrey–divergence(JD) is defined by

D(I; J) =
X
i

f(i; I) log
f(i; I)

f̂ (i)
+ f(i; J) log

f(i; J)

f̂ (i)
:

In contrast to the KL–divergence, JD is symmetric and
numerically more stable when comparing two empiri-
cal distributions.
Ground distance measuresare based on perceptually
meaningful distance measures between individual fea-
tures. Employing thisground distancemay improve

the dissimilarity measure between two distributions.
To some extent, the notion of ground distance is used
by measures like the Kolmogorov–Smirnov distance
and the statistic of the Cramer/von Mises type, which
are based on the cumulative histograms. However,
these measures are defined only in one dimension and
cannot exploit the ground distance in the full feature
space.
(i) TheQuadratic Form (QF)distance [3] incorporates
cross-bin information via a similarity matrixA = [aij]
whereaij denote similarity between binsi andj.

D(I; J) =

q
(~fI � ~fJ )TA(~fI � ~fJ ) ; (10)

where ~fI and ~fJ are vectors that list all the entries in
f(i; I) andf(i; J) respectively. We refer to [9] for
more details including efficient implementations.
(ii) The Earth Movers Distance (EMD)[12] is based
on the minimal cost to transform one distribution to the
other. If the cost of moving a single feature unit in the
feature space is the ground distance, then the distance
between two distributions is given by the minimal sum
of the costs incurred to move all the individual fea-
tures. The EMD can be defined as the solution of a
transportation problem which can be solved by linear
optimization:

D(I; J) =

P
i;j gijdijP
i;j gij

(11)

wheredij denotes the dissimilarity between binsi and
j, andgij � 0 is the optimal flow between the two dis-
tributions such that the total cost

P
i;j gijdij is mini-

mized, subject to the following constraints:X
i

gij � f(j; J) ;
X
j

gij � f(i; I) ;

X
i;j

gij = min(f(j; I); f(i; J)) ; (12)

for all i and j. The denominator in (11) is a nor-
malization factor that permits matching parts of distri-
butions with different total mass. If the ground dis-
tance is a metric and the two distributions have the
same amounts of total mass, the EMD defines a met-
ric. As a key advantage of the EMD each image may
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be represented by a different binning that adapts to its
specific distribution. When marginal histograms are
used, the dissimilarity values obtained for the individ-
ual dimensions must be combined into a joint over-
all dissimilarity value. In [11] the Minkowski norms
D(I; J) = (

P
r(D

r(I; J))p)1=p were investigated,
including the limiting casep = 1 utilized in [2].
Based on their resultsp = 1 is used in the sequel.

3.1. Properties

Table 1 compares the properties of the different
measures. KS, CvM and WMV are defined only for
marginal distributions. Metric dissimilarity measures
enable more efficient indexing algorithms for image
retrieval, since the triangle inequality entails lower
bounds that can be exploited to substantially alleviate
the computational burden. For the�2, KL, JD the tri-
angle inequality does not hold, while for the QF and
the EMD it holds only for specific ground distances.
All the evaluated measures are symmetric except the
HI and the KL divergence. A useful property for image
retrieval is the ability to handlepartial matches, i.e. to
compute the dissimilarity score only with respect to
the most similar image part [12]. The ability for par-
tial matching is of minor importance for the other ap-
plications. Only the HI and the EMD allow for partial
matches directly. Computational complexity is an im-
portant consideration. For applications such as image
retrieval, it is important to differentiate between online
and off-line complexity. Especially for the WMV the
standard deviations can be computed in advance and
the dissimilarity scores for a new query can be evalu-
ated efficiently. The computational complexity of the
EMD is the highest among the evaluated measures, as
for each dissimilarity calculation a linear optimization
is necessary. However, while using the EMD on large
histograms is prohibitive for certain applications, its
ability to represent different images by a different bin-
ning often yields good results even with small number
of bins, and consequently less computation. In our ex-
periments we have limited the number of bins for the
EMD to 32 bins, while for the other dissimilarity mea-
sures we used up to 256 bins.

4. Benchmark Methodology

Any systematic comparison of dissimilarity mea-
sures should conform at least to the following guide-
lines:
(i) A meaningful quality measuremust be defined.
Different tasks usually entail different quality mea-
sures. The subdivision into classification, retrieval,
and segmentation makes it possible to define general-
purpose quality criteria foreach task.

(ii) Performance comparisons shouldaccount for the
variety of parametersthat can affect the behavior of
each measure. These parameters include the size of
the images, queries and statistical samples; the number
of neighbors in a k-nearest-neighbor classifier and the
number of bins in a histogram; the shape of the bins
and their detailed definition; and, for texture, the di-
mensionality of feature space. A fair comparison in the
face of this variability can be achieved by giving every
measure the best possible chance to perform well.
(iii) Processing steps that affect performance indepen-
dently of each otherought to be evaluated separately
in order to both sharpen insight and reduce complex-
ity. For instance the effect of different image repre-
sentations can be understood separately from those of
different dissimilarity measures. Also, for segmenta-
tion, the grouping procedure can be evaluated sepa-
rately [5].
(iv) Ground truthshould be available which is a set
of data for which the correct solution of a particu-
lar problem is known. Collecting ground truth is ar-
guably the hardest problem in benchmarking, because
the data should represent a broad range of possible ap-
plications, the “correct solution” ought to be uncontro-
versial, and the ground-truth data set should be large
enough for a statistically significant performance eval-
uation. In the following, we summarize our choice of
ground truth for color and texture.
Color: Defining ground truth to measure color simi-
larity over a set of color images is difficult. Our ap-
proach was to create disjoint sets of randomly sam-
pled pixels from an image and to consider these sets
as belonging to the same class. While for large sets
of pixels within a class the color distributions of their
pixels will be very similar, for small sets the variations
are larger, mimicking the situation in image retrieval
where images ofmoderatesimilarity have to be iden-
tified. From a database of 20,000 color images com-
prising the Corel Stock Photo Library, we randomly
chose 94 images. This is the same number of images
as in the texture case, so that we can compare the re-
sults from the two modalities. We defined set sizes
of 4; 8; 16; 32; 64 pixels, and for each image we ob-
tained 16 disjoint sets of random samples in all sample
sizes. For each of the five set sizes, this resulted into a
ground-truth data set of16�94 = 1504 samples in 94
different classes, one class per image. For the QF and
the EMD that employ a ground distance, we use

aij = exp(��k~ci � ~cjk) anddij = 1� aij (13)

as the measure of similarity and dissimilarity of binsi
andj, wherek~ci � ~cjk is theL2 distance between the
bin centers in the CIEL�a�b� color space (see sec-
tion 2). The exponential map limits the effect of large
distances, which otherwise dominate the result. This
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Figure 1. Classification results for thecolor database for different sample sizes and different binning. For each result,
an optimal valuek 2 f1; 3; 5; 7g for thek–nearest neighbor classifier has been chosen.

agrees with results from psychophysics [13]. Here we
set� to half the standard deviation of all the feature
values in the database. This makes closeness a relative
notion, and was found empirically to give good results.
Texture: In our benchmark study we concentrated on
textured images from the Brodatz album as they are
widely accepted within the texture research commu-
nity and provide a joint database which is commonly
available. To define ground trutheach image is con-
sidered as a single, separate class. This is question-
able in a few cases, which are circumvented by a pre–
selection of images. We selected 94 Brodatz textures
a priori by visual inspection. We excluded the tex-
tures d25, d30, d31, d39-d45, d48, d59, d61, d88, d89,
d91, d94, d97 due to missing micro–pattern proper-
ties. That is, those textures are excluded where the
texture property is lost when considering small im-
age blocks. From each of the Brodatz images we
extracted sets of 16 random, non–overlapping blocks
sizes8� 8, 16� 16, : : : , 256� 256 pixels2. For each
sample size this resulted in a ground truth data set of
16�94 = 1504 samples in 94 different classes, just as

2For a sample size of256 � 256 we only extracted 4 samples
per class because of the limited size of the original image.

for color. For the QF and the EMD we again employ
(13), with the only difference thatk~ci � ~cjk is defined
as theL1 distance between the Gabor responses. Un-
like with color, where theL2 distance has a solid psy-
chophysical justification, for texture it is not clear how
to relate the different (normalized) dimensions, so we
simply sum them.

Performance Evaluation for classification, retrieval,
and segmentation. Forclassification, a k–NN classi-
fier is used, withk having the values 1, 3, 5, and 7.
We use only odd values to reduce the chances of ties.
As a performance measure we use the average mis-
classification rate in percent applying a leave–one–out
estimation procedure.

For image retrieval, performance is usually mea-
sured byprecisionandrecall. Precision is defined as
the number of relevant images retrieved relative to the
total number of retrieved images, while recall mea-
sures the number of relevant images retrieved, relative
to the total number of relevant images in the database.
Since our goal is to compare the different methods and
not to measure performance of a retrieval system, we
only plot the precision vs. the number of retrieved im-
ages.
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Figure 2. Results fortextureclassification for different sample sizes and different binning. In each case, the best
possiblek and the best number of filters has been chosen.

Forunsupervised texture segmentationwe followed
the approach of [5] and used a database of random
mixtures (512� 512 pixels each) containing 100 enti-
ties of five Brodatz textures each (see Figure 4). Seg-
mentations are computed on a regular sub-grid of size
128� 128 by assigning each site to one out ofK seg-
ments. For each site, a local histogram is extracted
to estimate the local feature distribution. We com-
pute marginal histograms which are proportional to
the Gabor filter wavelength [6]. For the multivariate
histograms, the binning has been adapted to the spe-
cific image. Each local histogram is then compared
with 80 randomly selected images sites using the dis-
similarity measure. To compute an optimal segmenta-
tion we implemented the approach of [5] which groups
image sites with a high average similarity to obtain a
segmentation. As a performance measure we report
the average median classification error evaluated over
100 images, where each site is labeled according to the
majority rule of corresponding pixels. In addition, we
report the percentage of images with more than 20%
errors. We consider these failures as structural seg-
mentation errors with typically entire textures being
misclassified.

5. Results and Interpretation

Classification The classification performance has
been estimated in a leave–one–out procedure for all
combinations of parametersk 2 f1; 3; 5; 7g, number
of bins2 f4; 8; 16; 32;64;128; 256g 3. In the texture
case, we tried three different filter banks with12; 24
and40 filters, respectively. The experiments resulted
in an enormous amount of information, computed in
over 1,000 CPU hours. Due to limitations in space,
we present here only the main results, and plot a few
informative cuts from the high-dimensional parame-
ter space. The classification results are summarized in
Figure 1 (color) and Figure 2 (texture). We plot the
classification error of the dissimilarity measures as a
function of the sample size both for the full distribu-
tion (top) and for the marginal cases (bottom). The
results are further separated into two cases: small his-
tograms with 8 bins (left), and large histograms with
256 bins (right). An exception to these histogram sizes
is the EMD which uses locally adapted histograms. As

3For EMD because of computational limitations and the addi-
tional information carried by the local binning, we used only number
of bins2 f4;8;16;32g.
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Figure 3. Precision curves in[%] for selected similarity measures. Left: color retrieval for a sample size of16. Right:
textured image retrieval for a sample size of8� 8.

Figure 4. Examples of segmentation results withK = 5 clusters for the different similarity measures under consider-
ation. Misclassified image sites are depicted in black.

discussed in Section 3, these contain more information
than fixed histograms. For a fair comparison, we use 4
bins for the small histogram case for the EMD (in con-
trast to 8 bins), and 32 bins for the large histogram (in
contrast to 256 bins). The following main conclusions
can be drawn.
(i) Two regimes can be distinguished based on the
sample size:

For small sample sizes, the WMV measure per-
forms best in the texture case (last plot in figure 1).
This behaviour is explained by the fact that WMV
only estimates the means and variances of the marginal
distributions. These aggregate measurements are less
sensitive to sampling noise. The WMV competes less
satisfactorily on color since histograms can be more
reliably estimated in this case. The measures which
are based on cumulative distributions (KS and CvM)
and which thus incorporate ground distance informa-
tion also perform well using marginal distributions.
The EMD performed exceptionally well with full dis-
tributions, even for the hard case of small histograms
where other measures scored poorly. This is explained
by the local binning that provides additional informa-
tion, not available to the other measures.

For large sample sizes, the classical�2 test statis-
tic and the divergence measures perform best. Jef-
frey’s divergence behaves more stably than the KL–
divergence, as expected. The�2–statistic and JD yield
nearly identical results. TheL1 does best from the
class of heuristic measures.

(ii) For texture classification, marginal distributions
do better than the multidimensional distributions ex-

cept for very large sample sizes (256 � 256). This
is explained by the fact that the binning is not well
adapted to the data, since it is fixed for all 94 texture
classes. The EMD with its local adaptation does much
better in this case. For color, multivariate histograms
perform better with the EMD performing best, since
local histograms can be more reliably estimated even
for small sample sizes. We conclude that marginal dis-
tributions or measures that can use adaptive represen-
tations of the distributionsshould be used for large fea-
ture spaces.

(iii) The maximally allowed number of bins per-
forms best for multidimensional histograms. More
bins might result in an increased performance, up to a
point where close features fall in separate neighboring
bins, but also result in a prohibitive run–time behav-
ior. Only for the EMD, the local adaptation allows to
represent the distribution with a small number of bins
which is an advantage if storage complexity is an is-
sue. For marginal histograms, the binning details play
a negligible role.

For the texture case, usually 12 Gabor filters have
been sufficient. However, for small sample sizes ad-
ditional filtersimplicitly provide more samples which
results in a better performance. We conclude that a
small number of features is sufficient to distinguish a
large number of texture classes.

Image Retrieval As we saw in the results for classi-
fication, the EMD, WMV, CvM, and KS performed
very well for the small sample sizes, while JD,�2,
and KL usually performed better for the larger sample
sizes. This is confirmed by the retrieval results
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Median 20% quantile

L1 marginal 8.2% 12%
�2 marginal 8.1% 13%
JD marginal 8.1% 12%
KS marginal 10.8% 20%
CvM marginal 10.9% 22%
L1 full 6.8% 9%
�2 full 6.6% 10%
JD full 6.8% 10%

Table 2. Errors by comparison with ground truth
over 100 randomly generated images withK = 5
textures,512� 512 pixels and128 � 128 sites.

depicted in Figure 3. Small sample size is closer to
image retrieval, where similar images can have large
variability, but should still be retrieved. Therefore,
for better recall of a large number of similar images
(fewer false negatives), the first class of measures
performs better, while for better precision with a few,
very similar images (fewer false positives), the second
class of measures will probably perform better.

Unsupervised SegmentationAs a major difference
in segmentation the binning can be adapted to the
image at hand. This leads to an increased accuracy
in representing multidimensional distributions. Con-
sequently, adaptive multivariate binning significantly
outperforms marginal histograms in the unsupervised
segmentation task. This is illustrated in Figure 4 for
an example image and confirmed by the benchmark
results on the database with 100 images presented in
Table 2. �2, JD andL1 exhibit very similar perfor-
mance both with marginal and multidimensional his-
tograms. The best performance was achieved by�2 on
adaptive multivariate histograms with a median error
of 6:6% as compared to10:8% for the Kolmogorov–
Smirnoff test which was utilized in [2]. Thus, employ-
ing the benchmark results to select a proper dissimilar-
ity measure substantially improves the quality of unsu-
pervised segmentation. For segmentation, the EMD
suffers from its high computational complexity and
has, therefore, been excluded from the experiments.

6. Conclusion

In this paper, a thorough quantitative performance
evaluation has been presented for distribution–based
image dissimilarity measures. No measure exhibits
best overall performance, but the selection rather de-
pends on the specific task. While marginal histograms
and aggregate measures are best for large feature
spaces and small samples, multivariatehistograms per-
form very well for large sample sizes. Multivariate
histograms are especially effective if the number of
classes to be distinguished is small or the binning can

be efficiently adapted to the distribution. As a con-
sequence, multivariate histograms performed best for
color classification and color retrieval as well as tex-
ture segmentation. If storage space is an important is-
sue, the EMD is especially attractive since it allows
superior classification and retrieval performance with
a much more compact representation, but at a higher
computational cost.
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