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Preface

The increasing amount of information available in today’s world raises the
need to retrieve relevant data efficiently. Unlike text-based retrieval, where
keywords are successfully used to index into documents, content-based image
retrieval poses up front the fundamental questions how to extract useful image
featuresand how to usethemfor intuitiveretrieval. We present anovel approach
to the problem of navigating through a collection of images for the purpose of
image retrieval, which leads to a new paradigm for image database search. We
summarizetheappearance of imagesby distributionsof color or texturefeatures,
and we define a metric between any two such distributions. This metric, which
we call the “Earth Mover’s Distance” (EMD), represents the least amount of
work that is needed to rearrange the massis one distribution in order to obtain
the other. We show that the EM D matches perceptual dissimilarity better than
other dissimilarity measures, and argue that it has many desirable properties
for image retrieval. Using this metric, we employ Multi-Dimensional Scaling
techniques to embed a group of images as pointsin atwo- or three-dimensional
Euclidean space so that their distances reflect image dissimilarities as well as
possible. Such geometric embeddings exhibit the structure in the image set at
hand, allowing the user to understand better the result of a database query and
to refine the query in aperceptualy intuitive way. By iterating this process, the
user can quickly zoom in to the portion of the image space of interest. We also
apply these techniques to other modalities such as mug-shot retrieval.

XV
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I ntroduction

The last thing that we discover in writing a book is to know what to put at the beginning.
—Pascal, 1623-1662

1. BACKGROUND AND MOTIVATION

Recent technological advancesin disparate fields of endeavor have combined
to make large databases of digital images accessible. These advances include:

1 Image acquisition devices, such as scanners and digital cameras,
2 Storage unitsthat provide larger capacities for lower costs,

3 Accessto enormousnumbersof imagesviatheinternet, andtherapid growth
of the World-Wide Web where images can be easily added and accessed.

Rummaging through such alarge collection of imagesin search of aparticular
picture is unrewarding and time-consuming. Image database retrieval research
attempts to automate parts of the tedious task of retrieving images that are
similar to a given description.

Occasionally, semantic keywords are attached to the images. This can be
done either by manually annotating the images or by automatically extracting
the keyword from the context, for instance, from the the images captions.
When available, such keywords greatly assist the search. Practically, often
images lack keywords and only the appearance features of the images can
be used. Appearance features are useful even when semantic keywords are
available because the keywords usually don't describe all theinformation in the
image. The caption of a picture of the president walking in agarden is unlikely
to specify the kinds of flowers in the garden, which may happen to be what the
user islooking for.

XiX



XX PERCEPTUAL METRICS FOR IMAGE DATABASE NAVIGATION

Thequestion of imagesimilarity!, thecoreof any retrieval system, iscomplex
and delicate. The preferred mode of querying an image database is semantic.
For example, wemight search for imagesof childrenplayinginapark. Tosatisfy
such a query, the system must be able to automatically recognize children and
parks in the images. Unfortunately, even after almost 50 years of computer
vision, thislevel of image interpretation isstill out of the question, and we must
make do with similarity of appearance. More specifically, similarity between
images can be defined by image features such as color, texture, or shape, and
on the composition of these features in an image.

Thediscrepancy between the semantic query that the user hasin mind and the
syntactic featuresused to describeit makesit hard both for the user to specify the
guery, and for the system to return the correct images. Until semantic image
interpretation can be done automatically, image retrieval systems cannot be
expected to find the correct images. Instead, they should strive for asignificant
reduction in the number of images that the user needs to consider, and provide
toolsto view theseimages quickly and efficiently. The number of images can be
reduced by extracting perceptually meaningful features and using dissimilarity
measures that agree with perceptual similarity. Displaying the resulting images
in an intuitive way can assist the user to quickly assess the query result.

A query into an image database is often formulated by sketching the desired
feature or by providing an example of asimilarimage. Yet oftenwedo not know
the precise appearance of the desired image(s). We may want a sunset, but we
do not know if sunsets in the database are on beaches or against a city skyline.
When looking for unknown images, browsing, not query, isthe preferred search
mode. And the key requirement for browsing isthat similar images are located
nearby. Current retrieval systems list output images in order of increasing
distance from the query. However, the distances among the returned images
also convey useful information for browsing.

2. PREVIOUSWORK

Theincreasing avail ability of digital imagery hascreated the need for content-
based image retrieval systems, while the devel opment of computation and stor-
age resources provides the meansfor implementing them. Thisled to extensive
research that resulted, in less than a decade, into numerous commercia and
research-based systems, including QBIC [62], Virage [3], Photobook [66], Ex-
calibur [26], Chabot [23], and Visua SEEK [92]. These systems allow the user
to formulate queries using combinations of low-level image features such as
color, texture, and shape. The queries are specified explicitly by providing the

IWhile it is more natural to use the term similarity in the context of perception, the measures discussed in
this book actually compute the amount of dissimilarity between images. These terms are interchangeable as
itistrivial to convert between similarities and dissimilarities. We use both terms according to the context.
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desired feature values or implicitly by specifying an exampleimage. Somesys-
tems also use the spatial organization of the image features, so that similarity
is determined not only by the existence of certain features, but also by their
absolute or relative location in theimage [40, 3, 95, 92, 18, 12]. Early systems
focused on the search engine (given aquery, find the best matches) and did not
use previous queries to understand better what the user was looking for. Re-
cent systems allow the user to refine the search by indicating the relevance (or
irrelevance) of imagesin the returned set. Thisisknown as relevance feedback
[81, 59, 92].

In [41], the authors provide an in-depth review of content-based image re-
trieval systems(CBIR). They asoidentify anumber of unanswered key research
guestions, including the development of more robust and compact image con-
tent features and dissimilarity measures that model perceptual similaritymore
accurately. We approach these issues in Chapters 1-5 and the problem of ex-
panding a content-based image search engine to an intuitive navigation system
in Chapters 6 and 7.

3. OVERVIEW OF THE BOOK

We present a novel framework for computing the distance between images
and a set of tools to visualize parts of the database and browse its content
intuitively. In particular, we address the following questions:

» What features describe the content of an image well?
= How to summarize the distribution of these features over an image?
= How to measure the dissimilarity between distributions of features?

= How can we effectively display the results of a search?

How can auser browse theimagesin the database in anintuitive and efficient
way?

In this book, we focus on the overal color and texture content of images
as the main criterion for similarity. The overall distribution of colors within
an image contributes to the mood of the image in an important way and is a
useful clue for the content of an image. Sunny mountain landscapes, sunsets,
cities, faces, jungles, candy, and fire fighter scenes lead to images that have
different but characteristic color distributions. While color is a property of
single pixels, texture describes the appearance of bigger regions in the image.
Often, semantically similar objects can be characterized by similar textures.

Summarizing feature distributions has to do with perceptua significance,
invariance, and efficiency. Features should be represented in away that reflects
a human'’s appreciation of similarities and differences. At the same time, the
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distributions of the image features should be represented by a collection of
data that is small, for efficiency, but rich enough to reproduce the essential
information. The issue of relevance to human perception has been resolved
by the choice of appropriate representations. For color we choose the CIELab
color space, and for texture we use Gabor filters. For both we discuss their
relations with perceptual similarity. We summarize the feature distributions
by asmall collection of weighted points in feature space where the number of
points adapts to capture the complexity of the distributions; we call this set of
points asignature.

Defining a dissimilarity measurebetween two signatures first requires a no-
tion of distance between the basic features that are aggregated into the signa-
tures. We call this distance the ground distance. For instance, in the case of
color, the ground distance measures dissmilarity between individua colors.
We address the problem of lifting these distances from individual features to
full distributions. In other words, we want to define a consistent measure of
distance, or dissimilarity, between two distributions in a space endowed with
aground distance. We introduce the Earth Mover’s Distance as a useful and
flexible metric, thereby addressing the question of image similarity.

If the pictures in a database can be spatially arranged so that their locations
reflect their differences and similarities, browsing the database by navigating
in this space becomes intuitively meaningful. In fact, the database is now
endowed with ametric structure, and can be explored with a sense of continuity
and comprehensiveness. Parts of the database that have undesired distributions
need not be traversed; on the other hand, interesting regions can be explored
with a sense of getting closer or farther away from the desired distribution of
colors. In summary, the user can form amental, low-detail picture of the entire
database, and a more detailed picture of the more interesting parts of it.

4. ROAD MAP

Therest of the book isorganized asfollows: Chapter 1 addresses the issue of
summarizing distributions of features and surveys some of the most commonly
used distribution-based dissimilarity measures. In Chapter 2 we introduce the
Earth Mover’sDistance, whichweclaimisapreferred dissimilarity measurefor
image retrieval, and discussits properties. In Chapters 3 and 4, respectively, we
define color and texture features and show that, combined with the EMD, they
lead to effectiveimageretrieval. In Chapter 5we conduct extensive experiments
where we compare the retrieval results, for color and texture, using various
dissimilarity measures. The problem of displaying the results of a search in a
useful way is approached in Chapter 6. Finally, in Chapter 7 we extend our
display technique to afull navigation system that allows intuitive refinement of
aquery.
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5. THEATTACHED CD

Dueto technical limitations, thisbook was printed in black-and-white. Since
color isone of the more important visua features used in this work, we attach
a CD that contains a color version of the book in PostScript format. Figures
in the text that are originally in color, have a mention to thisin their caption.
Please refer to the CD for the color versions of the figures.






Chapter 1

DISTRIBUTION-BASED
DISSIMILARITY MEASURES

The difference between the right word and a similar word is the difference between light-
ning and a lightning bug.
—Mark Twain, 1835-1910

In order for animageretrieval system to find images that are visually similar
to the given query, it should have both a proper representation of the images
visual features and a measure that can determine how similar or dissimilar
the different images are from the query. Assuming that no textual captions
or other manual annotations of the images are given, the features that can be
used are descriptions of the image content, such as color [97, 62, 96, 91, 4],
texture [25, 62, 6, 69, 56, 4], and shape [42, 62, 31, 44]. These features usually
vary substantially over an image, both because of inherent variations in surface
appearance and as a result of changes in illumination, shading, shadowing,
foreshortening, etc. Thus, the appearance of aregion is better described by the
distribution of features, rather than by individual feature vectors.

Dissimilarity measures, based on empirical estimates of the distributions of
features, have been developed and used for different tasks in low-level com-
puter vision including classification [63], image retrieval [28, 97, 71, 80] and
segmentation [32, 39].

In this chapter, wefirst describe different representations for distributions of
image features and discuss their advantages and disadvantages. Wethen survey
and categorize some of the most commonly used dissimilarity measures.
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1. REPRESENTING DISTRIBUTIONS OF FEATURES
1.1. Histograms

A histogram {h;} isamapping from a set of d-dimensional integer vectorsi
to the set of non-negative reals. These vectors typically represent bins (or their
centers) in afixed partitioning of the relevant region of the underlying feature
space. The associated reals are a measure of the mass of the distribution that
falls into the corresponding bin. For instance, in a grey-level histogram, d is
equal to one, the set of possible grey values is split into IV intervals, and i is
the number of pixelsin an image that have agrey valuein the interval indexed
by i (ascaar in this case).

Thefixed partitioning of the feature space can beregular, withall binshaving
the same size. A major problem of regular histogramsis that the number of
bins grows exponentially with the number of dimensions, affecting storage and
computationa costs. If the distribution of features of al the images is known
a priori, then adaptive binning can be used, whereby the location and size of
the histogram bins are adapted to the distribution. The binning is induced by
aset of prototypes {c;} and the corresponding Voronoi tessellation. Adaptive
histogramsare formally defined by

hi = |[{x : i =argmin ||I(x) —cj|/}| .
J

Here I(x) denotes the feature vector at image position x, and |-| is the number
of elementsinaset. Thehistogram entry h; corresponds to the number of image
pixelsinbini. Adaptive histograms usually have one-dimensional index asthe
ordering of the bins in space is not well defined. A suitable set of prototypes
can be determined by a vector quantization procedure, e.g. K-means (see [61]
for areview).

For images that contain a small amount of information, a finely quantized
histogramis highly inefficient. On the other hand, for images that contain a
large amount of information, a coarsely quantized histogramwould be inade-
guate. Because histograms are fixed-size structures, they cannot achieve agood
balance between expressiveness and efficiency.

1.2. Signatures

Unlike histograms, whose bins are defined over the entire database, the
clusters in signatures are defined for each image individually. A signature
{s; = (mj,wm,)} represents a set of feature clusters. Each cluster is repre-
sented by its mean (or mode) m; and the fraction wp,; of pixels that belong
to that cluster. The integer subscript 5 ranges from one to a value that varies
with the complexity of the particular image. While j is simply an integer,
the representative m; is a d-dimensiona vector. In general, the same vector
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guantization algorithms that are used to compute adaptive histograms can be
used for clustering, as long as they are applied to every image independently,
adapting the number of clusters to the complexity of the individual images.
Simple images have short signatures while complex images have long ones.
An example of a color signatureis given in Figure 1.1. Part (a) shows a color
image, and part (b) showsthe corresponding clustersin color space. Thecluster
weights are reflected in the sizes of the spheres. Thisis acolorful image so its
signature islarge. More examples of color and texture signatures can be found
in Chapters 3 and 4.

@

Figure 1.1.  (a) Color image. (b) Itscolor signature. (This is a color figure)

A histogram {h;} can be viewed asasignature {s; = (m;, wp,;)} inwhich
the vectors i index a set of clusters defined by a fixed a priori partitioning of
the underlying space. If vector i maps to cluster j, the point m; is the central
valuein bin i of the histogram, and w; is equal to h;.

We show in Chapters 3 and 4 that representing the content of an image
database with signatures leads to better query results than with histograms.
Thisisthe case even when the signatures contain, on the average, significantly
less information than the histograms. By “information” here we refer to the
minimal number of bits needed to code the signatures and the histograms.
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1.3. Other representations

In addition to histograms and signatures, which are based on global or local
tessellation of the space into non-overlapping regions, there are other tech-
nigues to describe non-parametric distributions. For example, in kernel density
estimation [22], each data point is replaced by some kernel (Parzen window)
and the density estimations isregarded as the superposition of al these kernels.
Representing and comparing kernel density estimation becomes unwieldy and
computationally expensive as the amount of data and the dimensionality of the
feature space becomes large.

2. HISTOGRAM-BASED DISSIMILARITY MEASURES

Most of the dissimilarity measures used in image retrieval measure the dis-
similarity between two histograms H = {h;} and K = {k;}. We divide these
measures into two categories. The bin-by-bin dissimilarity measurescompare
contents of corresponding histogram bins, that is, they compare i and k; for
al i, but not h; and k; for i # j. The cross-binmeasures also compare non-
corresponding bins. Cross-bin distances make use of the ground distance dj,
defined as the distance between the representative features for bin i and bin
j. Predictably, bin-by-bin measures are more sensitive to the position of bin
boundaries. We start with afew definitions.

2.1. Definitions

Here we define terms that are used with regard to the dissimilarity measures
defined is this chapter.

211 Metric Space

A space A iscalled ametric spaceif for any of itstwo elements x and y, there
isanumber p(z,y), caled the distance, that satisfies the following properties

m p(z,y) >0 (non-negativity)

m p(z,y) =0ifandonlyif z =y (identity)

w p(z,y) = p(y,z) (Symmetry)

» p(z,2) < p(7,y) +ply,2) (triangle inequality)

2.1.2 Partial Matching

With partial matching, when thetotal mass of onedistribution issmaller than
that of the other, the dissimilarity score is computed only with respect to the
most similar part of the larger distribution. Thisisauseful property for image
retrieval since often only part of the image or the features are known or are of
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interest. Partial matches also provide away to deal with occlusions and clutter
in image retrieval.

2.2.  Bin-by-bin dissimilarity measures

In this category only pairs of bins in the two histograms that have the same
index are matched. The dissimilarity between two histogramsis a combination
of all the pairwise comparisons. A ground distance is used by these measures
only implicitly and in an extreme form: features that fall into the same bin are
close enough to each other to be considered the same, and those that do not are
too far apart to be considered similar. In this sense, bin-by-bin measures imply
abinary ground distance with athreshold depending on bin size.

221 Minkowski-form distance
The Minkowski-form distance is defined based on the I, norm as

1/p
dp,(H,K) = (Zm—kv’) .

The L, distanceisoften used for computing dissimilarity between color images
[97]. Other commonusagesare L, and L, (e.g. for texturedissimilarity [102]).

In [96] it was shown that for image retrieval the L, distance results in many

false negatives because neighboring bins are not considered.

2.2.2 Histogram intersection
Histogram intersection [97] is defined by

>_; min(hy, k;)
Sk

It is attractive because of its ability to handle partial matches when the area of
one histogram (the sum over all the bins) is smaller than that of the other. Itis
shownin[97] that when the areas of the two histograms are equal, the histogram
intersection is equivalent to the (normalized) I, distance.

dr(H,K)=1-—

2.2.3 Kullback-Leibler divergence and Jeffrey divergence
The Kullback-Leibler (KL) divergence [50] is defined as.

dxr(H,K) = Zhlogk

From an information theoretic point of view, the K-L divergence measures how
inefficient on average it would be to code one histogram using the other as
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the code-book [13]. However, the K-L divergence is non-symmetric and is
sensitive to histogram binning. The empirically derived Jeffrey divergenceisa
modification of the K-L divergence that is numerically stable, symmetric and
robust with respect to noise and the size of histogram bins[71]. Itisdefined as.

hi k;
dj(H, K) = hll — kll - )
J(H,K) Zl:( og -+ ogmi>
where m; = Ltk

224 2 datistics
The x? statistics is defined as

(hi —my)?
dy:(H,K) = ZT ;
where again m; = "% This quantity measures how unlikely it is that one

distribution was drawn from the population represented by the other.

2.25 Drawbacksof bin-by-bin dissimilarity measures

These dissimilarity definitions are appropriate in different areas. For exam-
ple, the Kullback-Leibler divergence isjustified by information theory and the
x? statistics by statistics. However, these measures do not necessarily match
perceptua similarity well. Their major drawback is that they account only for
the correspondence between bins with the same index, and do not use informa-
tion across bins. This problem isillustrated in Figure 1.2(a) which shows two
pairs of one-dimensional gray scale histograms. Although the two histograms
on the |eft are the same except for ashift by one bin, the I, distance (asarepre-
sentative of bin-by-bin dissimilarity measures) between them islarger than the
L, distance between the two histograms on the right, in contrast to perceptual
dissimilarity. This can be fixed by using correspondences between bins in the
two histograms and the ground distance between them as shown in part (b) of
the figure.

Another drawback of bin-by-bin dissimilarity measures is their sensitivity
to bin size. A binning that istoo coarse will not have sufficient discriminative
power, while a binning that is too fine might place similar features in differ-
ent bins that will not be matched. On the other hand, cross-bin dissimilarity
measures, described next, always yield better results when the bins get smaller.

2.3. Cross-bin dissimilarity measures

When a ground distance that matches perceptual dissimilarityis available
for single features, incorporating this information results in perceptually more
meaningful dissimilarity measures for distributions of features.
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Figure 1.2. An example where the L, distance does not match perceptual dissimilarity. (a)
Assuming that histograms have unit mass dr,, (hi, ki) = 2, dz, (h2,k2) = 1. (b) Perceptual
dissimilarity is based on correspondence between binsin the two histograms.

231 Quadratic-form distance

dA(H,K) = \/(h—K)TA(h — k),

where h and k are vectors that list all the entriesin H and K. This distance
was suggested for color-based retrieval in [62].

Cross-bin information is incorporated via a similarity matrix A = [q;]
where a;; denotes similarity between bins: and j. Here: and j are sequential
(scaar) indices into the bins.

For our experiments, we followed the recommendation in [62] and used
aij = 1 — d;ij/dmes Where d;; is the ground distance between the feature
descriptors of bins: and j of the histogram, and d,,, = max;; d;;. Although
in general the quadratic-form distance isnot ametric, it can be shown that with
this choice of A it isindeed ametric.

The quadratic-form distance does not enforce a one-to-one correspondence
between mass elements in the two histograms. The same massin agiven bin of
the first histogram is simultaneously made to correspond to masses contained
in different bins of the other histogram. This is illustrated in Figure 1.3(a),
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. k]

Figure 1.3. An examples where the quadratic-form distance does not match perceptua dis-
similarity. (a) Assuming that histograms have unit mass d4 (hi, ki) = 0.1429, da(hs, k3) =
0.0893. (b) Perceptual dissimilarity is based on correspondence between bins in the two his-
tograms

where the quadratic-form distance between the two histograms on the left is
larger than the distance between the two histograms on theright. Again, thisis
clearly at odds with perceptual dissimilarity. The desired distance here should
be based on the correspondences shown in part (b) of the figure.

Similar conclusions were obtained in [96], where it was shown that using
the quadratic-form distance inimageretrieval resultsin fal se positives, because
it tends to overestimate the mutual similarity of color distributions without a
pronounced mode.

2.3.2 One-dimensional match distance
dy(H,K) =Y |hi = kil (1.1)

where h; = > j<ihj isthe cumulative histogram of {%;}, and similarly for

{ki}.
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The match distance [87, 105] between two one-dimensional histograms is
defined asthe L; distance between their corresponding cumulative histograms.
For one-dimensional histograms with equal areas, this distanceisa special case
of the EMD, which we present in Chapter 2, with theimportant differences that
the match distance cannot handl e partial matchesor other ground distances. The
one-dimensional match distance does not extend to higher dimensions because
the relation j < i is not atotal ordering in more than one dimension, and the
resulting arbitrariness causesproblems. Thematchdistanceisextendedin[105]
for multi-dimensional histograms by using graph matching algorithms. This
extensionissimilar inspirit tothe EM D, which can be seen asageneralization of
the match distance. Intherest of this chapter, the term “match distance” refers
only to the one-dimensional case, for which analytic formulation is available.

2.3.3  Kolmogorov-Smirnov statistics

sz(H, K) = max(|hi — k,|) .
7

Again, h; and k; are cumulative histograms.

The Kolmogorov-Smirnov statistics isacommon statistical measure for un-
binned distributions. Although, for consistency, we use here cumulative his-
tograms, the Kolmogorov-Smirnov statistics is defined on the cumulative dis-
tributions so that no binning is required and it can be applied to continues data.
In the case of the null hypothesis (data sets drawn from the same distribution)
the distribution of the Kolmogorov-Smirnov statistics can be calculated, thus
giving the significance of the result [16]. Similarly to the match distance, it is
defined only for one dimension.

2.4. Parameter-based dissimilarity measures

These methods first compute a small set of parameters from the histograms,
either explicitly or implicitly, and then compare these parameters. For in-
stance, the distance between distributions is computed in [96] asthe sum of the
weighted distances of the distributions’ first three moments. In [18], only the
peaks of color histogramsare used for color image retrieval. In [53], textures
are compared based on measures of their periodicity, directionality, and ran-
domness, whilein [56] texture distances are defined by comparing their means
and standard deviations in aweighted-1,; sense.

Additional dissimilarity measures for image retrieval are evaluated and com-
pared in[92, 71].
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L, HI KS KL JD 2 QF ™MD EMD

Symmetric + - + - + + + + +
Triangle inequality + - + - - - (1) + )
Exploits ground distance - - + - - - + + +
Signatures - - - - - - - - +
Multiple dimensions + + - + + + + - +
Partial matches - + - - - - +

Computational complexity low low low low low low high Jlow high

Table 1.1. Propertiesof the different dissimilarity measures: Minkowski-form(L, ), histogram
intersection (HI), Kolmogorov-Smirnov (KS), Kullback-Leibler (KL), Jeffrey divergence (ID),
x? statistics (x2), quadratic form (QF), match distance (MD), and the Earth Mover’s Distance
(EMD). (1) The triangle inequality only holds for specific ground distances.

2.5. Properties

Table 1.1 compares the main properties of the different measures presented
in Sections 2.3 and 2.2. For comparison, weinclude the EMD, which is defined
in Chapter 2.

The Kolmogorov-Smirnov statistics and the match distance are defined only
for one-dimensional distributions. Thus, they cannot be used for color and
texture.

Metric dissimilarity measures enable more efficient indexing algorithms for
image databases, as the triangle inequality entails lower bounds that can be
exploited to substantially alleviate the computational burden. The triangle in-
equality does not hold for the histogram intersection, Kolmogorov-Smirnov,
Jeffrey divergence, and y? statistics. The quadratic form is metric only for
some ground distances (see [35]), while the EMD is metric only when the
ground distance is metric and if the two signatures have the same total weight.
All the evaluated measures are symmetric except for the histogram intersection
and the Kullback-Leibler divergence.

A useful property for image retrieval isthe ability to handle partial matches.
Only the histogram intersection and the EMD directly allow partial matches.

Computational complexity is another important consideration. The compu-
tational complexity of the quadratic form and the EMD are the highest among
the evaluated measures. There are good approximations for the quadratic form
that can be computed efficiently [62]. Computing the EMD for large histograms
isinfeasible for an online image retrieval system, asfor every dissimilarity cal-
culation alinear optimization is necessary. However, as we show in Chapters 3
and 4, by using signatures instead of histograms, good results are achieved by
the EMD even with small signatures and, consequently, less computation.
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3. SUMMARY

In this chapter we presented methods for the representation of distributions
of image features, with histograms being the most common method for im-
age retrieval. We also surveyed and compared histogram-based dissimilarity
measures.

Histograms are inflexible: they cannot achieve a good balance between ex-
pressiveness and efficiency. Signatures, on the other hand, adjust to the specific
images. Unfortunately, most dissimilarity measures cannot be applied to sig-
natures. In the next chapter we present the Earth Mover’s Distance, which
is designed for signatures, and show that it has many desirable properties for
image retrieval.






Chapter 2

THE EARTH MOVER’SDISTANCE

The great God endows his children variously. To some He gives intellect- and they move
the earth ...
—Mary Roberts Rinehart, 1876-1958

A ground distance between singlevisual imagefeatures can often befound by
psychophysical experiments. For example, perceptual color spaceshave been
devised in which the Euclidean distance between two colors approximately
matches the human perception of their difference. Measuring perceptual dis-
tancebecomes more complicated when sets of features, rather than single fea-
tures, are being compared. In Section 2 we showed the problems caused by
dissimilarity measures that do not handle correspondences between different
bins in the two histograms. Such correspondences are key to a perceptually
natural definition of the distances between sets of features. This observation
led to distance measures based on bipartite graph matching [65, 108], defined
as the minimum cost of matching elements between the two histograms.

In [65] the distance between two gray scale images is computed as follows:
every pixel is represented by n “pebbles’ where n is an integer representing
the gray level of that pixel. After normalizing the two images to have the same
number of pebbles, the distance between them is computed as the minimum
cost of matching the pebbles between the two images. The cost of matching
two single pebblesis based on their distance in the image plane. In this section
we take asimilar approach and derive the Earth Mover’s Distance' (EMD) asa
useful metric between signatures for image retrieval in different feature spaces.

1The name EMD was suggested by Stolfi [94].

13
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The main difference between the two approaches is that we solve the trans-
portation problem which finds the optimal match between two distributions
where variable-sized pieces of “mass’ are allowed to be moved together, in
contrast to the matching problem where unit elements of fixed size are matched
individually. Thisdistinction significantly increases efficiency, dueto the more
compact representation as aresult of clustering pixelsin the feature space. The
implementation is fast enough for online image retrieval systems. In addition,
as we will show, our formulation allows for partial matches, which are im-
portant for image retrieval applications. Finally, instead of computing image
distances based on the cost of moving pixels in the image space, where the
ground distance is perceptually meaningless, we compute distances in feature
spaces, where the ground distances can be perceptually better defined.

Intuitively, given two distributions, one can be seen aspilesof earth infeature
space, the other as acollection of holesin that same space. The EMD measures
the least amount of work needed to fill the holes with earth. Here, a unit of

work corresponds to transporting a unit of earth by a unit of ground distance.

Computing the EMD is based on a solution to the well-known transporta-
tion problem [38], also known as the Monge-Kantorovich mass transference
problem, which goes back to 1781 when it was first introduced by Monge [60]
in the following way:

Split two equally large volumes into infinitely small particles and then associate them
with each other so that the sum of products of these paths of the particles to a volume
is least. Along what paths must the particles be transported and what is the smallest
transportation cost?

See[72] for an excellent survey of the history of the Monge-Kantorovich mass
transference problem. Thisdistance wasfirst introduced to the computer vision
community by [105].

Suppose that several suppliers, each with a known amount of goods, are
required to supply several consumers, each with a known capacity. For each
supplier-consumer pair, the cost of transporting a single unit of goodsis given.
Thetransportation problemis, then, to find aleast-expensive flow of goodsfrom
the suppliers to the consumers that satisfies the consumers’ demand. Signature
matching can be naturaly cast as a transportation problem by defining one
signature as the supplier and the other as the consumer, and by setting the cost
for a supplier-consumer pair to equal the ground distance between an element
in the first signature and an element in the second. Intuitively, the solution is
the minimum amount of “work” required to transform one signature into the
other. In the following we will refer to the supplies as “mass.”

In Section 1 we formally define the EMD. We discuss its properties in Sec-
tion 2 and specify computational issues, including lower bounds, in Section 3.
In Section 4 we describe a saturated ground distance and claim better agreement
with psychophysics than simpler distance measures. Finaly, in Section 5 we
mention some extensions to the EMD.
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1. DEFINITION
The EMD is based on the following linear programming problem: Let

P = {(p1,wp,); ---,(Pm,wp,,)} be the first signature with m clusters,
where p; is the cluster representative and wy, is the weight of the cluster;
Q = {(ai,wq,),---,(an,wq,)} the second signature with n clusters; and

D = [d;;] the ground distance matrix where d;; = d(pi,q;) is the ground
distance between clusters p; and q;.

We want to find aflow F = [f;;], with f;; the flow between p; and q;;, that
minimizes the overall cost

WORK (P, Q,F) = > " d(pi,a)) fij »

i=1 j=1

subject to the following constraints:

fij =2 0, 1<i<m, 1<j<n, (2.1a)
n
Yoy < owp,  1<i<m, (2.1b)
j=1
m
Zfij < wg; 1<j<n, (2.10)
=1

oSt = min() wp, > wg,) - (2.1d)
i=1 j=1

i=1 j=1

Constraint (2.1a) alows moving “supplies’ from P to () and not vice versa.
Constraint (2.1b) limits the amount of supplies that can be sent by the clusters
in P to their weights. Constraint (2.1c) limits the clusters in @) to receive no
more supplies than their weights; and Constraint (2.1d) forces the maximum
amount of supplies possible to be moved. We call this amount the total flow.
Once the transportation problem is solved, and we have found the optimal flow
F, the Earth Mover’s Distance is defined as the resulting work normalized by
the total flow:

Dim1 D=1 A(Pis ;) fij
Z?ll Z?:l fij ’

The normalization factor isthe total weight of the smaller signature, because of
Constraint (2.1d). Thisfactor is needed when the two signatures have different
total weights, in order to avoid favoring smaller signatures. An example of a
two-dimensional EMD is shown in Figure 2.1. In general, the ground distance
canbeany distanceand will be chosen according tothe problemat hand. Further
discussion of the ground distance is given in Section 4.

EMD(P,Q) =
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Figure 2.1. The Earth Mover’s Distance in two dimensions between a signature with three
points (black discs) and a signature with two points (white discs). The bold numbers attached
to the discs are the weights of the points and the italic numbers on the arrows are the weights
moved between the points. The sides of the grid cells are one unit long, and the resulting EMD
is2.675.

2. PROPERTIES

The EMD naturally extends the notion of adistance between single elements
to that of a distance between sets, or distributions, of elements. The advan-
tages of the EMD over previous distribution distance measures should now be
apparent:

1 The EMD applies to signatures, which subsume histograms as shown in
Section 1. The greater compactness and flexibility of signaturesisin itself
an advantage, and having a distance measure that can handl e these variable-
size structures is important.

2 Thecost of moving “earth” reflects the notion of nearness properly, without
the quantization problems of most current measures. Even for histograms,
in fact, items from neighboring bins now contribute similar costs, as appro-
priate.

3 The EMD alows for partial matches in a natural way. This is important,
for instance, in order to deal with occlusions and clutter in image retrieval
applications, and when matching only parts of an image.

4 |If the ground distance isametric and the total weights of two signatures are
equal, the EMD is atrue metric, which endows image spaces with a metric
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structure. Metric dissimilarity measures allow for efficient data structures
and search agorithms [8, 10].

We now prove the final statement.

THEOREM 2.1 Iftwo signatures, P and ), have equal weights and the ground
distance d(p;, q;) is metric for all p; in P and q; in @, then EMD(P, Q) is
also metric.

Proof: To provethat adistance measureismetric, we must prove the following:
positive definiteness (EMD(P, Q) > 0 and EMD(P, Q) = 0 iff P = Q),
symmetry (EMD(P, Q) = EMD(Q, P)), and the triangle inequality (for any
signature R, EMD(P, Q) < EMD(P, R) + EMD(R, Q)).

Positive definiteness and symmetry hold trivialy in all cases, so we only
need to prove that the triangle inequality holds. Without loss of generality we
assume here that the total sum of the flowsis 1. Let { fi;} be the optimal flow
from P to R and {g;;.} be the optimal flow from R to Q. Consider the flow
P — R — . We now show how to construct afeasible flow from P to @
that represents no more work than that of moving mass optimally from P to )
through R. Since the EMD is the least possible amount of feasible work, this
construction proves the triangle inequality.

The largest weight that moves as one unit from p; to r; and from r; to g
defines aflow which we call b, where i, j and & correspond to p;, r; and gy
r%pectively. Clearly Zk bz’jk = fij, the flow from P to R, and Zz bz’jk = Gjk»
the flow from R to ). We define

hiy = > biji
J

to be aflow from p; to q;. Thisflow is afeasible one because it satisfies the
congtraints (2.1a)-(2.1d) in Section 1. Constraint (2.1a) holds, since 45, > 0
by construction. Constraints (2.1b) and (2.1c) hold because

D hik =Y _bijk = fij = wp, ,
k 3k J

and

th‘k = sz‘jk = Zgjlc = Wq,, »
i ,J J

and constraint (2.1d) holds because the signatures have equal weights. Since
EMD(P, Q) istheminimal flow from P to @, and h;; is some legal flow from
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PtoQ,

ik

= > bijed(pi, ax)
b5,k

< Z bijkd(pi, ;) + Z bijed(rj,aqr)  (d(-,-) ismetric)
0,4,k i,5,k

= Y fid@iry) + > gird(r), qi)
i,J Ik

— EMD(P,R) + EMD(R, Q) .

3. COMPUTATION

It isimportant that the EMD be computed efficiently, especialy if it is used
for image retrieval systems where a quick response is essential. Fortunately,
efficient algorithms for the transportation problem are available. We used the
transportation-simplex method [37], a streamlined simplex algorithm [17] that
exploits the specia structure of the transportation problem. We would like
signature P (with m clusters) and signature @@ (with n clusters) to have equal
weights. If the original weights are not equal, we add a slack cluster to the
smaller signature and set to zero the associated costs of moving its mass. This
gives the appropriate “don’'t care” behavior. It is easy to see that for signatures
with equal weights, the inequality signs in Constraints 2.1b and 2.1c can be
replaced by equality signs. ThismakesConstraint 2.1dredundant. Theresulting
linear program has now mn variables (the flow components f;;) and m + n
constraints. With the regular simplex method this would result in a tableau
with mn rows and m + n columns. Exploiting the specia structure of the
transportation problem, the tableau can be compacted into the following table
with only m + 1 rowsand n + 1 columns:

fll Tt fln Wp,
fml Tt fmn Wp,,
Wq, - Wq,

Thistableismuch moreefficient to create and maintain than the original tableau,
which never has to be computed. In addition, the computation needed in the
simplex optimization iterationsissignificantly reduced with the use of thetrans-
portation table.
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A property of the transportation problem is that a feasible solution always
exists and is easy to compute. A good initial basic feasible solution can dras-
tically decrease the number of iterations needed. We compute the initial basic
feasible solution by Russell’s method [82].

The computational complexity of the transportation-simplex is based on the
simplex algorithm, which has an exponential worst case [46]. However, the per-
formance is much better in practice, because of the special structure in our case
and the good initial solution. We empirically measure the time-performance of
our EMD implementation by generating random signatures that range in size
from 1 to 500. For each size we generate 100 pairs of random signatures and
record the average CPU time for computing the EMD between them. There-
sults are shown in Figure 2.2. This experiment was done on a SGI Indigo 2
with a195MHz CPU.

Other methodsthat efficiently solvethetransportation problemincludeinterior-
point algorithms [45], which have polynomial time complexity. By formaliz-
ing thetransportation problem as the uncapacitated minimum cost network flow
problem [2], it can be solved in our bipartite graph casein O (1 log n), wheren
isthe number of clustersinthesignatures. Thisisconsistent with theempirical
running times of our algorithm, as can be inferred from Figure 2.2.

100

10 r b

0.001 —

CPU time in seconds

0.0001- —

1 10 100 1000
Signature Size

Figure 2.2. A log-log plot of the average computation time for random signatures asafunction
of signature size.

2This bound assumes that the two signatures have the same size, and that the precision of the calculations is
fixed and can be considered as a constant.
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A computational advantage of signaturesover histogramsisthat distributions
defined in high-dimensional feature spaces can be matched more efficiently.
Thisisbecause the only computational factor isthe number of significant clus-
tersin the distributions and not the dimension of the underlying space, although
sometimes the two correlate. The EMD is aso insensitive to the clustering a-
gorithm that is used to find the significant clusters. If a cluster is split into
smaller fragments, the EMD will consider them as similar as long as the dis-
tance between the fragments is small.

While the EMD works very well on signatures, it should not, in general, be
applied to histograms. When the histograms are coarse, the bins are large, and
the centers of neighboring bins cannot be considered as being close to each
other, which causes the EMD to lose its main advantage of looking at cross-bin
dissimilarities. On the other hand, computing the EMD on fine histograms can
be too slow.

3.1. OneDimensional EMD

When the feature space is one-dimensional, and the ground distance is the
Euclidean distance, and the two signatures have equal weight, the EMD can be
computed fast without having to solve alinear optimization problem, asin the
multi-dimensional case. In fact, the minimum cost distance between two one-
dimensional distributions f(¢) and g(t¢) isknown to be the I, distance between
the cumulative distribution functions [105, 11]

[\ o [ s

When the distributions are represented by histograms, Equation (2.2) is the
match distance described in Chapter 1. When representing the distributions
by signatures, the distance can be computed as follows: Let P = {(p, wp, ),
ooy (Pmswp,) tand Q@ = {(q1,wyq, ), - -+, (gn, wy,)} be two one-dimensional
signatures.

dr . 2.2)

THEOREM 2.2 If the following conditions hold:

1 the feature space is one-dimensional,

2 the ground distance is d(p;, ;) = |pi — q;,

3 the total weights of the two signatures are equal,

then
m+n—1

EMD(P,Q) = > b — il (res1 — 1) .
k=1



The Earth Mover’s Distance 21

where r1,79, ..., "min IS the sorted list py, p2, .. ., Pm» 1, q2, - - -, qn, and
m n
Pk = Z[pz’ <rplwp, Gk = Z[Qj < rwg;
i=1 j=1

where [-] is 1 when its argument is true, and O otherwise.

Proof: Thesignatures P and () can bewritten asthefollowing one-dimensional
continuous distribution functions:

prl pz Q(t) = quj'd(t - Qj) >
j=1

where ¢ isthe Dirac delta function. Using Equation (2.2) we get

EMD(P, Q) = ‘/ dt—/oo q(t)dt

For¢ < r and for ¢ > rp,4, Wehavep(t) = q(t) = 0 so we can write
Tm+n
EMD(P.Q) = [

; / OO p(t)dt — / Oo g(t)dt

T'm4n z m
= / / pri —Di dt—/ qu ;j)dt| dx
T1 — 00 i=1

dz .

dr

_ /+ prl/ 6t—pldt—2wq/ 5(t — q;)dt| dw .
T1

We can writetheinterval [ry, 7] @S[r1 —¢, o —€]U[ra—¢, r3—€]U. ..U
["man—1—€ Tmitn — €U [Fmin — € Tmin] —[r1 —€, m1). Theintegrandsin
the following expression are the same for all the subintervals, so for simplicity,
we specify it only once:

EMD(P, Q)

m+n—1 m

= Z /THl ‘ pr/ét—pz dt—qu]/dt—qj )dt| dx
/ Tmtn
ry— Tm4n—€

The innermost integrals are equal to 1 only whenp, < z (or ¢; < z) and O
otherwise. This occurs only for the subintervals that contain n, where p; < ry,
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(org; <rg),s0

Tr41—€

m+n—1 m n
EMD(P,Q) = ) D wplpi <] =Y wylgy < )| dx
k=1 “Tk— i=1 j=1

/ E
r1 Tm+n
r1—e T"m+4n—€

We now set e — 0:

m+n—1 Tey1 | T n
EMD(P,Q) = Y / > wplp <l =Y wy; gy < vyl | dae
k=1 YTk i=1 j=1
m+n—1 Thal
= > [Tl
k=1 “Tk
m+n—1
= > 1Pk — Gkl (rrgr — 1) -
k=1

3.2. Lower Bounds

Retrieval speed canbeincreasedif lower boundsto the EM D can becomputed
at alow expense. These bounds can significantly reduce the number of EMDs
that actually need to be computed by prefiltering the database and ignoring
images that are too far from the query. An easy-to-compute lower bound for
the EMD between signatures with equal total weights is the distance between
their centers of mass, as long as the ground distance is induced by a norm.

THEOREM 2.3 Given signatures P and (), let p; and q; be the coordinates of
cluster 4 in the first signature, and cluster j in the second signature respectively.

Then if
Z Wp, = Z Wq; (2.3)
i=1 j=1
then
EMD(P,Q) > [|P - Q|| ,
where || - || is the norm that induces the ground distance, and P and @ are the
centers of mass of P and () respectively:

pP= ZZI Wp; Pi Q _ Z;’L:I Wq; q;
Dot Wp, 2?21 Wq;
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Proof: Using the notation of equations (2.1a)-(2.1d),

YD dpia)fy = Y Ipi—aqillfi

i=1j=1 i=1 j=1
= ZZ I fij(Pi — aj)l (fij =2 0)
=1 j=1
2 ZZfij(pi _qj)H
=1 j=1

=

= pripi_zw‘hqj” .
i=1 j=1

- Z(me)pz— (szw)qyu

Dividing both sidesby 7, >0, fij,

Zz:l 23:1 fij > imt Z?:l fij

and using (2.1d) and (2.3) we get

> 12] 1 d(Pi»qy) fi HZ 1wplpz_2?:1wqjq3'

n
EMD(P, Q) > Z lwplpz_zj?wqjqj
2im1 W Zj:lwqj'
> |P-Qll.

23

Using this lower bound in our color-based image retrieval system signifi-

cantly reduced the number of EMD computations.

If the system isasked to return the n best matches, it checks all theimagesin
the database, one at atime, and computes the lower bound distance between the
image and the query. The EMD needs to be computed only if the lower bound
distance is smaller than the distances between the n best matches so far and the
guery. Figure 2.3 shows the average number of EMD computations per query
as afunction of the number of images retrieved. This graph was generated by
averaging over 200 random queries on an image database with 20,000 images
using the color-based image retrieval system described in Chapter 3. Thefewer
imagesthat are returned by aquery, the smaller the lower bound distance hasto
bein order to compute the EMD, and the fewer EM Dsthat need to be computed
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Figure2.3. Log-logplot of thenumber of EM Dsasafunction of thenumber of imagesretrieved.
The database contains 20,000 images.

due to our lower bound. This bound guarantees that no image is missed as a
result of the saving in computation.

Thelower bound definedin Theorem (2.3) holdsonly whenthetwo signatures
have equal weights and cannot be used for partial matching. In[11] two types
of lower bounds are developed for the case of unequal weights: centroid-based
and projection-based lower bounds. For completeness, we summarize here the
main results.

The CBOX (Centroid bounding BOX) lower bound is an extension of the
equal-weight centroid lower bound (Theorem (2.3)). Without loss of generality,
assume that wp > wq, where wp = 331", wp, and wg = >°7_ ) wgq;. An
optimal feasible flow matches an amount wg of the total weight of the heavier
distribution P. If C (P, wq) isthelocus of al centroids of sub-distributions of
P of total weight wg, then the minimum distance from the centroid of @) to
C(P,wgq) is alower bound on EMD(P, Q). The same statement holds with
a bounding box B(P,wq) of C(P,wq) in place of C(P,wg). The ideais
to pre-compute (i.e. not at query time) a set of bounding boxes B(P, uy)
for wo = 5%,10%,15%, ...,100% of the weight of P. When a query Q
with smaller weight comes in, the appropriate bounding box is chosen and the
distance from the centroid of () to this bounding box is computed (this is a
constant time computation with respect to the number of pointsin P and Q).

The projection-based lower bounds are used when the ground distance is
Euclidean. These bounds work with the projections of distributions onto lines
through the origin. The Euclidean distance between two points is at least the
distance between their projections onto aline through the origin, so the EMD
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between the projected distributions is alower bound on the EMD between the
origina distributions (the weights in the projected distribution are the same as
the weights in the original distribution). In the equal-weight case, computing
the EMD between distributions aong the line can be done much faster than in
the general case. Sinceit follows from FeaSiBiL ity conditions, the authors call
this the FSBL lower bound.

The sametechnique, described in Section 3.1 for computing the EMD in one
dimension, ismodified to compute alower bound onthe EMD inonedimension
between unequal-weight distributions. The idea is to record how much mass
must flow over certain intervalsif all the massin the lighter distribution isto be
matched. The projection-based lower bounds proposed in [11] are:

PMAXEsgL (P,Q) = max FSBL (proj, (P), proj,(Q))
PAMAXpgpL (P, Q) = maxFSBL(proj(£), proj.(Q))
ec

PASUMEgp (P.Q) = %ZFSBL(DYOJB(P),DFOJe(Q))-
ecl)

Here proj, (P) stands for the one-dimensional distribution which is the projec-
tion of P onto the line through the origin in direction v. V' isaset of random
directions, E is the set of feature space axes, and D is the dimension of the
feature space. Thislower bounds are named by different kinds of projections:
Projection MAXimum (PMAX), Projection Axes MAXimum (PAMAX), and
Projection Axes SUM (PASUM).

The hope with the projection-based boundsisthat one could quickly tell that
two distributions are very different by looking at one-dimensional projections,
which arefast to compute using the results of Theorem (2.2). These often work
well in cases when the CBOX lower bound does not (i.e. when one cannot tell
the difference between distributions by looking at their averages).

More details on and experiments with these bounds can be found in [11].

4. MORE ON THE GROUND DISTANCE

In Section 2 we claimed that correspondences between two distributions
are essential to match perceptual similarity. The EMD indeed finds the best
correspondences that minimize the total transportation cost; however, some of
these correspondences might be between features that arefar apart in the feature
space, and therefore have large ground distances. This can have a big impact
on thetotal cost, so that afew, very different, features can have a big effect on
the distance between otherwise similar distributions.

Modifying the ground distance so that it saturates to some value limits the
effect far features have on the EMD. An example of such aground distance is

J(pi, qj)=1- e—d(pi q;) , (2.4)
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where d(p;, q;) is the non-saturated ground distance between clusters p; and
q;. Thesolid linein Figure 2.4 shows d as a function of d (in units of o).
The value for « should be chosen specifically for the feature space at hand so
that it distinguishes between “close” and “far” distances in the feature space.
In this book, we use Equation (2.4) as our ground distance, with
1
-1
«a - d(oa 20-) )

where0 isthezerovector, o = [0y ... op]” isavector of standard deviations of
the components of the features in each dimension from the overall distribution
of all imagesin the database, and D isthe dimensionality of the feature space.
Assuming that the distribution of the features is unimodal, « is a measure of
the spread of the distribution. The bigger the spread, the larger the distances
are, in general.

The saturated ground distance, d(p;,q;), agrees with results from psy-
chophysics. In [89] it is argued that the similarity between stimuli of any
type can be expressed as generalization data by g(d(S;, S;)), where d isa per-
ceptual distancebetween two stimuli, and g is ageneralization function such as
g(d) = exp(—d™). Thisis equivalent to our dissimilarity measure which can
be expressed in term of the similarity g(d) by 1 — g(d), with 7 = 1.

1 T T T

T

0.8

0.6

T

0.4

T

0.2

T

Figure 2.4. The saturated ground distances d (solid line), and d (dotted line) as a function of
the ground distance d;; = d(p;, q;). We assume that max; ;jd;; = 3.
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THEOREM 2.4 If the non-saturated ground distance, d(-,-), is metric, then
d(-,-) is also metric.

Proof: Positive definiteness and symmetry clearly hold because @ > 0. We
now provethat thetriangleinequality holds, too. Giventhat d(p,q)+d(q,r) >
d(p,r), and using positive definiteness, we can write

0 < d(p,q)d(q,r)

e~ d(p.q ) (1 _ e*ad(q,r)>

e—odp.a) _ p—ad(qr) | ,—a(d(p,a)+d(qr))

1_ —ad (pa ) + (1 - e—ad(q,r)) o (1 - e—ad(p,r))
(p,q) +d(q,r) —d(p,r),
and hence, d(p, q) + d(q,r) > d(p,r). [ |

(1-
1-—
< 1- e—d(p,a) _ ,—ad(q, )+e—ad(p,r)
-
d

COROLLARY 2.1 Theresulting EMD is metric for signatures of equal weights.

Although metric, d is not induced by anorm, and therefore the lower bound
defined in Section 3.2isnot valid for the EMD that usesd asitsground distance.

We denote this EMD by EMD. However, a valid lower bound can be defined
using an EMD that uses the following ground distance:

max; ; d(p;, q;)
max; ; d(p;, q;)

d(pi,q;) = d(pi,qj) -

We denote the resulting EMD by EMD. This ground distance is a scaled
Euclidean distance and therefore it isinduced by a norm.

THEOREM 2.5

— N Z' . d/\ Z', . — p—
EVD(P,Q) > EMD(P, Q) > i MPu )y 5 gy
max; ; d(pi, q;)
Proof: Thefirst part, EMD(P, Q) > EMD(P, Q), holds because d(p;, q;) is
convex, and therefore d(p;, q;) > d(pi,q;) for all possible i and j, as shown
in Figure 2.4. The second part, EMD(P, Q) > wllp Q||, results

maxj,; d(pi, q]

directly from the lower bound defined in Section 3.2. |

5. EXTENSIONS

A few extensions were developed for the EMD [12]. For completeness we
now describe these extensions.
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51. ThePartial EMD (EMD?)

The partial EM Dforces only some given fraction 0 < < 1 of the weight of
the lighter distribution to be matched. The constraint (2.1d) for the usual EMD
is replaced by

m n m n
ZZfl] = vmin(zwpiazwq]‘) )
=1 j=1

i=1 j=1

and the minimum work is normalized by v min(3=1", wp,, Y7, wq;). The
partial EMD makes the EMD robust to afraction 1 — -y missing data/outliers.

52. TheRestricted EMD (r-EMD)

The 7-EM D measures the minimum fraction of massthat cannot be matched
when flowsarerestricted to at most 7 ground distance units. The extreme values
are T-EMD = 0 when all the mass can be matched, and 7-EMD = 1 when
none of the mass can be matched. The definition is

miﬂ(Z?L Wp; Z?:l wq]‘)

Here[d(p;,q;) < 7]equals1if d(p;,q;) < 7 and 0 otherwise. The numerator
measuresthe maximum amount of massthat can bematched. Theset of feasible
flows over which the optimization is computed is the same as for the regular
EMD.

The 7-EMD tells what percentage of the features matches well (if 7 is set
low), instead of averaging all features, including the bad matches (with corre-
spondences over large distances).

-EMD(P,Q) = 1 —

6. SUMMARY

TheEarth Mover'sDistanceisageneral and flexible metric and has desirable
propertiesforimageretrieval. Itallowsfor partial matches, and it can be applied
to variable-length representations of distributions. Lower bounds are readily
available for it, and it can be computed efficiently when the signatures are
not too large. The EMD works better when applied to signatures, than to
global histograms. Histograms with few bins invalidate the ground distances,
while EMDs on histograms with many bins are sow to compute. Because
of the advantages of the EMD, we believe that the EMD can be of use both
for understanding vision problems related to distributions, as exemplified in
the next two chapters with color and texture, and as a fundamental element of
image retrieval systems.



Chapter 3

COLOR-BASED IMAGE SIMILARITY

One should absorb the color of life, but one should never remember its detail.
—Oscar Wilde, 1854—-1900

Color plays an important rolein content-based image retrieval. In this chap-
ter we define color featuresin an appropriate, perceptually uniform color space,
where color distributions describe the contents of entire images. Summarizing
these distributions by color signatures and using the Earth Mover’'s Distance
leads to a powerful color-based retrieval paradigm. Combining the color in-
formation of the pixels, with their positions in the image leads to a distance
measure where not only the color contents matters but also the layout of the
color in the image.

1. COLORFEATURES

Human color perceptionis based on theincidence of visiblelight (with wave-
lengths in the range of 400 nm to 700 nm) upon the retina.  Since there are
three types of color photoreceptor cone cellsin the retina, each with adifferent
spectral response curve, al colors can be completely described by three num-
bers, correspondi ng to the outputs of the cone cells. In 1931, the Commission
Internationale de I'Eclairage (CIE) adopted standard curves for the color pho-
toreceptor cone cells of a hypothetical standard observer, and defined the CIE
XY Z tristimulus values, where al visible colors can be represented using only
positive values of X, Y and Z.

1.1. Color Spaces

Color spacesare used to specify, create and visuaize color information.
While the CIE XY Z space describes al the colors we can perceive, other color

29
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spaces are subsets of this space and represent fewer colors than we can see.
For instance, the RGB color space, as used by television displays, can be vi-
sualized as a cube with red, green and blue axes. Different applications have
different needs which can be handled better using different color spaces. Many
color spaces have been developed including the following (see [106] for more
information):

RGB (Red-Green-Blue) An additive color system, based on adding the three
primary colors. RGB iscommonly used by CRT displays where proportions
of excitation of red, green and blue emitting phosphors produce colors when
visually fused.

CMY (K) (Cyan-Magenta-Yellow(-Black)) A subtractive color system com-
monly used in printing. The black component is redundant and is used for
technical reasons such as improving the appearance of the black color and
reducing costs.

HSL (Hue-Saturation-Lightness) and HSB (Hue-Saturation-Brightness)
Intuitive spaces that allows users to specify colors easily. Separating the
luminance component has advantages in certain image processing applica-
tions.

YIQ, YUV, YCbCr Used for different standards of television transmission
(NTSC, PAL, and digital TV respectively).

Opponent Colors Used for modeling color perception. It is based on the fact
that for color perception, some pairs of hues cannot coexist in asingle color
sensation (e.g. red and green) [103].

1.2.  Perceptually Uniform Color Spaces

For an image retrieval system, it is important to be able to measure dif-
ferences between colors in away that matches perceptua similarity aswell as
possible. Thistask issimplified by the use of perceptually uniform color spaces.
A color spaceisperceptually uniform if asmall perturbation of acolor will pro-
duce the same change in perception anywhere in the color space. In 1976,
the CIE standardized two perceptually uniform color spaces (since no single
system could be agreed upon), L*u*v* (CIELuUv) and L*a*b* (CIELa&b). The
L* component defines the luminance, and the two other components (", v*
and «*, b*) define the chrominance. Both spaces are defined with respect to
the CIE XYZ color space, using a reference white [X,, Y,, Z,]7. Following
ITU-R Recommendation BT.709, we use Dg5 as the reference white so that
(X Y, Z,] = [0.9504511.088754] (see [70]). In practice, most images are
represented in the RGB color space. The conversions between RGB and CIE-
XYZ arelinear:
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X 0.412453 0.357580 0.180423 R
Y | = | 0.212671 0.715160 0.072169 G
A 0.019334 0.119193 0.950227 B
and
R 3.240479 —1.537150 —0.498535 X
G | = | —0.969256 1.875992 0.041556 Y
B 0.055648 —0.204043 1.057311 Z

For both the CIEL uv and CIEL ab, the Euclidean distance is used to compute
the distance between (close) colors. In the following we give the transforma-
tionsfrom CIE XY Z:

The luminance is defined similarly for both spaces,

o [ 16(Y/Y)P =16 if /¥, > 0.008856
903.3(Y/Y,) otherwise ’

while the chrominances are defined differently for CIELuv and for CIEL ab.

1.21 CIELuv
vt = 13L*(u —ul),
v* = 13L (v —w)),
where
;o 4X
S T Y
, %
vV = o
X+15Y +32°

and v, and v/, have the same definitions for «/ and v’ but are computed using
X,, Yo, and Z,,.

122 CIELab

ot = 500(f(X/X,)— f(Y/Yy)) ,
bt = 200(f(Y/Yyn) - f(Z]Zy)) ,
where

() = t/3 if Y/Y,, > 0.008856 ,
- | 7.787t+16/116 otherwise.



32 PERCEPTUAL METRICS FOR IMAGE DATABASE NAVIGATION

123 Spatial Extension

So far, we assumed that the perception of a single color is independent of
colors that surround it. Is general, once the visual angle of aregion in a color
image gets smaller than 2 degrees, this assumption does not hold. To account
for the spatial effect of color perception the S-CIEL ab[107] was developed asa
spatial extension to the CIELab color space. A color imageisfirst transformed
into the opponent-colors space. Each of the three component images is con-
volved with akernel whose shape is determined by the visual spatial sensitivity
inthat color band. Finally, thefiltered representation istransformed to CIEL ab.

We found that using CIEL ab for color-based image retrieval resultsin better
agreement with color perception than when using RGB. This is because RGB
isnot perceptually uniform, so that small perceptual differences between some
pairs of colors are equivalent to larger perceptual differences in other pairs.

2. COLOR SIGNATURES

To compute the color signatureof aimage, we first smooth each band of the
image's RGB representation slightly to reduce possible color quantization and
dithering artifacts. We then transform the image into S-CIELab. At this point
each image can be conceived as a distribution of points in CIELab, where a
point corresponds to a pixel in the image. We coalesce this distribution into
clusters of similar colors (25 unitsin any of the L*, a*, b* axes). Because of the
large number of images to be processed in typical database applications, clus-
tering must be performed efficiently. To this end, we devised a novel two-stage
algorithm based on a k-d tree [5]. In the first phase, approximate clusters are
found by excessive subdivisions of the space into rectangular blocks, splitting
each block in turn in the middle of its longest dimension, and stopping when
all sides of the blocks become smaller than a minimum alowed cluster size
(12.5 units). Since, because of our simple splitting rule, clusters might be split
over afew blocks, we use a second phase to recombine them. Thisis done by
performing the same clustering procedure using the cluster centroids from the
first phase, after shifting the space coordinates by one-half the minimum block
size (6.25 units). Each new cluster contributes a pair (p, up) to the signature
representation of the image, where p is the mean of the cluster, and vy, is the
fraction of image pixelsin that cluster. At this point, for compactness, we re-
move clusters with insignificant weights (less than 0.1%). In our database of
20,000 color images from the Corel Stock Photo Library, the average signature
has 8.8 clusters. An example of a color signature is given in Figure 3.1. Part
(b) shows the color signature of the image in part (a). In part (c), the image
was rendered using only the colors from the signature. We can seethat, in this
example, the color information is well retained.
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Figure 3.1. An example of a color signature. (a) Original image. (b) Color signature. (c)
Rendering the image using the signature colors. (This is a color figure)

3. COLOR-BASED IMAGE RETRIEVAL

After the color signatures are computed for all the images in the database, it
is possible to retrieve the most similar images to agiven query. In our system,
color-based query is based on acolor signature that is the result of one of three
basic types of queries:

1 The signature describes the content of an entire image (query-by-example).
Theimage can be part of the database or come from other sources. Thetotal
weight of the signature, in this case, is the same as for the other signatures
in the database.

2 The users describe the colors they are looking for either explicitly, by spec-
ifying desired colors and their amounts, or implicitly, by drawing a sketch
(query-by-sketch) from which a signature isinferred. Now the total weight
of the query’s signature can be less than for the other signatures in the
database, resulting in a partial query. The weight difference can match any
color and isreferred to as “don’t care.”

3 The signature is generated by the system as a result of some user action.
In Chapter 7 we describe a navigation scheme where the signatures are
generated automatically.
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Oncethe query is represented by acolor signature, the retrieval system returns
the images in the database whose signatures have minimum distance from the
query.

To compute the distance between color signatures, we use the Earth Mover’s
Distance, with the Euclidean distance as a natural choice of ground distance.
We performed our color-based image retrieval on a collection of 20,000 color
images. Figures 3.2 and 3.3 show examples of color-based image retrieval. In
the first three examples, the color content of an image was used as the query,
whilein the last example a partial query was used: The user looked for flowers
and specified the query: “Find images with 20% pink, 40% green, and the rest
can be any color.” The results is these examples are good because there is a
high correlation between the semantic queries and the colors used to describe
them. A more systematic evaluation of the EMD for color-based retrieval and
acomparison with other dissimilarity measures are given in Chapter 5.

Color information is usually not sufficient for semantic image retrieval.
When the query cannot be well described in terms of color, there is a dis-
crepancy between the semantic query and the syntactic features (color), and the
guery is bound to fail. An exampleisgivenin Figure 3.4 where an image of a
woman was given as the query. Here the system responded with an image of
a skunk as the best match. Although the color contents of the two images are
very similar, they are obviously very different semantically.

4. JOINT DISTRIBUTION OF COLOR AND POSITION

Inmany cases, global color distributionsthat ignore the positions of thecolors
in the image are not sufficient for good retrieval. For example, consider the
following two color images: In the first, there are blue skies above a green
field, while in the other there is a blue lake below green plants. Although the
color distributions might be very similar, the positions of the colorsin theimage
are very different and may have to be taken into account by the query. Thiscan
be achieved by modifying the color distance in Section 3 as follows: Instead
of using the three-dimensional CIELab color space, we use afive-dimensional
space whose first three dimensions are the CIELab color space, and the other
two are the (z, y) position of each pixel. We normalize the image coordinates
for different image sizes and aspect ratios and use the same clustering a gorithm
asbefore. Theaverage signature sizein our 20,000 image database isnow 18.5.

The ground distance is now defined as

[(AL)? + (Aa)? + (AD)2 + A ((Az)? + (Ag)?)]*

The parameter A defines the importance of the color positions relative to the
color values. Figure 3.5 showsthe effect of position information. Part (a) shows
the best matches to the query shown on the left which specifies 20% green at
the top of theimage, 20% blue at the bottom, and 60% “don’'t care” everywhere
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1) 0.0
135028.jpg

2) 0.9
135030,jpg

3)2.1
135068.jpg

4) 2.4
135056,jpg

5) 4.0
135020.jpg

6) 4.2 9)5.1
135074.jpg 135055.jpg 135049,jpg 135027.jpg

@

10) 5.2
135067.jpg

Py e

700 y ~ 339 2) 4.4 5) 45
107060pg 107042.jpg 112090pg 107073pg 30032,jpg

8) 4.9

7)4.9 10) 5.
107006.j pg 107080.jpg 107004.jpg 112007.jpg 107039.jpg

(b)

Figure 3.2. Examplesof color-based imageretrieval. Thefirstimage was used asthequery. (a)
Searching for eagles. (b) Searching for elephants. Using only color, el ephants and hippopota-
muses are very similar. (This is a color figure)

else. The typical returned images contain blue water at the bottom and green
plants at the top. In part (b) the positions of the blue and green are exchanged.
Now the returned images show blue skies on top of green fields.

Another example is shown in Figure 3.6 where the |eftmost image of askier
wasused asthequery. A can befound experimentally, or by using the method in
[93]. Part () showsthe 6 best matches when position information was ignored
(A = 0). Part (b) uses position information (A = 0.5). Exact color matches are
somewhat compromised in order to get more similar positional layouts.
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1) 0.0 . . 5)
113088.jpy 113043.jpg 113078.jpg 113083.jpy 113060.jpg

6) 58 7)58 ' | 959 | 1060
113053jpg | 113056,pg 113068,pg 113094jpg | 113077jpg

@

20% 40% don't care

1) 22.98 2) 24.03 4) 24.92 5) 25.8
13037.jpg 178093.jpg 84068.jpg 84075.jpg 132098.jpg

7)2666 8) 26.70 9) 26.81 10) 27.3
13033.jpg 51017.jpg 13151.jpg 13035.jpg

(b)

Figure 3.3. More examples. (a) Searching for horses. (b) Searching for flowers using a partial
query, shown at the top. (This is a color figure)
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476 5)7.8
110057.jpg 109006.jpg

3)7.6
109017.jpg

1) 0.0 275
181033,pg 123033,pg

Figure 3.4. A bad example. Thisisdue to the discrepancy between the semantic query (*beau-
tiful woman”) and the syntactic features (the color content). (This is a color figure)

1) 27.70 2) 28.07 3)28.72 4) 29.09 5) 29.15
136098.jpg 159089.jpg 100095.jpg 83015,jpg 153018.jpg

4) 2371 24.09
88066.jpg 24087.jpg

2) 2215
38071.jpg 18077.jpg

3) 22.56
28090.jpg

(b)

Figure 3.5. Using position information (the queries are on the left). (a) 20% green at the top
and 20% blue at the bottom. (b) 20% blue at the top and 20% green at the bottom. (This is a
color figure)

5. SUMMARY

In this chapter we showed that by carefully choosing a color space together
with a perceptual appropriate ground distance, the EMD is a good measure
for dissimilarity between color images. We showed retrieval examples over a
20,000-image database, using guery-by-example and partial queries. We aso
presented an extension that in addition to the color information itself, also uses
the absolute position of the colorsin theimages. In the next chapter we present
measures for texture-based image similarity, using similar tools to those used
in this chapter.
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i el

1) 0.00 2) 15.19 3) 16.28 ) 16.79 5) 17.19 6) 17.73
61095jpg | 60022jpg | 60010jpg | 60064jpg | 61041jpg | 60016.jpg

(b)

Figure 3.6. Using the leftmost image of a skier as the query. The six best matches without
position information (@) and with position information (b). (This is a color figure)



Chapter 4

TEXTURE-BASED IMAGE SIMILARITY

The imagination is of so delicate a texture that even words wound it.
—Hazlitt, 1778-1830

Although the notion of visual texture seems, at first, to be familiar and in-
tuitive, there is no definition of texture that is universally accepted. Texture
usually refers to a repetition of a perceptually similar pattern over an image
region, such that the region is perceived as homogeneous by a human observer.
Often, for structura textures (in contrast to statistical ones) such a pattern is
referred to asthe “texton”. A pattern and its repetition can often be represented
well by a spectral decomposition of the texture which captures the amount of
repetition in different scales and in different orientations. In this chapter we
use Gabor filters to represent texture. We develop two classes of dissimilarity
measures. for homogeneous textures and for imagesthat contain many textures,
such as natural images. Finally, we present a preprocessing method to enhance
the description of the texture content of images.

1. TEXTURE FEATURES

While color is a purely pixel-wise property of images, texture involves a
notion of spatial extent: a single point has no texture. To account for spatial
neighborhoods, atexture iscommonly computed by the projection of theimage
intensity function onto an appropriate basis of functions. This is referred to
as a spectral decomposition, because each of the different basis functions is
usually concentratedinadifferent areaof thetwo-dimensional spatial frequency

39
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domain. Insuch arepresentation, atextureis represented by avector of values,
each corresponding to the energy in a specified scale and orientation subband.
Spectral decomposition methods include using quadrature filters [47], Gabor
filters[7, 25, 6, 56], oriented derivatives of a Gaussian [67, 36], and the cortex
transform [104].

Gabor filters [30] have been shown to give good results in comparison to
other texture decompositions [57]. There is strong evidence that simple cells
in the primary visual cortex can be modeled by Gabor functions tuned to detect
different orientations and scales on alog-polar grid [20]. We therefore chose
to employ such aset of Gabor functions to characterize texture.

1.1. Gabor Filters

Gabor filters can be seen as two-dimensional wavelets [19]. When applied
on an image I, the discretization of atwo-dimensiona wavelet is given by

Winipg = // I(z,y)Ymi (v — pAz,y — qAy) dzdy ,

where Az, Ay isthe spatial sampling rectangle (we use Az = Ay = 1), p,q
areimage position, and m and [ specify the scale and orientation of the wavelet
respectively, withm =0,..., M —1andl =0,...,L — 1. Thenotation

Ymi(@,y) = a”"Pp(2,9) , (4.1)
where
T = a ™(xcosh+ysinh)
y = a "™(—zsinf+ ycosh),

denotes adilation of the mother wavelet ¢)(z, y) by ¢~ ™ (a isthe scale parame-
ter), and arotation by = [Af, where A9 = 27/ L isthe orientation sampling
period.

Y (z,y) 1sdefined so that al the wavelet filters have the same energy:

J[mitepasty = [[1a s pPasdy
= / ™™ y(, §)|* | |dzdg
— [ a5 Pz
— [ wia.prasds (42)

whichisobviously independent of the choice of m and [. Here .J isthe Jacobian
7= [ a"™cosf a ™sin 0]

—a " ™sinf® a ™cosf
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Real part Imaginary part
Figure 4.1.  The components of ¥ (z, y).

We use this family of wavelets as our filter bank with the following Gabor
function as the mother wavel et:

2 2
Pz, y) = 1 exp <—% <$—2 + %)) exp(i2nWz) .

2wo 0y lop h

The constant W determines the frequency bandwidth of the filters. We use
W = 0.5, which corresponds to a half-amplitude bandwidth of 1 octave and is
consistent with neurophysiological findings[52]. Therea and imaginary parts
of ¢ (x,y) are shown in Figure 4.1.

A Gabor function isessentially atwo-dimensional Gaussian modulated with
acomplex exponentia; therefore its frequency domain representation is atwo-
dimensional Gaussian with appropriate displacement along the u-axis, where
we use (u, v) to index the frequency domain

\I/(u,v) _ 6727T2(0'3u2+0'§1)2) . (5(’[1, _ W)
= exp(—27%(o2(u—W)? + ov?))

= exp (—% <(u_072W)2 + Z—Z)) ) (4.3

u v

where o, = (2r0,)~" and 0, = (2m0,)~!. We use *x to represent two-
dimensiona convolution.

Filters with the same energy, as in Equation (4.2), are desirable for many
applications and are commonly used for texture analysis. However, they are
undesirable for computing the texture dissimilarity of natura images. It was
shown that in natural images the amplitude spectrum typically fals off as the
reciprocal of frequency [27], which results in smaller responses for high fre-
quency Gabor filters. This can be fixed by removing the factor =™ (which
corresponds to V/frequency) from Equation (4.1), resulting in

Qz)ml(xay) = ’l/)(:f,g) )
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and our two-dimensional wavelet becomes
Wintpg = / / T2, )t (& — A,y — qAy) dedy

For natural images, similar average amounts of energy will now be captured by
al filtersin all scales, providing a normalized feature space.

1.2.  Filter Bank Design

We now design abank of Gabor filtersthat tile the frequency space so that an
image texture will be well represented by the set of individual filter responses.
Our design strategy follows similar principles asin [6, 54]:

1 Uniform separation in orientation. Assuming rotational symmetry, all fil-
tersin a specific scale should have the same angular standard deviation (ay)
and should be equally spaced in the orientation axis.

2 Exponential separation in scale. The widths of the filters should increase
exponentially with distance from the center of the (u, v)-plane. Thisfollows
our intuitive notion of scale (adifference of one scale refersto multiplication
by the scale parameter).

3 Continuous coverage of the frequency space. We design thefilters such that
the half-width contours of two neighboring filters touch each other both in
the scale and in the orientation axes.

Let U; and U, be the lowest and highest frequencies of interest, such that
the coarsest-scale filter and the finest-scale filter are centered in the frequency
domain at distances U; and Uj, fromthe origin, respectively. If M isthe number
of scales, thefilter centers, ¢,,,, are spaced in exponentially increasing distances:

qm = a"U; m=0,1,2,.... M —1.

The scale parameter o is defined by the constraint U, = o™ ~'U;:

The standard deviations of the Gabor filters, ¢, and o, which are used in
Equation 4.3, are

a—1 Uy
Oy = ,
" a+1+2In2
T U2
O = tan(ﬁ) \/2152_"5’
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Figure 4.2. The half-amplitude of Gabor filtersin the frequency domain using four scales and
six orientations. Herewe use U, = 0.3 and U; = 0.04.

asderived in Appendix A. For our systemweuse U}, = 0.3 and U; = 0.04 (the
upper bound for the spatial frequency is 0.5, which is the Nyquist frequency
for an image that is sampled at every pixel). Figure 4.2 shows the location and
width of the resulting Gabor filters, using four scales and six orientations.

Applying the Gabor filter bank to an image results for every image pixel
(p,q) ina M by L array of responses to the filter bank. We retain only the
magnitudes of the responses:

Frtpg = [Wintpg] m=0,...,M—1 1=0,...,L—1.

as the magnitudes encode the energy content and are independent of position
within atexture.

Thisarray of numbersis our texture feature. Figure 4.3 showstwo examples
of texture features using five scales and eight orientations. Darker squares
represent stronger responses. Thetop texture has one dominant orientation in a
fine scale, while the bottom texture has three dominant orientations is a coarser
scale. The magnitude of each texture's discrete Fourier transform (DFT) is
shown in the middle column of the figure.

2. HOMOGENEOUSTEXTURES

In this section we present dissimilarity measures that compute distances
between homogeneous textures. Homogeneity alows us to assume that all of
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Figure 4.3. Texture features. Left: Patches from fabric (top) and tile (bottom) textures. Mid-
dle: DFT magnitude. Right: Texture features; the horizontal and vertical axes correspond to
orientations and scal e respectively.

thetexturefeatures are similar; therefore, we can represent textures by the mean
of the texture descriptors over the entire texture. We use the energies of the
Gabor filter responses:

2
Zp,q lepq

Eml =
> .
Em,l,p,q lepq

The denominator normalizes E,,,; sothat ), , E,; = 1. This normalization
enhances texture content and reduces the effects of illumination and contrast.
With this texture representation, the texture space can be seen as a unit hyper-
spherein a M-by-L dimensiona space and a specific texture asaunit vector in
that space.

The notion of texture dissimilarity varies with the task at hand. While for
texture classification one may want the dissimilarity to beinvariant to rotations
of the texture and perhaps also to changes in scale, for texture segmentation
these invariants may be inappropriate. In this section we show how to use
the EMD to define a family of distances between textures. We define three
distances: a distance with no invariance, a rotation-invariant distance and a
distance with both rotation and scale invariance.

The homogeneous texture signaturein all the distances defined in this section
is the texture vector E = {E,,; } itself, where every entry E,,,; corresponds to
acluster in the two-dimensional, log-polar space, positioned at (m, [) with the
value of E,,; being the weight of the cluster. Since for the computation of
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the EMD the two signatures do not have to be of the same size, the signatures
can be compacted by removing clusters with zero or very small weights, which
have very small influence on the result of the EMD. This significantly reduces
the size of the EMD problem which can be computed much faster. In practice,
most of the bins for most textures can be pruned with negligible change in the
EMD.

2.1. Nolnvariance

We can use the EMD as a distance measure between two homogeneous
texture signatures. To this end, we define our ground distance to be the I
distance in log-polar space (similar results were obtained with the Euclidean
distance). Since log-polar space is cylindrical, we have two possible distances
between a pair of points. We define the ground distance to be the shorter of the
two distances. The ground distance between the points (my, [;) and (mo, l2) is
therefore:

d((m1,0), (m2,12)) = |Al|l + a|Am]| , (4.4)
where
Am=my—me , Al=min(|l; —lo|, L —|l1 —l2]) .

Theparameter o controlstherelativeimportance of scaleversusorientation. We
used a = 1 with good results. Other choices of « can result from applications
or from psychophysical experiments. Our ground distance is metric (see proof
in Section 2.4), and therefore the defined EMD is metric as well, as shown in
Section 2.

2.2. Rotation Invariance

In our log-polar array, rotation is equivalent to a cyclic shift along the ori-
entation axis. Although inefficient, we can achieve rotation invariance by an
exhaustive search for the minimal distance over all possible shifts in orienta-
tion. Analgorithm that can avoid this exhaustive search was developed in [12],
based on an Expectation-Maximization (EM) type optimization that is used to
compute the EMD under transformations. This algorithm can significantly re-
duce the computation times to compute the rotation-invariant distance and the
rotation- and scale-invariant distance defined | ater.

Let E; and E, be two homogeneous texture signatures. An EMD that is
invariant to texture rotation is

EM D(El, EQ) = } 7minL 1 EM D(El, EQ, ls) ,
where EMD(E+, Eo, [;) is the EMD with orientation shift I;. The ground
distance in Equation (4.4) uses the same Am but

Al =min( |l; —lo+1s (mod L)|,L — |l —la+ 15 (mod L)) .
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2.3. Rotation and Scale I nvariance

Scale invariance can be obtained in asimilar manner. In thelog-polar array,
scale invariance can be seen as invariance to shifts in the scale axis. An EMD
that isinvariant to both rotation and scaleis

EMD(EI,EQ) = min EMD(El,EQ,lS,ms) y

where EMD(E+, Eo, [, m) isthe EMD with orientation shift i and scale shift
m. Theground distance is similar to the rotation-invariant case with

Am =mq —mo + ms; .

2.4. Provingthat the Distancesare Metric

Here we prove that al distances defined in this section for homogeneous
textures are indeed metric. Non-negativity and symmetry hold trivially in all
cases, so we only need to prove that the triangle inequality holds. In Section 2
it is proven that if the ground distance is metric, the EMD is metric, so to
prove that the non-invariant distance is metric, we need to show that the ground
distance (L; in our case) we use in the cylindrical log-polar space is metric.
The projection of two points A and C on the cylinder onto its circular base
dividesit into two circular arcs (in the degenerate case one arc can be a point).
The projection of athird point B can bein only one of these two arcs. Now the
cylinder can be unfolded into a rectangle by a vertical cut anywhere through
the other arc. Since in this two-dimensional plane d(4,C) < d(A,B) +
d(B, C), the triangle inequality holds also on the cylinder (the other possible
distancefrom A to C' through the cut ischosen only if it makesd( A, C') shorter).
Therefore, our ground distance is metric on a cylinder.

To provethat the EMD ismetric in the rotation- and scale-invariant cases, we
noticethat inlog-polar space, rotation and scal eshiftsarereducedtotranglations
(assuming that the ground distance takes care of the cyclic cylinder axis), and
we now prove the following stronger theorem:

Denote the trandation-invariant EMD between signatures P and () by

EMD(P, Q,Tpq) = Y, fijd(pi»q; — Trq) ,
i’j
where f;; and T'pg are the flow and trandation that minimize the sum.

THEOREM 4.1 Ifsignatures P and @ have equal weightthen EMD (P, Q, Tpq)
is metric.

Proof: LeeEMD(P, R, Tpr) andEMD(R, ), Tr¢ ) bethetrandation-invariant
EMD between signatures P and R, and between signatures R and () respec-
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tively. We need to prove that
EMD(P,Q,Tpq) < EMD(P,R,Tpr) + EMD(R, Q,Tgq) -

Without loss of generality, we assume that the total sum of the flows is 1.
Consider the flow P — R — (. The largest unit of weight that moves
together from P to R and from R to () defines aflow which wecall b;;;, where
i, j and k correspond to p;, r; and g, respectively. Clearly >, b;jr = fij and
Zi bijk = Gik- We define
hig, 2 Z bijk
J

which isalegal flow from i to & since
th‘k = sz‘jk = Zgjk = Wy, ,
i ij j
and

D hik =Y bk =Y fij = wp, .
k Jsk J

SinceEMD(P, QQ, Tpg) isthe minimal flow from P to @, and h;;, is some |legal
flow from P to @),

EMD(P,Q,Tpq) < Y _ hied (pi, ax — (Trr + Tro))

ik
= > bird (pi,ar — (Trr + Trq))
i,k
< Y bijkd(pi,rj — Trr) +
i,k
> bijrd (rj — Tpr,qk — (Tpr + Trg))
i,5,k
= > bird(pi, 5 — Trr) + Y bijkd(rj, ¢ — Trq)
i,5,k i,5,k
= > fijdlpi,r; — Ter) + > 9jkd(rj, ak — Tre)
Y] Ik

— EMD(P,R,Tpg) + EMD(R, Q, Tro) -

25. Examples

In this section we show examples of the various distances we defined for
homogeneous textures, using a Gabor filter bank with five scales and eight
orientations.
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We use the 16 texture patches shown in Figure 4.4, with thefirst 13 textures
from the VisTex texture collection from the MIT Media Lab'. The distance
matrices with distances between al pairs of texture patches are shown in ta-
bles 4.1-4.3 for the non-invariant, rotation-invariant, and rotation- and scale-
invariant distances respectively. The relative distances clearly match human
perception. For example, similar textures, such as the pairs {(1), (2)} and
{(8),(9)}, result in small distances. Textures that are similar up to rotation,
such as the pair {(4), (5)}, are far when no invariance is applied, and close
when the rotation-invariant version is used. Similarly, textures that differ in
scale, such as the pairs {(10), (11)} and {(12), (13)}, and textures that differ
both by scale and orientation such asthe pair {(14), (15)}, are close only when
the rotation- and scale-invariant version is being used.

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1]0.00

2| 039 000

3| 295 297 000

4|18 19 235 000

5| 184 175 406 167 000

6| 107 114 208 277 289 000

7|194 178 255 335 322 099 000

8| 110 092 226 284 265 039 107 0.00

9| 114 080 223 268 247 052 111 023 000

10| 100 074 307 270 224 111 174 090 089 0.00

11202 171 279 369 317 115 118 091 097 101 000

12| 094 107 338 157 168 191 288 18 176 155 256 0.00

13| 231 207 238 317 360 139 134 132 127 203 117 229 000

14| 384 386 080 323 492 286 262 305 311 395 317 422 213 000

15| 219 204 466 334 227 257 287 237 231 148 231 255 345 550 000

16| 151 148 196 296 317 076 119 076 082 155 093 232 088 241 308 0.0
Table 4.1.  Distance matrix of the textures in Figure 4.4.

3. NON-HOMOGENEOUSTEXTURES

Although summarizing the texture content of an image by a single texture
descriptor leads to good distance measures between homogeneous textures,
most of the information contained in the distribution of the texture features
over theimageisignored. Thetexture content of an image entails adistribution
of texture features, even if the image contains only one homogeneous texture.
This distribution accounts for four sources of variation in the filter responses:

1 The size of the basic texture element (“texton”) is often larger than the
support of at least the finest scale Gabor filters. This causes a variation in
the filter responses even within textures that a human would perceive as
homogeneous in theimage. To address this variation, many texture analysis

1The VisTex texture collection can be obtained from
http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
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(13) (14) (15) (16)

Figure 4.4. 16 homogeneous textures.

methods (for instance, [1, 101, 55]) integrate filter responses over areas that
are larger than the largest filter support.

2 Texture regions that a human would perceive as being homogeneous in
the world can produce inhomogeneous regions in the image because of
foreshortening and variations in illumination. This spreads the distribution
in texture space and increases its variability.

3 Textures exhibit spatial variation even in the world. For instance, most
natural textures areregular only in astatistical sense, so filter responses will
vary regardless of viewing conditions.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.00
0.23 0.00
261 238 0.00
140 146 180 0.00
160 166 227 054 0.00
1.07 093 169 225 245 0.00
194 178 189 277 3.00 0.99 0.00
108 092 167 227 247 028 1.07 0.00
099 080 164 221 241 027 107 018 0.00
10| 093 074 170 138 162 09 164 090 089 0.00
11193 171 117 221 253 095 113 091 097 101 0.00
12| 080 094 319 153 154 167 213 182 173 151 256 0.00
13204 188 211 311 333 114 084 110 116 180 096 229 0.00
141350 327 080 268 314 248 197 247 253 258 158 404 186 0.00
15210 204 106 119 160 235 287 237 231 148 231 248 324 156 0.00
16| 151 144 193 29 317 070 106 069 072 153 090 219 082 241 307 0.00

OCoOoO~NOOUhWNE

Table 4.2.  Distance matrix of the texturesin Figure 4.4 with rotation invariance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.00
0.23 0.00
198 191 0.00
140 146 0.94 0.00
139 133 092 054 0.00
055 054 169 162 150 0.00
127 122 189 176 183 097 0.00
053 050 167 162 146 028 1.07 0.00
050 048 164 154 143 027 101 018 0.00
10| 093 074 133 089 090 09 127 090 089 0.00
11| 118 101 117 097 102 09 113 091 097 035 0.00
12| 080 094 208 153 154 092 083 104 094 102 096 0.00
131090 09 195 169 163 091 084 083 077 112 096 041 0.00
141244 238 049 134 142 214 197 211 205 191 158 224 186 0.00
151210 204 026 110 106 197 219 19 19 148 139 222 222 045 0.00
16087 084 193 18 179 070 106 069 072 099 090 074 082 241 221 0.00

©CoO~NOOUA~WNR

Table 4.3. Distance matrix of the textures in Figure 4.4 with rotation and scale invariance.

4 Images with multiple textures result in acombination of the distributions of
their constituent textures.

3.1. TextureSignatures

Because of these sources of variation, a single image can produce nearly
as many texture vectors as it has pixels. To represent the full distribution of
image texture in a compact way, we first find dominant clusters in the M - L
dimensional texture space, where M and L are again the number of scales and
orientations, respectively, in our texture representation.

We use a K-means clustering algorithm [33], where the number of clusters,
K, is predefined. For simple images, such as those of homogeneous textures,
asmall number of clusters suffices, while complex ones, such as images con-
taining multiple textures, needs alarger number of cluster to reliably represent
the distribution in texture space.
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While this is a simple and fast algorithm, so that large number of images
can be processed quickly, it is conceivable that more sophisticated clustering
algorithms that adjust the number of clusters to the image complexity (e.g.,
the clustering done in [4]) can further improve our texture similarity methods.
A variable number of clusters is desirable since the EMD can be applied to
signaturesof different sizes. Theeffect of the number of clustersisdemonstrated
in Figure 4.5 that shows the pixels' assignments to clusters for a natural image
using the clustering algorithm with 4, 8, and 16 clusters. Clearly, asthe number
of clusters increases, more subtle differences are captured. For example, when
only four clustersare used, one cluster isused to represent horizontal stripes, and
one to represent vertical stripes. Increasing the number of clusters to sixteen,
resultsin separate clusters for different scales of horizontal and vertical stripes.
Notice also that variation in the grass texture only starting to get captured with
sixteen clusters. As we show in Section 3.4, for natural images we use 32
clusters. In Section 4 we show that an appropriate preprocessing of the images
can reduce the number of clusters needed.

Theresulting set of cluster centers, together with thefractional cluster weights,
isthetexture signatureof theimage. Anexample of atexture signature isshown
in Figure 4.6. Part (a) shows an homogeneous texture. Part (b) shows its aver-
agetexture feature which is used for the homogeneous texture distances defined
in Section 2. Part (c) showsthe texture signature with four clusters. The cluster
representations are shown together with the cluster weights. Part (d) showsthe
result of assigning every pixel in the image to its cluster.

3.2. Texture-Based Retrieval

We constructed a database of 1792 texture patches by dividing each of the
112 textures from the Brodatz album [9] into 4-by-4 non-overlapping patches,
each of size 128-by-128 pixels. All the patches from the Brodatz album are
shown in Figures 4.7 and 4.7. The K-means algorithm was used with K = 8,
resulting in signatures with 8 clusters.

Having defined texture signatures, we can now use the EMD to retrieve
imageswithtextures. Weusethe saturated ground distance defined in Section 4,
with the L, distance as the underlying dissimilarity. Figure 4.8 shows two
examples of retrieving texture patches by using atexture patch asthe query. In
the first example, the top 16 matches were the patches from the same Brodatz
texture. The second exampleisharder, asthe texture used for the query ismade
of afew sub-textures, and other patches from this Brodatz texture have different
amounts of these sub-textures.
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Zebraimage

8-cluster assignment 16-cluster assignment

Figure 4.5. Mapping of image pixels to their nearest texture cluster, differentiated by color.
(This is a color figure)

3.3. Partial Matches

An important advantage of the EMD over other measures for texture simi-
larity isits ability to handle images that contain more than one texture without
first segmenting them, as required when using other measures. Using the EMD
for partial matches can find multi-textured images that contain specific textures.
Figure 4.9 shows an example of a partial query. Here we added images with
compositions of textures to our texture database. The query was 20% of the
texture in part (a) and 80% “don’t care”. The best matches are shown in part
(b) with the 16 patches from the same texture at the beginning followed by all
the compositions that contain some part of the queried texture. We emphasize
again that no segmentation was performed. Figure 4.10 demonstrates a partial
query where the query has more than one texture.
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i

orientations

(b)

(d)

Figure 4.6. (a) Texturepatch from the Brodatz album[9]. (b) Average over al texturefeatures.
The Gabor filter bank consists of four scales and six orientations. (c) The four clusters in the
texture signature. (d) Pixel assignment using the signature’s clusters. Different gray levels
represent different clusters.

34. Retrieving Natural Images

In the next experiment we created a database of 500 grayscale images of
animals from the Corel Stock Photo Library? with image sizes of 768-by-512
pixels. The K-means agorithm was used with K = 8, resulting in signatures
with 32 clusters.

Figure4.11(a) showsan exampleof aquery that used arectangular patch from
animage of azebra. We asked for images with at least 20% of thistexture. The
12 best matches, shown in part (b) and ranked by their similarity to the query,

2The Corel Stock Photo Library consists of 20,000 images organized into sets of 100 images each. We
created our database using the following sets: 123000 (Backyard Wildlife), 134000 (Cheetahs, Leopards &
Jaguars), 130000 (African Specialty Animals), 173000 (Alaskan Wildlife), and 66000 (Barnyard Animals).
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Figure 4.7.  The Brodatz album of textures. Only 1/16 of each texture is shown.

areall images of zebras. In fact, the 16 best matches were al images of zebras,
out of atotal of 34 images of zebrasinthe database. Thevariousbackgroundsin
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Figure 4.7 (continued).  The Brodatz album of textures.

theretrieved imageswereignored by the system because of the EM D’sability to
handle partial queries. Notice also that in some of theretrieved imagesthere are
afew small zebras, which only when combined together provide a significant
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Figure 4.8. Texture queries. The first image in each part was used as the query. (a) Coffee
beans (D75). All 16 patches from the same texture were returned first. (b) Lace (D41). Here,
15 out of the 16 texture patches are in the top 18 matches.

amount of “zebra texture” Methods based on segmentation are likely to have
problems with such images.

Next we searched for images of cheetahs. The database has 33 images of
cheetahs, and 64 more images of |eopards and jaguars that have similar texture
as cheetahs. Figure 4.12 shows the query and the best matches. Thefirst eight
images are indeed cheetahs. The other four matches are images of |eopards and
jaguars.

To check if our method can distinguish between the different families of
wild cats, welooked for images of jaguars. Figure 4.13 showsthe query results.
From the best twelve matches, eleven arejaguarsand leopards, which arealmost
indistinguishable. Only the sixth match was an image of a cheetah.

4. IMAGE PREPROCESSING

The texture features introduced in Section 1 describe the local appearance of
small image neighborhoods. The size of these neighborhoods is equal to that of
the supports of the coarser resolution filters employed. On the one hand, these
supports are large enough that they can straddle boundaries between different
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18) 6.08 19) 8.35 20) 8.60
(b)

Figure 4.9. Partia texture query. The query was 20% of the texturein part (a) and 80% “don’t
care’. (b) The 21 best matches: 16 patches from the same texture (only the first and last ones
are shown), followed by all the compositions that contain some part of the queried texture.

textures. Inthiscase, they do not describe “pure” textures, and they can convey
information that is hard to interpret and can be misleading. On the other hand,
the supports are often too small for them to “see” enough of atexture to yield
areliable description. In fact, the basic period of repetition of the underlying
texture may be comparable to the filter support sizes, so that adjacent filters
see somewhat different parts of the texture, and the description vectors differ
somewhat. Also, textures exhibit variations in the world, as well as variations
caused by nonuniform viewing parameters.

Before using texture features to compute texture signatures, it is therefore
preferable to sift and summarize the information that they convey. Specificaly,
it is desirable to eliminate vectors that describe mixtures of textures, and to
average away some of the variations between adjacent descriptors of similar
image patches.

We propose to let descriptors of similar and adjacent texture neighborhoods
coalesce into tight clusters. Inthisapproach, texture features are first computed
for the image. If two adjacent features describe similar textures, a smoothing
process brings them even closer to each other. If the texture descriptors are
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3)9.28 4)9.54

Figure 4.10. Another partia query. The query now contains 10% of each of the two patchesin
part (a) and 80% “don’t care” (b) The two best matches are the two compositions that contain
the texturesin the query, followed by the patches that contain only one of the queried textures.

very different, however, then they are modified so that their distance is left
unchanged or is even increased.

In other words, we propose to do edge-preserving smoothing, but in the
space of texturevectorsrather thanimageintensities. Thisrequiresgeneralizing
the definition of gradient to a vector function, which we do by introducing a
measure of texture contrast. Thanksto thisdefinition, we can runthe equivaent
of anisotropic diffusion processes [68] to achieve edge-preserving smoothing.
We use the texture contrast also to define significant regions as regions where
contrast is low after a few iterations of the smoothing process. Only texture
features that are in a significant region are used for the computation of the
texture signature.

41 Texture Contrast

For texture contrast, we employ a notion of “generalized gradient” from
differential geometry [48] that has been used for color images in the past few
years [21, 15, 86]. The rest of this section discusses this notion asit applies to
texture.

Assume that we have amapping ® : S C R* — R™. Let ¢; denote the ith
component of ®. If ® isatexturevector space, for example, then¢, 1 <i < m
are the responses to the Gabor filters, and n = 2 is the image dimensionality.
If & admits a Taylor expansion we can write

®(x + Ax) = ®(x) + ®'(x)Ax + ||Ax]le(x, Ax) .
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1) 130066 2) 130070

4)130051

10) 130043 11) 130055 12) 130046
(b)

Figure 4.11. Looking for zebras. (a) Animage of azebraand ablock of zebra stripes extracted
fromit. (b) The best matches to a query asking for images with at least 10% of the texture in
(). The numbers in the thumbnail captions are indices into Corel CDs.
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2) 134008 3) 134012

4) 134024

6) 134027

10) 134052 11) 134057 12) 134073
(b)

Figure 4.12. Looking for cheetahs. (a) The query. (b) The best matches with at least 10% of
the query texture. The last four images are leopards and jaguars which have similar texture as
cheetahs. However, cheetahs come first.
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LIk o
P L RV . :
10) 134090 11) 134050 12) 134070

(b)

Figure 4.13. Looking for leopards and jaguars. (&) The query. (b) The best matches with at
least 10% of the query texture. All but the sixth image are leopards and jaguars. The sixthimage
isof cheetahs.
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where |le(x, Ax)|| — 0 as Ax — 0 and ®'(x) isthe m x n Jacobian matrix
of ®:

941 .. 9d1
ox1 OTn
P'(x) =J(x) = | : :
m . Odm
ox1 OTn

If one starts at point x and moves by a small step Ax, the distance traveled in
the attribute domain is approximately

d = ||®'(x)Ax|| = VAXTJT JAx .

The step direction which maximizes d isthe eigenvector of J’'.J corresponding
toitslargest eigenvalue. The square root of the largest eigenvalue, or, equiva-
lently, the largest singular value of &', corresponds to the gradient magnitude,
and the corresponding eigenvector is the gradient direction.

We can give aclosed form solution for the eigenvaluesinthe casethat n = 2,
asitisfor images. In this case, ® isthe mapping from the two-dimensional
image plane to the M -by-L dimensional texture space, where M and L arethe
number of scales and orientations used. The differentia of ® is

d® = Z ax,

and so
8@ od
|d®|? = ZZ b oz,
i=1 j=1

Using the notation from Riemannian geometry [48], we have

2 2
||dq>||2 = Z Zgijdxidxj

i=1 j=1

_ g1 giz| |dz
= ldu do] [921 922] [d$2] '

where

Opr Oy,
ij = Z dx; Ox;j .

and gi12 = go21. Now let

1
Ay = 3 (911 + g2 = \/(911 —92)*+ 49%2) .
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be the two eigenvalues in the matrix G = [g” gu]. Since @G is red and
21 22

symmetric, its eigenvalues are real.
We choose )\, asthe generalized gradient magnitude since it corresponds to
the direction of maximum change. We can verify that this magnitude reduces

to the ordinary gradient norm in the case of agrayscale image (m = 1):
1

A= (B2 ele (@2 8) - 48297)

1
= 5 (B2 + &2+ (B, + B}))
= B+ =V’

where the subscripts x and y denote differentiation.

Whilethe application of this definition to color isrelatively straight forward,
matters are more complicated for texture. Because of the multiscale nature of
texture in general, and of our texture descriptors in particular, different filters
have different supports. Computing derivatives at different scales requires op-
erators of appropriate magnitudes and spatial supportsin order toyield properly
scaled components. For instance, if differentiation is performed by convolution
with the derivatives of aGaussian, the standard deviation of each Gaussian must
be proportional to scale, and the magnitudes must be properly normalized. Fig-
ure4.14(b) showsthetexture contrast of the texture mosaic from Figure 4.14(a).
The texture boundaries are characterized by high contrast.

Figure 4.14(b) shows some areas with relatively high texture contrast even
inside regions that appear to be of the same texture. The sources of these
contrast areas have been discussed at the beginning of Section 4, where it was
pointed out that small, low-contrast areas should be smoothed away, while
extended ridges of the contrast function should be maintained. The measure of
texture contrast introduced above allows extending anisotropic diffusion [68]
or edge-preserving smoothing [84] techniques to texture descriptors.

4.2. Edge-Preserving Smoothing

Here, we present an efficient implementation of an edge-preserving smooth-
ing agorithm, which is based on repeatedly convolving each of the spectral
subbands of the image with a separable binomial filter weighted by a measure
of the texture contrast. Efficiency considerations are particularly important in
an application likeimage retrieval, where large numbers of images must be pro-
cessed when they are entered into the database. After describing the algorithm,
we explore its relation with the method described in [68].

First, the weighting function ¢(C) is introduced, where C is the texture
contrast defined in Section 4.1. The function g(C') should be high where the
texture is uniform and low where the texture is “edgy” and can be any non-
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negative monotonically decreasing function with g(0) = 1. We chose to use

o(0) = (5 (45)

where k controls the decay rate of g(-) and, as we will see later, determines
which of the edges is preserved.

Smoothing is performed by convolving the spectral subbands of the image
with the binomial filter

B=B"B, B=[1 2 1],

after it isweighted by ¢g(C). We chose this filter because it is separable and
can be applied efficiently. When applied repeatedly, the binomial filter quickly
gives an approximation of a Gaussian. For brevity, weintroduce the following
notation:

axz b =

a(i)b(x +1,y) ,

axyb = a(j)b(z,y +7j) ,

- 1ta-

-1

J

11
cxb = Z Zc(i,j)b(m+i,y+j).

i=—1j=—1
A singleiteration of the smoothing procedure is computed at time ¢ asfollows:
1 Compute the texture contrast C(*).
2 St GO = g(CW).
B3For0<m< Mand0 <[ < L do:

(@) Let I*) be the m-th scale and the [-th orientation subband.
(b) Compute:

K® = Bx,G"
S0 B, (GOTM)
N K® ’
PO = B, KO
[ B x, (K(t)J(t))
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(This computation can be simplified. For clarity, we show it in the above form).
Itiseasy to seethat
B« (GWIM)

B G®
Without the B(i, 7) factor, thisissimilar to the adaptive smoothing proposed in
[84], but implemented, in addition, in a separable fashion for greater efficiency.
In [84], this iterative process is proven to be stable and to preserve edges. A
similar proof can be applied to our case with straight forward modifications.
That edges are preserved is proved by showing that when the contrast is large
enough (> k), it increases as the iterations progress, thereby sharpening the
edge. When the contrast is small (< k), the contrast decreases and the edge is
smoothed. Thisimplies that & is equivalent to a contrast threshold.

In the following, we show that the edge-preserving smoothing iteration is
equivalent to an iteration of the anisotropic diffusion proposed by [68]. Define

T+ —

(0 _ G®
BxGW

Then we have
D) = B« (D 11)

and by using the fact that
Bxc) =1 ,

we can write
1D — 10 = By [ (10 — [D)] (4.6)

where§(z,y) = 1if x = y = 0 and 0 otherwise. Equation (4.6) isadiscretiza-
tion of the anisotropic diffusion equation

I, =V - (c(z,y,t)VI) .

Instead of using a 4-neighbor discretization of the Laplacian as done in [68],
we use a better, 8-neighbor discretization [43]:

Figure 4.14(c) shows the texture contrast after 20 iterations. To visual-
ize the texture vectors we project them onto the plane spanned by the two
most significant principal components of all texture vectorsin theimage. Fig-
ures 4.14(d), (e) show the projections of the texture descriptors before and after
the edge-preserving smoothing. Only descriptors from significant regions are
shown in the latter. A region is significant if the contrast after smoothing is



66 PERCEPTUAL METRICS FOR IMAGE DATABASE NAVIGATION

everywhere smaller than the contrast threshold & in Equation (4.5). We can
see that the descriptors of the four textures form clear, distinct clusters evenin
this two-dimensional projection. Notice the sparse trail of points that connects
the two left-most and the two top-most clustersin Figure 4.14(e). These points
comefroma*“leakage’ inthe boundary between two textures. Thisimpliesthat
we are limited in the amount of smoothing we can do before different textures
start to mix. Thisisalso asituation where most segmentation algorithms would
have to make a classification decision, even if the two textures involved are
similar to each other.

Figure 4.15(b) shows the significant regions of the image in Figure 4.15(a)
after ten iterations. Texture features that belong to insignificant regions are
likely to be on the boundary of more than one texture, and should be ignored
when computing the texture signature, as they are not good representatives for
any of the textures.

5. SUMMARY

In this chapter we defined families of texture metric distances, based on the
EMD, and showed by examples that they match perceptual similarity well. The
texture features are based on carefully designed Gabor filters. For homoge-
neous texture patches it was enough to summarize the texture content by one
descriptor, athough using the full distribution of texture features captures the
texture content better. We also presented rotation- and scale-invariant versions
of the texture metric for homogeneous textures. Non-homogeneous textures,
such as those found in natural images, required using the full distribution of
the texture features, and introduced problems due to the inherent spatial extent
of texture, such as the blending of adjacent textures that result in meaningless
texture features. We were able to filter out these features by defining ameasure
of texture contrast. Using the texture contrast also led to a smoothing algo-
rithm that coalesced texture features that belonged to the same texture, without
blending features from neighboring textures.
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Figure 4.14. (&) Mosaic of four textures from the Brodatz album. (b) Texture contrast before
smoothing (dark values correspond to large contrast) and (c) after 20 iterations. (d) Projection of
the texture descriptors onto the plane of their two most significant principal components before
smoothing and (e) after 20 iterations.
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Figure 4.15. (&) A picture of alighthouse. (b) Nonignificant regions (blackened out) after ten
iterations of smoothing.



Chapter 5

COMPARING DISSIMILARITY MEASURES

Doubt, the essential preliminary of all improvement and discovery, must accompany the
stages of man’s onward progress. The faculty of doubting and questioning, without which
those of comparison and judgment would be useless, is itself a divine prerogative of the
reason.

—Albert Pike, 1809-1891

In Chapter 1 we surveyed distribution-based dissimilarity measures and dis-
cussed their properties, and in Chapter 2 we presented the EMD, which we
hypothesized to be a good choice for image retrieval applications. In Chap-
ters 3 and 4 we showed how these measures can be instantiated to compare
color and texture distributions In this chapter we compare the results of the
different dissimilarity measures when used for color- and texture-based image
retrieval. The main difficulty in such a comparison is establishing ground truth
that will help to determine if areturned image is relevant or not. To this end,
we create databases where the ground truth is known, and use them to conduct
experiments that evaluate the performance of the dissimilarity measures.

1. BENCHMARK METHODOLOGY

Any systematic comparison of dissi milarity measuresshould conform at |east
to the following guidelines:

= A meaningful quality measure must be defined. Different tasks often entail
different quality measures. For image retrieval, performance is usualy
measured by precision, which is the number of relevant images retrieved
relative to the total number of retrieved images, and recall, which is the
number of relevant images retrieved, relative to the total number of relevant
images in the database. Plotting the precision vs. the number of retrieved

69
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images, for al dissimilarity measures, is a good way to compare between
them. However, in order to decide if a particular measure is better for
a specific task, the precision vs. recall plot might be of better use as the
relative importance of good recall vs. good precision differs according to
the task at hand. We therefore show both plots for most of our experiments.

» Performance comparisons should account for the variety of parameters that
can affect the behavior of each measure. These parameters include, in our
case, the number of binsin ahistogram; the shape and definition of the bins;
and for texture, the number of filters used to represent the texture. A fair
comparison in the face of this variability can be achieved by giving every
measure the best possible chance to perform well. In our experiments we
vary these parameters and report their effect on the different dissimilarity
measures.

m Processing stepsthat aff ect performanceindependently ought to be eval uated
separately in order to both sharpen insight and reduce complexity. For
instance, the effect of different histogram sizes can be understood separately
from those of different dissimilarity measures.

= Ground truth should be available. Thisisaset of datafor which the correct
solution for a particular problem is known. Collecting ground truth is ar-
guably the hardest problem in benchmarking, because the“ correct solution”
ought to be uncontroversial, and the ground-truth data set should be large
enough to alow a statistically significant performance evaluation.

2. EXPERIMENTS

In this section we describe experiments that compare and evaluate the dif-
ferent dissimilarity measures, discussed in this book, for color imagesand for
homogeneous textures.

21. Color

We performed two experiments, each using a different database of color
distributions. Thefirst databasewas constructed such that multiple sets of color
distributionswere taken from each of a set of color images. The ground truth
was defined such that two distributions belong to the sameclassif they originate
from the sameimage. The second database was the 20,000-image database that
we used in Chapters 3 and 4. The ground truth was now established manually
by selecting sets of similar images a priori, both in the semantic meaning and
in their color contents.
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In our first experiment, werandomly chose 94 color images- from our 20,000
color image database. From each image we created disjoint sets of randomly
sampled pixels and considered these sets as bel onging to the same class. While
for large sets of pixelswithin aclassthe color distributions arelikely to be very
similar, for small setsthe variations arelarger, mimicking the situation inimage
retrieval whereimages of moderate similarityto the query have to be identified.
To get moderate similarities, we used sets of 8 pixels, and obtained for each
image 16 digoint sets of random samples, resulting in a ground truth data set
of 1504 color distributions with 94 different classes, one class per image.

We represented the color distributions in the database by histograms which
were adapted to optimally represent the combined distribution over the entire
database. To construct the histograms, we ran a K -means clustering algorithm
[33] on the combined distribution, resulting in optimal clusters which were
used as the histogram prototypes. Each pixel in every color distribution in
this database was then assigned to a bin by finding its closest prototype. We
repeated this process to compute histograms with 32, 128, and 512 bins, which
correspond to coarse, intermediate and fine binning, respectively. For the EMD
and the Quadratic Formthat require a ground distance, we use the saturated
ground distance described in Section 4.

In addition to computing histograms, we also computed signatures for all
color distributions. We used the same K-means agorithm as used for his-
tograms, but instead of computing the optimal prototypes of the combined dis-
tribution over the entire database, we computed the optimal prototypesfor every
distribution individually, asking for the best eight prototypes. Thisresulted in
signatures, all with eight clusters.

Once the histograms and signatures were computed for al the distributions
in the database, we used the different dissimilarity measures to retrieve and
rank the most similar histograms in the database, where each of the 1504 color
distributions was used, in turn, asthe query. The average of the results of these
1504 queries, for al histogram sizes, was used to evaluate the performance
of the dissimilarity measures. Since the EMD is the only method that takes
advantageof signatures, weapplied the EM D on both histogramsand signatures.
FiguresB.1, B.2, and B.3in Appendix B show theretrieval performance of the
different dissimilarity measures when using histograms with 32, 128, and 512
bins, respectively. We added to each plot the results of the EMD applied to the
signatures (with only 8 clusters). Thetop part of each figure shows the number
of relevant distributions in the retrieved set, as a function of the total number
of retrieved distributions. The bottom part of the figures shows precision vs.
recall.

1We used the same number of images (94) as in the texture case (see Section 2.2), so that we can compare
results from both cases.
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Analyzing the results leads to the following conclusions:

= Bin-by-bin dissimilarity measuresimprove by increasing the number of bins
up to a point, after which their performance degrades. Smaller number of
bins results in bigger bins. When the bins are too big, the discrimination
power of the histograms decreases. When the bins are too small, similar
pixels might fall into different bins and will be considered as completely
dissimilar. This problem does not exist for cross-bin dissimilarity mea-
sureswhere the similarity of the pixelsis determined by the ground distance,
small in our case, between the appropriate binsin the feature space.

m For our case of moderate similarities, cross-bin dissimilarity measures per-
form better than bin-by-bin measures. The EMD that was applied to sig-
natures performed best in all cases, except for the fine, 512-bin histograms
case, whereit performed dlightly better using the histograms. However, for
animageretrieval system, using the EMD on 512-bin histogramsistoo slow.
While the EMD on signatures performs best for moderate similarities, once
theassumption of moderate similaritiesisviolated and thedissimilaritiesbe-
tween objectsin the same class get smaller with respect to the dissimilarities
between objects from different classes, other dissimilarity measures, such
as the y? statistics and Jeffrey divergence, might perform better because
they were designed to compare close distributions.

= Although, from an information-theoretic point of view, the signaturesin our
experiments carry less information than the histograms and can be encoded
using fewer bits, they usualy lead to better results.

» 2 statistics and Jeffrey divergence give almost identical results.

= Among the Minkowski-formdistances that we tried, the I; distance gave,
in general, better results than the I, distance, which was better than L.
Notice that we measure distances in the histogram space and not in the
color space where the L, distance, by construction, matches the perceptual
similaritybetween colors.

Representing the distributions by signatures leads, in the case of moderate
similarities, to better results than representing them by histograms. However,
when distributions from the same class are very similar (in contrast to being
moderately similar), adaptive, global histograms perform better than signatures,
because features with minor dissimilarities arelikely to be assigned to the same
bins. Thisis demonstrated in Figure B.4 where sets of 32 random pixels were
takenfromtheimages (instead of 8 pixelsasinthecaseof moderatesimilarities).
Now sets of pixels that originate from the same image are very similar, and
amost every measure performswell. The EMD applied to signatures performs
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dlightly worse than most other measures, while the EMD applied to histograms
gtill performs slightly better than the rest of the measures.

The second experiment was conducted on our full 20,000-image database of
color images. Our goal inthisexperiment wasto compare different dissimilarity
measures using images that are perceived as having similar color content. To
do so, we looked for sets of images that have high correlation between their
semantic meaning and their color distribution. For thefirst set, weidentified all
theimages of red carsin the database (75 images) and marked them asrelevant.
For the second set, we similarly identified images of brown horses in green
fields (157 images).

Unlikethefirst experiment whereadaptive histogramswere used, hereweuse
histograms with regular binning, asthey are commonly used in image retrieval
systems and do not require prior knowledge of the database content. Werun this
experiment twice: once on color histograms with coarse binning, and once with
fine binning. For the coarse binning, we divided the CIELab color spaceinto
fixed-size cubes of length 25. This quantized the color space into 4 binsin the
L channel and 8 bins in both the ¢ and the b channels, for a total of 256 hins.
However, most of these bins are always empty due to the fact that valid RGB
colors can map only to asubset of this CIELab space. In fact, only 130 bins can
have non-zero values, so the histograms have 130 bins. After removing bins
with insignificant weights (lessthan 0.1%), the average histogram has 15.3 non-
empty bins. Notice that the amount of information contained in the signatures
(8.8 clusters on average) is comparable to that contained in the histograms. For
the fine binning, we divided the CIELab color space into fixed-size cubes of
length 12.5. This resulted in 2048 bins, of which only 719 can be non-empty.
Over our 20,000-image database the average fine histogram has 39 non-empty
bins.

In this experiment, instead of using the saturated ground distance (Equa-
tion (2.4)) for the EMD and the Quadratic Form, asin the first experiment, we
use the Euclidean distance in CIELab as the ground distance. In addition to
being faster to compute, we found that for real images, using the Euclidean
ground distancefor color-based image dissimilarity leads to better recall than
when using the saturated ground distance. Being induced by a norm, the Eu-
clidean ground distance also alows the use of the lower bound described in
Section 3.2, which significantly reduces the computation time.

From the set of 75 red car images we chose the 10 images shown at the
top of Figure 5.2. In these ten images the red car had green and gray in the
background, wasrelatively big (so red isapredominant color), and not obscured
by the background. We performed ten queries using these ten images and
averaged the number of relevant imagesfor the different dissimilarity measures
as afunction of the number of images. An example of such a query is shown
in Figure 5.1. The color content of the leftmost image of ared car was used
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as the query, and the eight images with the most similar color contents were
returned and displayed in order of increasing distance for different histogram
dissimilarity measures. We repeated this process for the set of the 157 horse
images, where again, ten “good” images of horses (Figure 5.3, top) were used
for the queries.

4 el W TN
2) 053 ) 5) 0.63
29077.ipg 157090,pg 9045.jpg 197037.ipg

L, distance

1) 0.00 2)0.26 3)0.43 5)0.72 76)0.73
29020,pg 29077.jpg 29017,pg 197037.ipg 77047.jpg

1) 0.00 ) - . 6)0.21 .
29020,pg i 29017,pg J 77045,pg

2)0.06 3)0.09 4)0.10 5)0.10
29020,pg 29077.ipg 29005,pg 96035.ipg 1033,pg 25013,jpg 20003,pg 140075,ipg

Quadratic-form distance

s 4 =
1) 0.00 2)8.16 3)12.23 5) 13.82 6) 14.52 7)14.70 8) 14.78
29020,jpg 29077.jpg 29005,jpg 29017.jpg 20003jpg | 53062jpy 29018,jpg 29019,jpg

EMD

Figure 5.1. The eight closest images for each of the red car images in the first column. The
queries were processed by a color-based image retrieval system using different histogram dis-
similarity measures. (This is a color figure)
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The results of these experiments are shown in Figures 5.2 and 5.3. For
the cars, the average number of relevant images for the different dissimilarity
measuresis shown in Figure 5.2 as afunction of the number of images retrieved
for coarse (middle) and fine (bottom) histograms respectively. The EMD with
histograms outperformed the other histogram-based methods, and the EMD
with signatures performed best. The red car images have only partially similar
color distributions because only part of animage matches part of the others. The
colors of the cars are very similar in all the relevant images while the colors
of the backgrounds have more variation. Although other images that do not
have cars in them might match the color contents of the query images better,
we still expect some of the cars to be retrieved when alarge number of images
isreturned by the system.

For thehorses, both the col ors of the obj ectsand the col ors of the backgrounds
are similar for all the relevant images. Figure 5.3 shows the results for coarse
and fine histograms. Again, the EMD with signatures performed best. Both
the Jeffrey divergence and the x? statistics outperformed the EMD with coarse
histograms but not with fine histograms. This can be explained as before by
the fact that, for coarser histograms, the ground distance is computed between
more distant bin centers, and therefore becomesless meaningful. Werecall that
only small Euclidean distances in CIELab space are perceptually meaningful.
On the other hand, as we saw before, bin-by-bin distances break down as the
histograms get finer, because similar features are split among different bins.

2.2. Texture

In order to compare different dissimilarity measures for homogeneous tex-
tures, we used the Brodatz album [9]. Patches from the Brodatz album are
shown in Figures 4.7 and 4.7. To construct an image database with a known
ground truth, eachimageisconsidered asasingle, separate class. Thisisaques-
tionable assumption in afew cases, so we a priori selected 94 Brodatz textures
by visual inspection. We excluded the textures D25, D30-D31, D39-D45, D48,
D59, D61, D88-D89, D91, D94, D97 due to the following two problems: the
characterizing scales are too coarse to be captured by our filters, or the texture
appearance changes over the texture. In these two cases, small blocks from the
same textures will lack similarity.

For each texture, we computed the Gabor texture features described in Sec-
tion 3 and took 16 non-overlapping patches of 8-by-8 pixels with the corre-
sponding texturefeatures. We chosesmall patchesso that patchesfrom thesame
texture will not be too similar and moderate similarity can be assumed. Simi-
larly to the color experiment, the database contains 1504 texture patches with
94 different classes, each with 16 samples. We used each of the patches in the
database as a query, and averaged the results over all the patches. The retrieval
performance of the different dissimilarity measures are shown in Figures B.5-
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Figure 5.2.  Ten images of red cars (top) and the average number of relevant images, for the
different dissimilarity measures, that were returned by using the ten images as the queries with
coarse histograms (middle) and fine histograms (bottom). The results obtained using signatures
isalso shown for reference. (This is a color figure)
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B.13 in Appendix B for all combinations of filter bank size and histogram
coarseness. For the filter banks we used 12 filters (3 scales/4 orientations), 24
filters (4/6), or 40 filters (5/8); the histograms had 32, 128, or 512 bins. Again,
for comparison, we added to al the plots the results of the EMD applied to
signatures (with only 8 clusters).

We confirm that our conclusions from the color experiments hold aso for
texture, and in addition:

= For the smallest filter bank size, the x? statistics and the Jeffrey divergence
give the best results. However, increasing the number of filters significantly
improves the EMD results, which for the largest filter bank size gives the
best results overall. For the EMD, similarly to increasing the number of
bins, more filters implies a better representation of the texture space and
therefore better results. The performance of the bin-by-bin dissimilarity
measures for texture is similar to that for color: as the number of bins
increases, it improves up to apoint and then degrades. For texture, however,
the notion of bin size includes also the number of filters in the filter bank.
Since increasing the number of filtersis equivalent to sampling the space of
orientations and scales more finely, alarger number of filters improves the
discrimination power up to a point after which the performance degrades.
The optimal points depends on the number of bins used. As can be seen
from the graphs, increasing the number of filters improves the results only
for the coarse histograms (32 bins) while for fine histograms (512), the
performance degrades.

= Examining the precision vs. recall graphs reveals that applying the EMD
to signatures gives better results when good precision is wanted, while for
good recall, it is better to use the EMD on histograms. Signatures are, by
definition, more precise than histograms, so it is natural to expect higher
precision in our queries. On the other hand, globally adapted histograms
coalesce to the same bins features with only moderate similarity, bringing
closer images that have overall moderate similarities between them.

3. SUMMARY

A quantitative performance evaluation was presented for distribution-based
image dissimilarity measures. We emphasized image retrieval applications
wherethe ability to compare moderate similaritiesisof the greatest importance.
The EMD performed very well inmost cases, and exhibited improvementswhen
more data was available in the form of finer histograms and, for texture, larger
filter banks. For the other dissimilarity measures, increasing the amount of data
often decreased the performance as aresult of inherent binning problems and
the curse of dimensionality. Nevertheless, the choice of adissimilarity measure
should be made based on the application at hand and the available data.



Chapter 6

VISUALIZATION

One picture is worth a thousand words.
—Fred R. Barnard

If a picture is worth a thousand words, a picture of an image database is worth a whole
book.

——Carlo Tomasi

Theimagesthat best match aquery should be displayed to the user in auseful
way, that showsimmediately if there are any relevant imagesin the returned set.
Traditional image retrieval systems display the returned images as alist, sorted
by dissmilarity to the query. At this point, the user can examine the images
one at atime, and decide the next action. While this might sufficeif the correct
images are in the returned list, thisis usually not the case, even when the user
has as exact image in mind. In many cases, the user has only a vague idea of
what he is looking for. In this cases, the display should convey information
asto what kind of images were returned by the query, what (if anything) went
wrong, how to refine the query in order to get closer to the desired images, and
whether or not to terminate the search.

There are two shortcomings to the traditional approach. First, when images
are ranked by similarity to the query, related images can appear at separate
placesinthelist. Often the user would like to have aglobal view of thereturned
images in away that reflects the relations among the images in the returned set.
Second, browsing and navigating in alarge database is disorienting unless the
user can form a mental picture of the entire database. Only having an idea of
the surroundings can offer an indication of where to go next. The wider the
horizon, the more secure navigation will be. The small pieces of the database,
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shown by the traditional methods one at a time, make it harder for the user to
form such apicture.

In contrast, we propose a new display technique, which is the main point
of this chapter, by which the returned images are displayed not only in order
of increasing dissimilarity from the query but also according to their mutual
dissimilarities, so that similar images are grouped together rather than being
scattered along the entire returned list of images. With such a view, the user
can see the relations between the images, better understand how the query
performed, and express successive queries more naturally. In brief, the user of
the system would benefit from a more coherent view of the query results. In
addition, many more images can be returned and displayed with such a view
without overloading the user’s attention. he user can see larger portions of the
database at a glance and form a global mental model of what isin it.

How can such adisplay be created? If the dissimilarities between all pairs
of images in the set of returned images are used, the results of a query can
be embedded in a two- or three-dimensional space using multi-dimensional
scaling techniques, by which image thumbnails are placed on the screen so
that screen distances reflect as closely as possible the dissimilarities between
the images. If the computed dissimilarities agree with perception, and if the
resulting embedding preserves these dissimilarities reasonably well, than the
resulting display should be perceptually intuitive.

While traditional displays list images in order of similarity to the query,
thereby representing only n dissimilaritiesif n images arereturned, our display
conveysinformation about all () dissimilarities between images. Our geomet-
ric embeddings allow the user to perceive the dominant axes of variation in the
displayed image group. Thus, the embeddings are adaptive, in the sense that
they use the screen’s real estate to emphasize whatever happen to be the main
differences and similarities among the particular images at hand.

1. MULTI-DIMENSIONAL SCALING

Given a set of n objects together with the dissimilarities ¢;; between them,
the multi-dimensional scaling (MDS) technique [100, 88, 49] computes a con-
figuration of points {p;} in a low-dimensional Euclidean space R?, (we use
d = 2 or d = 3) so that the Euclidean distances d;; = ||p; — p;|| between the
points in R? match the original dissimilarities 4;; between the corresponding
objectsaswell aspossible. Kruskal’s formulation of this problem [49] requires
minimizing the following quantity:

(6.1)

> (f(0i5) — dij)2] i ‘

STRESS =
[ i
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Therearetwo types of MDSdepending on the propertiesof f(4;): Inthemetric
MDS, f(d;;) is a monotonic, metric-preserving function. In the non-metric
MDS, f(é;;) is aweakly monotonic transformation; that is, it preserves only
the rank ordering of the ¢;;’s. The monotonic transformation is computed via
“monotonic regression” (also known as “isotonic regression”) [14]. STRESS
is a non-negative number that indicates how well dissimilarities are preserved
in the embedding. For our purposes, when the STRESS is less than 0.2 the
embedding is considered successful. Since only the relative dissimilarities are
used, and not actual object coordinates, rigid transformations and reflections
can be applied to the MDS result without changing the STRESS. Embedding
methods such as SVD and PCA are not appropriate here because our signatures
do not form alinear space, and we do not have the actual points, only the non-
Euclidean distances between them. In our system we used the ALSCAL MDS
program [98].

2. EXAMPLES

Figure 6.1 displays the result of a sample query returned by our color-based
retrieval systemashotharankedlistandasan MDSdisplay. Thequery specified
20% blue and 80% “don’t care” and requested the ten best matching images.
In the MDS display, similar images of desert scenes with yellowish ground
group together at the top left, images with green plants group at the bottom,
and the two other images—a desert image with white ground and an image of a
statue—are to the right. An al-blue image is comparatively dissimilar from the
others, and is accordingly relegated to the far right. In the list, however, these
relationships are not apparent.

In Figure 6.2 we see the MDS display of a query result where the user
was looking for images of flowers. The top of the figure shows the specified
amounts of red, pink, and green. The bottom of the figure is the MDS display
(with STRESS=0.19) of the 20 best matches. One axis arranges the images
from pink flowersto red flowers, while the other describes the shade of greenin
theimages. Noticethat image thumbnails placed at the coordinates returned by
the MDS a gorithm might occlude other thumbnails. Up to a point, thisis not
really a problem since these images are likely to be similar and are, therefore,
well represented by the topmost thumbnail.

3. MISSING VALUES

As the number of images on which the MDS is applied increases, the com-
putational time increases. When the EMD is used to compute the dissimilarity
matrix, most of the computation timeistaken by the computation of the EMDs.
Table 6.1 shows the average time in seconds needed to compute the dissimi-
larity matrix and the MDS embedding for different number of images,. These
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Figure 6.1. Looking for desert images, (a) Traditional display. (b) MDS display. (This is a
color figure)

computations were done on a SGI Indigo 2 with a 250MHz CPU, using our
color-based retrieval system.

number of images 10 20 50 100 200 500
dissimilarity matrix | 0.02 0.12 0.64 262 11.02 71.33
MDS 0.01 0.02 0.08 033 178 2592
total 0.03 014 072 295 1280 97.25 |

Table 6.1.  Computation time in seconds for the dissimilarity matrix and the MDS.

One desirable property of the non-metric MDSisthat if some dissimilarities
are absent, they are simply left out of the formula for the STRESS (Equa-
tion (6.1)). Thisfact can be used to significantly reduce the computation time
by not computing the full dissimilarity matrix. Thisisjustified by the redun-
dancy of information in the dissimilarity matrix which is due to the following
two factors: the EMDsare metric so that thetriangle inequality providesalarge
number of additional constraints. The second factor is the fact that for the non-
metric MDS only the ranking of the dissimilarities matters and not their actual
values. We found that using only twenty dissimilarities per image, chosen at
random, results in a very similar MDS display to the one computed with the
full dissimilarity matrix.
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(b)

Figure 6.2. A color signature and the MDS display of the 20 best matches. (This is a color
figure)

4. EVALUATING DISSIMILARITY MEASURES

In addition to creating a display to visualize query results, the MDS can
be used as atool for evaluating how well a dissimilarity measure agrees with
perception. By applying MDS to a set of images, and displaying the results
as we have done in the previous sections, it is easy to see if images that are
perceptualy similar are placed close to each other, and if dissimilar ones are far
apart. Additional support can be obtained by comparing possibleinterpretations
of the MDS axes to known results from psychophysics. Many psychophysical
experiments study perceptual similarities, and present their results using MDS.
Insuch casesaqualitative eval uation can bedone by comparing theM DSdisplay
of adissimilarity measurewith theone obtai ned by apsychophysical experiment
using the same images. In this section we show an example using MDS to
evaluate the dissimilarity measures developed in Section 2 for homogeneous
textures.
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Figure 6.3 showstheresults of applying atwo-dimensional MDSto 16 homo-
geneous texture patches using the EMD with no invariance. For convenience,
we repeat here the actual dissimilarity matrix that was computed in Table 4.1.
In this figuret, the hand-drawn arrows suggest that one axis reflects the coarse-
ness of the texture, from fine to coarse. The other (curved) axis reflects the
dominant orientation of the texture. On the left we see horizonta textures,
on the right vertical textures, and as we move from left to right on the lower
half-circle, the orientation changes counter clockwise. The other textures have
no dominant orientation. STRESS in this figure is 0.063, so on average, dis-
similarities in the picture are close to the real EMDs. We found that adding
more oriented textures with different scales and orientations completes also the
top half of the orientation circle, at the expense of the coarseness axis. This
increases the STRESS, making two dimensions insufficient. In this case, a
three-dimensional MDS would use two dimensions for the orientation circle
and the third for coarseness.

A two-dimensional MDSdisplay using the rotation-invariant EM Dfrom Sec-
tion 2.2 on the texture signatures in shown in Figure 6.4 (with a STRESSvalue
of 0.077), together with its corresponding dissimilarity matrix. One axis em-
phasizes the directionality of the texture, where textures with one dominant
orientation (any orientation) are at the top, and textures without adominant ori-
entation (no orientation at al, or more than one orientation) are at the bottom.
The other axis is coarseness, similar to the previous experiment. An exam-
ple of the rotational invariance can be seen by the two oriented fabric textures
on the right that are close together although they have different orientations.
Coarseness and directionality were found by psychophysical experiments by
Tamura et al. [99] to be the two most discriminating texture properties for
human perception.

Finally, we use the rotation- and scale-invariant EM Dfrom Section 2.3. The
two-dimensional MDSdisplay, showninFigure6.5 (with STRESSequal to0.1),
canbeinterpreted asfollows. Oneaxisisagainthedirectionality, whiletheother
shows what we call the “scality” of the texture, a measure that distinguishes
between textures with one dominant scale and textures with more than one,
or no dominant scale. For example, the two textures of oriented bars, which
have different orientations and scales, are close to each other when using the
invariant EMD. Also, the two textures of tiles on theright arevery closeto each
other even though they differ by more than three octaves in scale!

1In order to see the fine details of the textures better, only one-quarter of the textures in Figures 6.3-6.5 are
displayed.
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©CONDOTADWN P

Figure 6.3. Two-dimensional MDS applied to 16 homogeneous textures using no invariance.
The two dominant axes of orientation and coarseness emerge.

5. VISUALIZATION IN THREE DIMENSIONS

MDS can be computed in any number of dimensions, although only two
and three dimensions are useful for visualization purposes. Going from two
dimensions to three dimensions gives the MDS more flexibility in embedding
the images, resulting in lower STRESS and a perceptually more pleasing dis-
play. We developed a system, based on the SGI Open Inventor object-oriented
3-D toolkit, that creates three-dimensional MDS displays, and allows the user
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Figure 6.4. Two-dimensional MDS applied to 16 homogeneous textures with rotation invari-
ance. The axes are coarseness and directionality.

to rotate, pan, and zoom in space. Since the viewing direction can be arbitrary,
we texture-map the thumbnails onto the six faces of a cube and position these
cubes in the appropriate locations in space. A significantly larger number of
images can be conveniently embedded in three-dimensional space than in the
two-dimensional case. Figure 6.6 shows two different viewpoints of an MDS
display applied to 500 random images. The dissimilarity matrix was computed
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Figure6.5. Two-dimensional MDS applied to 16 homogeneous textureswith rotation and scale
invariance. The two axis are “scality” and directionality.

using the EMD and the color signatures. Images were organized in space by
their dominant colors, and by their brightness. Notice that similar images are
close to each other, and the user can find images of sunsets, images of green
fieldswith blue skies, or imagestaken at night at aglance. Theinterpretation of
the axes varies according to the set of images; for example, Figure 6.7(a) isthe
result of the same query as used in Figure 6.1 but with 500 images and athree-
dimensional MDS display. One axis can clearly be interpreted as the amount
of blue in the image, while the other two are the brightness and the amount of
yellow. Part (b) of the figure zooms into the part of space that contains images
of deserts.
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Figure 6.6. Two views of athree-dimensiona MDS display applied to 500 random images.
Only color information was used. (This is a color figure)
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(b)

Figure 6.7. Lookingforimageswith 20% blue. (a) The 500 most relevant images. (b) Focusing
on images of deserts. (This is a color figure)

Although athree-dimensional MDS display conveys more information than
its two-dimensional counterpart, we found that the latter is more useful for
image retrieval, as rendering a three-dimensional MDS display takes signifi-
cantly more time. In addition, since only two-dimensional projections can be
displayed on the screen, the user needs to rotate the three-dimensional MDS
display in order to understand its structure. By the time the three-dimensional
structure is rendered and understood, the user can go through a series of two-
dimensiona MDS displays, which can be comprehended at a glance, thereby
surpassing the advantages of the three-dimensional MDS.
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6. SUMMARY

We showed that by using the mutual dissimilarities between aset of images,
the images from a query result can be displayed in a more intuitive way than
with the traditional methods. The resulting embeddings, in two- and three-
dimensions, are adaptive and reflect the axes of maximum variation. A larger
number of images can displayed, helping the user to form a global mental
model of the entire database. In addition, it is easier to understand what are the
commonalities is the returned set of images and where to go next, as well as
when to stop the search.

Theidea of an adaptive image embedding can be applied to other modalities
besides color and texture, as long as some notion of similarity, metric or not,
continuous or discrete, can be defined.

Inthe next chapter weextend thisvisualizationtechniqueto allow for intuitive
navigationthroughlarge collectionsof imagesfor the purposeof imageretrieval .



Chapter 7

NAVIGATION

We’re not lost. We’re locationally challenged.
—John M. Ford

The MDS-based visualization technique, described inthe last chapter, makes
it possible to display alarge number of imagesin anintuitive way that allowsthe
user to see at a glance the commonalities is the returned set of images and what
part of the display is most relevant. In this chapter, we develop a navigation
method based on this display. Once the user points to the region of interest
on the display, the system zooms in and finds more images that are similar to
the common features of the images in the region. By iterating this refinement
process, the user can quickly home in to the relevant parts of the database. We
show examples of navigation in aspace of color images and in aspace of police
mugshots.

1. RETRIEVAL BY NAVIGATION

The discrepancy that results from using syntactic features, such as color and
texture, to satisfy semantic queries causes a basic problem with the traditional
guery/response style of interaction. An overly generic query yields a large
jumble of images, which are hard to examine, while an excessively specific
guery may cause many good images to be overlooked by the system. Thisis
the traditional trade-off between good precision (few false positives) and good
recall (few false negatives). Striving for both good precision and good recall
may pose an excessive burden on the definition of a*“correct” measure of image
similarity. While most image retrieval systems recognize this and allow for an
iterative refinement of queries, the number of images returned for a query is
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usually kept low so that the user can examine them, one at atime, in order of
similarity to the query.

If, as we showed in Chapter 6, images are arranged on the screen so as to
reflect similarities and differences between their feature distributions, the ini-
tial queries can be very generic, and return a large number of images. The
consequent low initial precision is an advantage rather than a weakness, as it
provides a neighborhood of images the user can relate to when refining the
guery and deciding where to go next. In fact, the user can see large portions
of the database at a glance, and form a mental model of what isinit. Rather
than following athin path of images from query to query, as in the traditional
approach, the user now zooms in to the images of interest. Precision is added
incrementally in subsequent query refinements, and fewer and fewer images
need to be displayed as the desired images are approached. This can be envi-
sioned as analogous to visiting a bookstore. Books are shelved according to
their subjects, for example, travel-books, cookbooks, poetry, etc. Afterlocating
the right section, say cookbooks, the books are again classified into different
categories such as vegetarian cooking, baking, etc. The books can be further
sorted by title or by author. Thelast step when searching for abook isto scanthe
relevant set of books, one at atime, and find the desired one. After afew visits
to the bookstore, aglobal mental picture of it isformed, with the knowledge of
what kinds of books can be found and where to ook for them.

When the user selects the region of interest on the display, a new, more
specific query is automatically generated, reflecting the common features of
the images in the selected set. A new set of images is returned and displayed
by a new MDS, which now reflects the new dominant axes of variation. By
iterating this process, the user is able to quickly navigate to the portion of the
image space of interest, typically in very few mouse clicks.

This navigation scheme can be categorized as a relevance feedback system
[81, 59, 92] where retrieval is guided by feedback from the user, who marks
relevant and non-relevant images. A major difference from other relevance
feedback systems is that in our navigation approach, the relevant images are
likely to bedisplayed closeto each other, and far from oneswhich arecompl etely
irrelevant. Thismakesthe selection of therelevant set easier and moreintuitive,
as the user naturally moves his focus to relevant parts of the display, while in
the other methods the user needs to scan the list of images, one at atime, and
decide whether it is relevant or not.

We propose a navigation scheme in which the user starts by specifying a
generic query. Using partial queries is encouraged when the user is not confi-
dent about certain features by specifying “don’t care” rather than guessing. A
large set of images is returned and embedded in two-dimensional space using
MDS. Once the user selects an area of interest, an appropriate new query is
automatically generated and submitted. Now a smaller number of images is
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returned by the system. The new set of imagesis not necessarily a subset of the
previous set, so images which were not returned by the previous query can still
be retrieved at later stages, as the query becomes more precise. A new MDS
display is shown, with new axes of variation based on the new image set.

Togeneratethenew query, our user interfaceallowstheuser to select fromthe
MDSdisplay imagesthat will be used to form the next query. The selection can
consist of one or multiple regions. The signatures of the selected & images are
combined to generate a signature that will be used as the next query. We want
the new signature to reflect features which are common in these images, and
ignoretheothersby using “don’t care”. Thisisdone by representing theclusters
of al the signatures in the return set as points in the feature space and finding
the dominant clusters in that space. We use a similar clustering algorithm as
the one that was used in Section 2 to generate the color signatures. We reject
clusters that are not represented by points from at least [k /2] imagesto insure
commonality. Each new cluster is assigned a weight that is the median of the
weights of the points in that cluster. We use the median instead of the mean
for robustness with respect to points that have very different weights. Finally,
we normalize the resulting signature by dividing the weights of the clusters by
the number of points that contributed to it. If the total weight of the signature
is now greater than 100%, we normalize it again. Usually, however, the total
weight of the signature will belessthan 100%, so the reminder ismarked “don’t
care.”

2. ANEXAMPLE

An example of retrieval by navigation using color signatures is given in
Figures7.1and 7.2. Supposewearelooking for imagesof skiers. Theseimages
can be characterized by blue skies and white snow, so we use as our query “20%
blue, 20% whiteand 60% ‘don’'t care’.” Thequery isillustrated in Figure 7.1(a).
Since thisis a generic query, the precision is bound to be low as confirmed by
the list of ten images in Figure 7.1(b). Only one of the ten images is relevant
(although the color signatures of the others matches the query well), and, in
general, consecutive images in the list can be very different from each other.
Figure 7.1(c) displays the MDS embedding of the best one hundred matches.
Although alarge number of imagesisdisplayed, it iseasy to seetheir structure.
Images of underwater scenes are at the left, images with plants are at the top
right, and so forth. The desired images of skiers are clearly at theright. At this
point the user selects, with the mouse, the relevant region as shown by the black
ellipse in Figure 7.1(c). The new generated query, illustrated in Figure 7.2(a),
resulted in the images shown in Figures 7.2(b)-(c). Notethat blue and white are
the dominant colorsin theimages of the skiers, although not the same shades as
specified in the original query. The precision was significantly improved, and
nine out of the ten best matches are now images of skiers. Figure 7.2(c) shows



94 PERCEPTUAL METRICS FOR IMAGE DATABASE NAVIGATION

1)22.72 2) 23.86 ~3)2435
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Figure 7.1. Retrieving skiers: first iteration. () The query’s signature: 20% blue, 20% white,
and 60% “don’'t care” (represented by the checkerboard pattern). (b) The 10 best matches sorted
by similarity to the query. (c) MDSdisplay of the 100 best matches (STRESS=0.15), where the
relevant region is selected. (This is a color figure)

the MDS embedding of the best twenty matches; the axes of maximal variation
arethe amount of blue and the brightness. Images with more blue are at the top
of the display, while brighter ones are at the right.

3. PROCRUSTESANALYSIS

A typical retrieval-by-navigation session involves a series of MDS embed-
dings, each arefined version of its predecessor. Consecutive embeddings along
this path are likely to contain images that appear in more than one embedding.
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Figure 7.2. Retrieving skiers: second iteration. (a) The generated signature. (b) The 10 best
matches sorted by similarity to the query. (c) MDS of the 20 best matches (STRESS=0.06).
(This is a color figure)

In order not to disorient the user, we would like these images to be positioned
in the new embedding as close as possible to their positions in the old one.
However, the MDS can be computed only up to arigid transformation, which
can cause successive MDS embeddings to be trandlated, rotated, scaled, and
flipped relative to previous ones. Procrustes analysis [14, 34] can be used to
align one MDS embedding with respect to another. In general, Procrustes anal -
ysis computes the optimal similarity transformation that must be applied to one
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embedding in order to matchit, aswell aspossible, to the other. Such alignment
isapplied only to images that are in the intersection of the two image sets.

Assumethat we are given two consecutive M DS embeddingswheren images
participateinboth. LetX = [x;,...,x,]’ beann-by-2 matrix representing the
two-dimensional coordinates of the n images in the first embedding. Similarly
Y = [y1,...,ya]" represents the coordinates of the n images in the second
embedding. In genera, the two embeddings can be in spaces with different
dimensions.

We measure the discrepancy between the two embeddings by

D = Z(YT - XT‘)T(yT‘ —Xr),
r=1

Our goal then is to find the trandation b, the dilation p, and the orthogonal
matrix R that will transform the points y,. to

y, =Ry, +b,

such that D will be minimized. The optimal trandation and dilation are deter-
mined by our desire to best fill the screen display area. The optimal orthogonal
matrix R can be found as follows [90]: we want to minimize

n

D = Z(RT}’T - XT‘)T(RTyT - Xr)
r=1

n n n
= vy + ) xx—2) xRy
r=1 r=1 r=1
= tr(YYT) 4+ tr(XXT) — 2tr(XRY7) ,

where tr(-) isthe trace of a square matrix.
Since only R isavariable, we need to maximize tr(XRY”). We can write

tr(XRY') = tr(RY?X) = tr(RC) ,

whereC = Y''X. Let C havethesingular valuedecomposition, C = UAVT,
then
tr(RC) = tr(RUAVT) = tr(VIRUA) .

SinceR, U, and V are orthonormal, and an orthogonal matrix cannot have any
element greater than one, we get

tr(RC) = tr(VIRUA) <tr(A) .
Thus, D isminimized if tr(RC) = tr(A), which istrue when
VIRUA=A.
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This can be written as
RUAVT =vaAvT

RC = VAVT = (VA?VT): = (VAUUTAVT): = (CTC)> .
When C is nonsingular, the optimal orthogona matrix R. isthen
R = (cTCc):C!.

4. NAVIGATING IN A SPACE OF POLICE MUGSHOTS

This section describes a police mugshot retrieval system that was devel oped
asafeasibility test for aCanadian police department, using the navigation ideas
described in this chapter.

In order to identify a suspect in a crime, witnesses are often asked to scan
large collections of police mugshots. Fatigue and insufficient attention span can
lead to distraction during this process. A system that lets witnesses navigate
through the mugshot collection in a more coherent fashion can help reduce the
likelihood of costly mistakes.

The witness would give general indications about the appearance of the
suspect, such as age group, sex, race, and hair color. Some of these attributes
are inequivocal, so an initial selection process can rule out irrelevant pictures.
Other attributes, such as hair or skin color, are harder to categorize, and ayes/no
answer would not be adequate. Instead, the system can display many relevant
images as small thumbnailicons on a single screen, arranging them in such a
way that similar faces, in terms of the attributes of importance for the given
search, appear close to each other on the screen.

MDS alows for the automatic generation of such displays. Because similar
images are nearby, it becomes much easier for a witness to concentrate his or
her attention on the part of display of interest. By selecting an “interesting” part
of the display, the system produces a new display, with images that are similar
to those in the interesting part. By repeating this procedure, the witness can
home in to the image of the suspect in afew steps.

Toillustrate our approach, Figure 7.3 showsadisplay of aset of 200 mugshots.
This display was computed automatically from the annotated images (more on
annotations below). The system discovers autonomously that faces can be
cleanly separated into male and female, where men with mustaches and beards
are further away from women than men with no facial hair. Skin color appears
as asecond dominant feature, and the distribution of images on the display re-
flects different gradations of skin color. One diagonal axis separates men from
women, and the orthogonal axis separates white people from black people with
“brown” peoplein between. We emphasize that these axes were not predefined,
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but were, in a sense, discovered by the system (although gender and race are
among the hand—annotated features that are used to compute the dissimilarity).

Figure 7.3. Navigation 1: gender vs. skin color. The mugshots are intentionally blurred for
anonymity. (This is a color figure)

Clickinginthegroup of black men gavethe40 mugshotsshownin Figure7.4.
Now the interpretation is different: young vs. old, and thin vs. fat. Again,
the interpretations of the axes were found automatically. Aswe zoom in, the
interpretations will consist of finer details, maximizing the variability of the
mugshot subset at hand.

In order to apply our perceptual navigation algorithms, we needed a set of
images and asimilarity measure between them. Theimage set was provided by
a Canadian police department. We used avery simple feature-based similarity
measure between mugshots, based on the simple, pre-annotated features shown
in Table 7.1 together with their possible values.

We defined a distance measure for every feature, and the similarity measure
between two mugshots was defined as alinear combination of these distances.
Therelativeimportance of the features was controlled by modifying theweights
of each feature. The user could also “turn off” features which should not
participate in the computation of the similarity measure.
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Figure 7.4. Navigation 2: age vs. weight. The mugshots are intentionally blurred for
anonymity. (This is a color figure)

feature values
skin color | white, brown, black
gender male, female

color black, brown, blond, red, white
hair style | long, medium, short, bald
beard y€s, no

mustache | yes, no

eye color | brown, blue, green
glasses yes, no

weight 1 (thin), ..., 6 (fat)
age 1 (young), ..., 6 (old)

Table 7.1.  The appearance-based mugshot features used for retrieval.

5. A DEMONSTRATION SYSTEM

Combining the principles from the previous chapters leads to the navigation-
based retrieval scheme sketched in Figure 7.5. The user starts with a generic
query with the goal to get to the approximate neighborhood of the database.
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Figure 7.5.  Retrieval by navigation. (This is a color figure)

Theretrieval system returns alist of images on which an MDSis computed. In
subsequent queries, the MDS results are rotated, using Procrustes analysis to
match, as well as possible, the previous embeddings. The user can refine the
guery by selecting the set of the most relevant images from the MDS display,
which is used to compute the next query. This navigation cycle isiterated until
the desired images are found, or until the user decides to terminate the search.

We devel oped a demonstration system for color-based image retrieval. The
system uses our 20,000-image database and runs on the World-Wide-Web
(WWW). A snapshot of the system is shown in Figure 7.6.

The screen is divided into three main frames:

= Query input (the top-left part of the screen): Here the user can sketch a
guery by coloring cellsin the 5-by-5 query grid. There are 25 cells, so each
one corresponds to 4% of an image. The colors are picked using a color
wheedl (implemented as a Java applet), based on the HSV color space (see
Section 1.1). The query grid defines the color signature that is used as the
query. In addition, the user can specify the number of images the system
should return, and other parameters such as whether to compute the full
distance matrix for the MDS or use the missing values option.

1The demo can be accessed through http://vision.stanford.edu/ rubner.



Navigation 101

el Resst
Murmbsar of irr@ges to raturn: | 100 vl

uory by calor | | Random query s images |

[ Uza peaition 0-1]
Display MOS | ™ Auto MOS F Java B

Dislances bo compute for MOS [100% =

Last sigratura:

1) .24 2) @831 VB30 Tea ECEE NI 00
B1008 1pg <8042 pq 3 4 106043 jpg 258041 jpg B10GE g 179035 jpg | 258020 pg BN jpa

]

Figure 7.6. A snapshot from the color-based retrieval demonstration system. (This is a color
figure)

= Query result (the bottom of the screen): This frame displays a scrollable
list of images returned by the last query, sorted by their distances from the
guery. The distances and the image numbers are shown together with a
small version of the image. Clicking on the image initiates a new search
where the color signature of that image is used as the query. Clicking on
the image number opens a window with the full size image.

= MDS map (thetop-right of the screen): Herethe results of the MDS embed-
dings are shown using small image thumbnails. Using the mouse, the user
can explore occluded images. The mouse can aso be used to select sets of
images which generate the next query. Such a query is generated when the
user clicks the “zoom” button.

The system supports the following queries:
1 Random query: aspecified number of random images is returned.
2 Query-by-sketch: the user explicitly specifies the color signature.

3 Query-by-example: the color signature of an image is used for the query.
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4 Query-by-refinement: the query is generated based on the common features
in aselected set of images.

The example in Figure 7.6 shows the first step of a search where the user is
looking for images of deserts. Theinitial generic query is 20% blue for the sky
and 80% “don’'t care” The best matches are shown in the results frame, and
the MDS embedding of 100 returned images is shown in the MDS frame. The
desert images, in the top left, are selected for the next query.

Currently, our demonstration system satisfiesaquery by using alinear search
over all theimagesinthedatabase, comparing their color signaturesto thequery,
andkeepingthe IV best matches, where N isspecified by theuser. Whenthetotal
weight of the query is equal to the weights of the signatures, the lower bound
from Section 3.2 is used and the EMD between the signature and the current
image signature is computed only when the lower bound between thetwo isless
than the largest distance between the query and the NV best matches so far. To
be used as a full image retrieval system, this demonstration system should be
extended to deal with better indexing, such that the image descriptors are stored
in away that allows a sub-linear retrieval time. In addition, it should combine
other modalities beside color, including texture, shape, and composition, and
should support aquery language were boolean operations are supported.

6. SUMMARY

Intuitive image retrieval is a hard and ill-defined problem. Our attempt
toward a solution combines the EMD as a dissimilarity measure that agrees
with perceptual similarity, MDS as a better display technique that is easy to
comprehend, and a refinement process that automatically generates successive
gueries. Thisframework reduces the need to directly deal with image features,
as gueries can be posed by the user starting with a vague description or even a
random set of images and then zooming into the relevant parts of the display.
Our approach works well for color-based and police mugshot retrieval.
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CONCLUSION AND FUTURE DIRECTIONS

There will come a time when you believe everything is finished. That will be the beginning.
—Louis L’ Amour

1. CONCLUSION

The methods presented in this book provide a novel set of tools and opens
real possihilities for content-based image retrieval systems. Tools are provided
for image retrieval, visualization of query results, and navigation in the space
of images.

In the introduction, we listed gquestions that were to be addressed in this
book. We now reconsider these questions, each followed by our approach and
contributions towards answering it:

» What features describe the content of an image well?

In Chapters 3 and 4 we focused on color and texture features, respectively.
For both, wecarefully chose appropriate feature spacesand ground distances
so that the distances between single features agrees with perception. We
showed that these features lead to effective retrieval.

For color, we used the CIEL ab space, which was designed so that distances
between single colors conform to perceptua similarity. We presented an
extension of the color features that also included the absolute position of
colors within the image. We used this extension when the layout of colors
in the image was important. For texture, we designed Gabor filters on a
log-polar grid to model the texture content of an image. We developed dis-
similarity measures for homogeneous textures and for images that comprise
many textures. For homogeneous textures we also presented dissimilarity
measures invariant to changesin rotation and scale. In Section 4 we showed

103
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that these texture features lead to dissimilarity measures that agree with
perception.

= How to summarize the distribution of these features over an image?

In Chapter 1 we introduced signatures as a compact and efficient represen-
tation for feature distributions. We compared signatures to the commonly
used histogramsand showed, in Chapter 5, that signaturesoften |ead to better
results than histograms, even when the size of the signatures is significantly
smaller than that of the histograms.

= How do we measure the dissimilarity between distributions of features?

The core of any retrieval system is a dissimilarity measure that is able to
find and return the most rel evant images in away that conforms to the users
notion of similarity. We made a distinction between the ground distance,
which measures dissimilarity of single features, and the dissimilarity be-
tween feature distributions. In Chapter 2 we devel oped the EMD to extend
the ground distance to dissimilarities between feature distributions. The
EMD is agenera and flexible metric and does not suffer from the binning
problems of most extant definitions of distribution dissimilarity. It alows
for partial matches, and lower bounds are readily available for it. In addi-
tion, as demonstrated in Chapter 5, for images with moderate similarities,
the EMD gave better results than other dissimilarity measures.

= How can we effectively display the results of a search?

Instead of displaying the returned images as a list sorted by dissimilarity
from the query, as done in most image retrieval systems, we use the full
dissimilarity matrix of the images. We showed in Chapter 6 that applying
MDS to the dissimilarity matrix and placing image thumbnails at the coor-
dinates of the resulting low-dimensional embeddings leads to an intuitive
display that conveys information about how the images relate to each other.

= How canauser browse the images in the database in an intuitive and efficient
way?
We coupled the notion of browsing with that of visualization. No browsing
is possible without an appropriate display. Using our display technique we
developed a navigation scheme that allows the user to intuitively retrieve
images by zooming in promising areas of the display, with refinement of the
guery done automatically. We demonstrated this technique for color-based
retrieval and for police mugshot retrieval.

Additional contributions of this book are the following:

= In Chapter 5 we provided an extensive comparison of various dissimilarity
measures that are used in image retrieval systems. Comparisons were made
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for different combinations of parameters, such as the number of bins (for
the histogram-based dissimilarity measures), the size of the filter bank (for
texture), and the bal ance between precision and recall.

= We presented texture-based retrieval without the need to segment theimages
first as dome by most methods. This is possible due to the combination of
the texture features with the ability of the EMD to do partial matches.

= We developed a demonstration system, described in Section 5, by which
people can access remotely and experiment with the methods presented in
this book on a 20,000-image database.

2. FUTURE DIRECTIONS

The EMD can beapplied to other modalities besides color and texture aslong
asaground distance can be defined in the appropriate feature space. Examples
include shape, compositions of objects, eigenimage similarity, among other
image features [3, 24, 29, 64, 66, 85, 96]. A larger ensemble of features from
different modalities can improve the overall performance of an image retrieval
system. The EMD can benefit other applications beside image retrieval. Good
results were achieved for the comparison of vector fields[51] and for detecting
color edges[83].

The idea of adaptive image embedding is also not limited to color and tex-
ture and can be applied to other modalities aslong as some notion of similarity,
metric or not, continuous or discrete, can be defined. This method was success-
fully applied to computer-assisted parameter setting for animation [58], and to
visualization of vector field images [51].

In this context, the key question, which we leave for future work, is to
determine whether the embeddings and the main axes of variation “ discovered”
by MDSfor each of these distances and for various types of image distributions
are perceptually meaningful. We believe that since MDS groups similar images
together—and away from dissimilar ones—this is often the case. We also plan
to study more the relations between the axes chosen by MDS for related or
overlapping image sets. Knowing the correspondence between these ‘local
charts’ (in the sense of topology) of the image space may help provide a better
sense of navigation.

Although our experience is that the process of image retrieva is improved
by our navigation scheme, a more principled comparison between database
navigation techniques is needed. Current research that studies the responses of
users for different image retrieval methods [ 73] reports that most users find our
navigation method effective'.

1The experiment in [73] used our navigation method with only color information. The users, in general,
agreed that although the method is promising, color alone is not sufficient for image retrieval.



106 PERCEPTUAL METRICS FOR IMAGE DATABASE NAVIGATION

A query language that allows more complex queries must be devised for
effectiveimageretrieval. Such alanguage needstoinclude operatorslike“and,”
“or,” and “not.” In addition, image retrieval systems need to integrate different
modalities such as color, texture, and shape. The correct combination of these
features, and the adjustment of their relative importance according to the user
responses, is another topic of future research.



Appendix A
The Standard Deviation of the Gabor Filters

In this appendix, we derive the standard deviations of the Gabor filtersin the
radial (o,) and angular (o, ) axes. These values are used in Equation (4.3).

1. THE RADIAL STANDARD DEVIATION

For the radial axis, consider the half-amplitude contours of the filters with
orientation & = 0 asin Figure A.1, where we require neighboring contours to
touch each other.

Denote the half-width of the smallest filter along the u-axishby ¢, and theratio
of half-widths of two consecutive filters by a. Summing up the half-widths
between U; and Uj, gives

U,—-U, = t+2at+2a%t+...+2" 2%t +a" 1t
M-1
= 2t2am—t—aM—1t
m=0

1—aM

= 25 t—(1+a™ Nt

1
_ Zfl(aM—l—m.

The half-amplitude of a Gaussian with standard deviation o isoyv21n 2. Inour
case, the half-amplitude of the largest filter can be written as

aM % =05,V/2In2.
Using the above equations together with U}, = o™ ~'U; leads to

a—1 Uy
g, = .
Y a+1y2In2
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Figure A.1.  Half-amplitude contours of the filters with orientation = 0.

2. THE ANGULAR STANDARD DEVIATION

To derive o, we plot the half-amplitude contours asin Figure A.2. Notethat
two neighboring €ellipses meet on the line halving the angle ¢ = T, where L
is the number of orientations. Finding o, is thus accomplished by finding the
value for which aline with slope% istangent to the ellipse

(u — Up)? v
2In202 = 2In202

or
(u — Up)?0% +v?02 = 2In20202 .

Setting v = tan Su gives

(u— Uh)2012, + tan? ?ai = 21n20503 )
(012} + tan? ?O’Z)UZ — 2Uh012,u + UhZUg —21In 205012, = 0.

This equation has only one solution (tangent case), if

420 — 4(02 + tan? gag)(vﬁag —92In20202) = 0,
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Figure A.2. Half-amplitude contours of two neighboring filters for different orientations.

which leads to

¢ | U
UU:tan§ 5103 2.
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Appendix B
Retrieval Performance Plots

In this appendix we collect plots of the results of the experiments we con-
ducted in Chapter 5. In these plots, the EMD for signatures is always computed
using 8 clusters.
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Figure B.1. Retrieving color distributions using 32 bin histograms. (This is a color figure)
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Figure B.2. Retrieving color distributions using 128 bin histograms. (This is a color figure)
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Figure B.3. Retrieving color distributions using 512 bin histograms. (This is a color figure)
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Figure B.8. Retrieving texture distributions using 24 filters and 32 bin histograms. (This is a
color figure)
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Figure B.9. Retrieving texture distributions using 24 filters and 128 bin histograms. (This is a
color figure)
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Figure B.10. Retrieving texture distributions using 24 filters and 512 bin histograms. (This is
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Figure B.11. Retrieving texture distributions using 40 filters and 32 bin histograms. (This is a
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finely quantized, 2
grey-level, 2
Histograms, 2, 10, 16, 20, 71
adaptive, 2
cummulative, 9
regular, 2
Homogeneous textures, 39, 43, 70, 75
Horse images, 74
HSL, 30
HSV, 100
Human perception, 13, 48, 84
Identity, 4
Image database, xx, 70, 75
Image retrieval, 1
Image retrieval systems, 79
Image thumbnails, 80-81, 97
Indexing agorithms, 10
Information theory, 6
Interior-point algorithms, 19
Invariants, 44
|sotonic regression, 81
Jaguars, 56
Java applet, 100
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Jeffrey divergence, 6, 10, 72
k-d tree, 32
K-means, 2, 50, 71
Kernel density estimation, 4
Kolmogorov-Smirnov, 9-10
Kullback-Leibler (KL), 5, 10
Lo, 72
L distance, 5, 45, 72
L distance, 72
Leopards, 56
Linear optimization, 10, 20
Linear programming, 15
Log-polar, 40, 45
Lower bound, 22, 73, 102
Luminance, 30
Match distance, 9-10
MDS, 92, 94, 97, 100
metric, 81
missing values, 81
non-metric, 81
three dimensional, 85
Mean, 2
Metric, 46
Metric space, 4
Metric-preserving function, 81
Minkowski-form distance, 5, 10, 72
Mode, 2
Moderate similarities, 71-72
Moments, 9
Monge-Kantorovich mass transference problem, 14
Monotonic regression, 81
Mother wavelet, 40
Mugshots, 91, 97
Multi-dimensional scaling (MDS), 80
Multiscale, 63
Natural images, 39, 42, 51, 53
Navigation, xxi, 91
Network flow, 19
Neurophysiological, 41
Non-homogeneous textures, 48
Non-negativity, 4
Non-negativity, 46
NTSC, 30
Null hypothesis, 9
Nyquist frequency, 43
Occlusions, 5
Opponent Colors, 30
Orientations, 39
Oriented derivatives of a Gaussian, 40
PAL, 30
PAMAX, 25
Partial matches, 4, 10, 52
Partial query, 34
Parzen window, 4
PASUM, 25
Pattern, 39
PCA, 81
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Pebbles, 13
Perception, xx, 80
Perceptual
color spaces, 13
dissimilarity, 6-8
distance, 13, 26
similarity, xxi, 25, 72
Perceptually uniform, 30
Periodicity, 9
Photobook, xx
Photoreceptor, 29
PMAX, 25
Precision, 69, 78, 91
Prefiltering, 22
Preprocessing, 39, 56
Procrustes analysis, 95, 100
Projection Axes MAXimum, 25
Projection Axes SUM, 25
Projection MAXimum, 25
Prototypes, 2, 71
Psychophysical experiments, 13, 45, 83-84
Psychophysics, 26
QBIC, xx
Quadratic form, 7, 10, 71
Quadrature filters, 40
Quality measure, 69
Query, xXx, 79
Query-by-example, 33, 101
Query-by-refinement, 102
Query-by-sketch, 33, 101
Random query, 101
Randomness, 9
Recall, 69, 78, 91
Red car images, 73
Refinement, 91
Relevance feedback, xxi, 92
Retina, 29
Retrieval-by-navigation, 94
RGB, 30, 73
Riemannian geometry, 62
Rotation invariance, 45
Rotational symmetry, 42
Russell’s method, 19
Saturated ground distance, 71
Scale invariance, 46
Scales, 39
Scality, 84
S-CIELab, 32
Search, 79

Search engine, xxi
Segmentation, 1, 52
Semantic, xx, 70
Semantic keywords, Xix
Shape, 1, xx
Signature, xxii

color, 3, 32,93

texture, 44, 50-51
Signatures, 2, 10, 16, 20, 45, 71, 102
Similarity, xx
Similarity matrix, 7
Simplex method, 18
Spatial frequency domain, 39
Spatial organization, xxi
Spectral decomposition, 39
Stimuli, 26
STRESS, 81, 84
Subband, 40
Subtractive color system, 30
Suppliers, 14
SvD, 81
Symmetry, 4, 46
Tableau, 18
Taylor expansion, 58
Tessellation, 4
Texton, 39, 48
Texture, 1, xx, 29, 39, 69, 75
Texture contrast, 58
Texture dissimilarity, 5
Texture features, 39
Texture mosaic, 63
Texture-based retrieval, 51
Textures, 9
Transportation problem, 14, 18
Transportation-simplex, 18
Triangle inequdlity, 4, 10, 46
Unimodal, 26
Vector quantization, 2
Virage, Xx
VisTex, 48
Visual cortex, 40
Visualization, 79
Visual SEEK, xx
Voronoi tessellation, 2
Wavelets, 40
Work, 14
Y ChCr, 30
YIQ, 30
YUV, 30
Zebras, 54
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