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Signal/noise separation and velocity estimation 

William S. Harlan*, Jon F. Claerbout*, and Fabio Rocca$ 

ABSTRACT 

A signal,/noise separation must recognize the lateral 
coherence of geologic events and their statistical predic- 
tability before extracting those components most useful 
for a particular process, such as velocity analysis. Events 
with recognizable coherence we call signal; the rest we 
term noise. Let us define “focusing” as increasing the 
statistical independence of samples with some invertible, 
linear transform L. By the central limit theorem, focused 
signal must become more non-Gaussian; the same L 
must defocus noise and make it more Gaussian. A mea- 
sure F defined from cross entropy measures non- 
Gaussianity from local histograms of an array, and 
thereby measures focusing. Local histograms of the 
transformed data and of transformed, artificially inco- 
herent data provide enough information to estimate the 
amplitude distributions of transformed signal and noise; 
errors only increase the estimate of noise. These distri- 
butions allow the recognition and extraction of samples 
containing the highest percentage of signal. Estimating 
signal and noise iteratively improves the extractions of 
each. 

After the removal of bed reflections and noise, F will 
determine the best migration velocity for the remaining 
diffractions. Slant stacks map lines to points, greatly 
concentrating continuous reflections. We extract sam- 
pies containing the highest concentration of this signal, 
invert, and subtract from the data, leaving diffractions 
and noise. Next, we migrate with many velocities, ex- 
tract focused events, and invert. Then we find the least- 
squares sum of these events best resembling the diffrac- 

tions in the original data. Migration of these diffractions 
maximizes F at the best velocity. We successfully extract 
diffractions and estimate velocities for a window of data 
containing a growth fault. A spatially variable least- 
squares superposition allows spatially variable velocity 
estimates. 

Local slant stacks allow a laterally adaptable extrac- 
tion of locally linear events. For a stacked section we 
successfully extract weak signal with highly variable co- 
herency from behind strong Gaussian noise. 

Unlike normal moveout (NMO), wave-equation mi- 
gration of a few common midpoint (CMP) gathers can 
image the skewed hyperbolas of dipping reflectors cor- 
rectly. Short local slant stacks along midpoint will ex- 
tract reflections with different dips. A simple Stolt (1978) 
(,f-k) type algorithm migrates these dipping events with 
appropriate dispersion relations. This migration may 
then be used to extract events containing velocity infor- 
mation over offset. Offset truncations become another 
removable form of noise. 

One may remove non-Gaussian noise from shot gath- 
ers by first removing the most identifiable signal, then 
estimating the samples containing the highest percent- 
age of noise. Those samples containing a significant per- 
centage of signal may be zeroed; what remains repre- 
sents the most identifiable noise and may be subtracted 
from the original data. With this procedure we suc- 
cessfully remove ground roll and other noise from a 
shot (field) gather. 

INTRODUCTION 

Interpreting noisy data requires recognition of the lateral 
coherence of geologic events and their statistical predictability. 
For example, reflections of continuous beds have roughly hy- 

perbolic shapes in field and CMP gathers, and show lateral 
continuity in common-offset or stacked sections; faults and 
other abrupt interruptions appear as diffraction hyperbolas. 
Their lateral predictability means that such events are over- 
specified. For example, linear reflections could be specified by 
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slopes and vertical intercepts rather than depths every 50 m; 
hyperbolas could be specified by scattering locations and root- 
mean-square (rms) rock velocities. Noise then musf include com- 

ponents ofthr data whose description cannot be simplified, compo- 

nents showing no spatial coherence or predictability. To qualify 
as signal, a geologic component must have recognizable coher- 

ence. If an algorithm fails to recognize the coherence, some 
geologic events may then function as noise. A given component 
of data (signal or noise) has a limited class of possible ap- 
pearances; each possibility may be produced by a linear combi- 
nation of more fundamental linearly independent “events.” It 
will be our business to describe and recognize these events as 
efliciently as possible. 

First we discuss the statistical motivation for signal extrac- 
tion. Algorithms are outlined with as much generality as seems 
productive. We then emphasize the extraction of events con- 
taining velocity information because they illustrate well two 
possible complications. 

(1) Before extracting the desired signal, remove both 
noise and the coherent events containing no velocity 
information. 

(2) Estimate unknown velocities from the extracted 
signal; extract the signal by recognizing the coher- 
ence dependent upon these velocities. Yet, the extrac- 
tion of signal must not bias the estimation of the 
velocities. 

Later we discuss ways of making the description of signal 
sufficiently general and spatially adaptable. We explore im- 
provements to prestack wave-equation methods and pure ap- 
plications to separation of signal from noise. 

The expense of specific applications will depend only on the 
chosen linear transformations (such as Stolt migration and the 
slant stack). Each application is repeated several times but they 
are easily vectorizable. Statistical calculations manipulate one- 
dimensional histograms and contribute negligibly to the cost. 

FOCUSING AND EXTRACTION OF GEOLOGIC SIGNAL 

Let us attempt to extract rather than merely to estimate 
signal. An estimate ordinarily finds the most probable signal 
when given the data. An extraction should accept only signal 
with a predetermined reliability and should eliminate those 
events significantly contaminated with noise. Alternately ex- 
tracting signal and noise will place events in their most prob- 
able domain. 

We establish the following results before describing specific 
algorithms. Using these results, one may identify some data 
component as signal (with predetermined reliability), and ad- 
ditionally identify the transform focusing this signal best. 

(1) 

(2) 
(3) 

(4) 

(5) 

Define “focusing” as a linear transformation making 
the samples of an array statistically independent. 
A transform focusing signal must also defocus noise. 
Focused signal becomes more non-Gaussian; defo- 
cused noise becomes more Gaussian. 
A simple function will measure the local non- 
Gaussianity, and thereby the focusing of data. 
Estimate amplitude distributions of the transformed 
signal and noise from local histograms. 

(6) With these distributions, identify and extract those 
samples of the transformed data containing most of 
the focused signal. 

(7) To identify the best transform, extract the signal with 
several transforms and find a superposition best re- 
sembling the data. The focusing measure will identify 
the transform focusing this superposition best. 

A measure of focusing 

A linear transformation of an array may reduce the number 
of elements required to describe the signal. We call such a 
transformation focusing. These elements should be statistically 
independent, else the number could be reduced further. Most 
often one does not know the best focusing transform and must 
acknowledge the presence of some unknown parameters, such 
as rock velocities. Brute force would make each of these param- 
eters a new dimension in the focusing transform (which must be 
invertible). A measure of focusing, however, could quickly iden- 
tify the optimum values. 

Describing signal by the smallest number of random vari- 
ables (parameters to be estimated) allows the simplest statistical 
tools. Joint probability density functions (jpdf) allow the most 
arbitrary dependence between variables: the data never contain 
enough redundancy for their estimation. Marginal probability 
density functions (mdf) describe each sample independently. If 
a transformation has focused all variables, then jpdf’s may be 
calculated from mdf’s. 

The data easily provide enough redundancy to estimate 
mdf’s. An unbiased, robust statistical model should describe the 
possibilities to be found regionally in the data. Knowledge of 
one reliable event should increase the probability of finding a 
similar event nearby. Thus, one not only expects but desires 
that estimated mdfs change slowly over spatial dimensions and 
time Because of this stationarity. a histogram prepared from a 
great many samples with identical mdfs will describe the pos- 
sibilities open to them all. 

The central-limit theorem requires that a linear transforma- 
tion of independent random variables make the corresponding 
mdf’s more Gaussian, that is, more like the Gaussian or 
“normal” distribution. By the contrapositive of this theorem, 
focusing an array with a linear transform must make the mdf’s 
more non-Gaussian. Thus, a measure of the local non- 
Gaussianity of an array in turn measures the increase in focus- 
ing. 

We derive a measure F of focusing in Appendix A using 
equation (A-8b). F measures the divergence of data histograms 
from the best-fitting Gaussians by the use of Kullback’s (1959) 
cross-entropy. Calculation requires negligible computer time

Extracting geologic signal 

A linear transform focusing signal also defocuses noise. 
Noise, by our working definition, has no recognizable coher- 
ence spatially, though possibly over time Noise includes all 
events that the chosen transform will not focus. Note that 
coherent noise such as multiples, sideswipe, ground roll, and 
cable noise may require wave and geologic models similar to 
those for signal. Because focused signal becomes more non- 
Gaussian, energy concentrates about narrow peaks, increasing 
the percentage of low values. A linear transform L must add 
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coherence to previously incoherent noise. Because of the 
central-limit theorem, the noise mdf’s become more Gaussian. 
Noise energy diffuses into overlapping coherent events. Thus, 
applying an invertible L to noise will always decrease F. After 
the removal of noise, the best L maximizes F. 

With mdfs of transformed data and noise, one may estimate 
the signal present in each sample. Consider three components 
of the same transformed sample: d’ = s + n’. Their distri- 
butions are related by 

P&(-X) = P,(.U) * P,,(X). (1) 

The asterisk denotes convolution. Knowledge of two distri- 
butions determines the third. These three distributions deter- 
mine the expected value of s given that of d’: 

E(s I d’) = 
s 

xp+,,(x 1 d’) dx 

i xp,(.x)p,.(d’ - u) dx 
J = 

p&U 
(2) 

Use Bayes’ rule twice (c.f., Van Trees, 1968). 
An unbiased estimate of these distributions should derive 

directly from the data. Histograms of the transformed data will 
estimate data distribution. For a reliable signal extraction we 
prefer to overestimate the quantity of noise (see Appendix B). 
Briefly, one may artificially destroy coherence in the data 
before transformation (without harming marginal distri- 
butions) and then accept histograms after transformation as an 
overestimate of noise. Artificially incoherent signal behaves as 
noise by defocusing and becoming more Gaussian. 

C,. = & ’ (extract{I,, jd}}J, (3) 

where L,:‘, the least-squares inverse of L,, inverts all signal 
with the parameter 1%. Let L,: ’ = (1,*IJ I&*, where an asterisk 
denotes the adjoint. With P,. for a physical range of ~1, find the 
least-squares sum best resembling the data 

Components with Gaussian mdf’s remain Gaussian after 
linear transformation, whether signal or noise. Because of the 
pessimistic estimation of the noise distribution, the estimator 
(2) must treat these indistinguishable components as noise. 
Extraction can accept only those components that have 
become more non-Gaussian after transformation, i.e., compo- 
nents that have been recognizably focused. The overestimate of 
the noise distribution will approach that of the Gaussian com- 
ponent as the most reliable signal and noise are iteratively 
subtracted. 

s^= c a,e, ; 

min /.< - dlZP+ 1 (Pr, P,)a,. = (e,., d). 
(4) 

a H1 

The brackets designate a simple scalar product. Set the scalar 
product equal to zero where the data are unknown to leave 
these values unconstrained. Solve (4) for all coefficients a,, and 
for .i by inverting a symmetric matrix with an order equal to the 
number of velocities used. s^ contains the most reliable signal, 
without bias, for the chosen range of u. Transforming iover this 
same range will maximize F at the I’ focusing the signal best. 

In this development we have assumed all signal in the data 
window corresponds to the same parameter u whereas this 
dependence may be spatially variable. We add such a depen- 
dence to equations (3) and (4) as the applications become 
clearer. 

Calculating the signal distribution requires deconvolution of 
equation (l), with appropriate constraints of positivity and unit 
area. To maximize the fit (the probability) of the data, one 
should minimize the divergence (as measured by cross-entropy) 
of the data mdf from the convolution of the signal and noise 
mdfs. 

EXTRACTING DIFFRACTIONS FOR 
VELOCITY INFORMATION 

The estimate (2) must be modified somewhat for signal ex- 
traction. Zero all samples containing significant percentages of 
noise to avoid the conversion of any noise to coherent events. 
Analytic envelopes should be used in extractions (though not 
when preparing histograms); otherwise an extraction corrupts 
waveforms by deepening troughs between peaks. As another 
precaution, smooth an array of the E(s 1 d’)/d’ values both spa- 
tially and temporally before multiplying d’, thus avoiding sharp 
edges on events with residual coherence after transformation. 

Many velocity analyses extrapolate wave fields back in time
thereby concentrating signal and dispersing noise. For exam- 
ple, an NM0 stack finds the image source of reflections from 
flat interfaces. Inverse scattering extrapolates wave fields back 
to residual-velocity scatterers and divides out the effect of ex- 
trapolated sources. Genuine seismic events always begin simply 
and produce increasingly diffuse wavefronts; the increase of 
thermodynamic entropy requires it. Because the wave equation 
is symmetric in time seemingly isolated arrivals such as noise 
and missing data require more diffuse wavefronts at time zero. 
That extrapolation that concentrates the signal best while dis- 
persing noise determines the best velocities. 

The highest amplitudes of the transformed data most com- Offset sections span greater distances on the surface and so 
monly contain the highest concentration of signal. If transfor- detect deep velocity changes better than do shot and midpoint 
mation makes signal more non-Gaussian than noise, then gathers. Diffraction events, such as reflections of bed trunca- 
E(s)d’) often has a characteristic shape: for amplitudes of d tions and point scatterers, contain all velocity information pres- 
above some abrupt cutoff, s z d’. Below this cutoff, noise begins ent in offset sections. Diffractions appear in the background of 

to contribute quickly and significantly (c.f., Godfrey, 1979). A 
good estimate of this cutoff is obtained by examining a high 
quantile of transformed, artificially incoherent data. Yet such a 
priori assumptions about the shape of the estimation function 
are not necessary. Since the data will provide the necessary 
statistics, they should be used. 

Finding the best extraction 

Let us next treat a more general transform L, perhaps of 
higher dimensions, like migration. We extract signal over a 
range of a transform’s parameter, linearly combine inverted 
events, and find the parameter value maximizing the focusing 
measure. This procedure both extracts the most reliable signal 
and determines the best transform. 

Let the transform C depend upon L’. We extract all signal 
focused at some u and then invert: 
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sections containing faults as seen in Figure la, a section stacked 
over offset. Migration with correct velocities focuses these dif- 

diffractions from the noise as shown in Figure Id. Note that 

fractions; however, reflections of continuous beds do not focus, 
phase changes appear at peaks of the hyperbolas as predicted 

and noise defocuses. We must first remove bed reflections 
by theory. When these events are migrated, the focusing mea- 

(Figure lb) from the data, thereby exposing diffractions and 
sure F is maximized at the best velocity (Figure 2). The remain- 

noise (Figure Ic). We must next extract the most identifiable 
ingcomponent of the data (Figure le), noise, is neither focused 
by slant stacks nor migration. Continuous beds, diffractions, 

O-9 

Midpoinl 

(4 

FIG. I. (a) A window of stacked offshore Texas data contains a growth fault, with weak diffractions off truncated beds Continuous 
reflections and noise obscure the velocity information in diffractions. (Data supplied by Western Geophysical Co.: extending 2 km 
at 33 m sampling.) We decompose this window into three components, (b), (d), and (e), which add up to the original data. (Panels 
are scaled differently for plotting.) (b) Continuous reflections are easily described as a superposition of lines (c) Subtracting 
continuous reflections from data [(a) minus (b)] leaves diffractions and noise, neither easily described as a superposition of lines. (d) 
piffraction,s are easily described as a superposition of diffraction hyperbolas. (e) Noise [(c) minus (d)] cannot be simplified by any 
mvertlble lmear transformation. 
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and noise (Figures lb, Id, and le) add together to produce the 
original data (Figure la). (Diffractions and noise are amplified 
for plotting.) 

Separating bed reflections from diffractions and noise 

A window of stacked, offshore Texas data (provided by West- 
ern Geophysical Co.) contains a growth fault with weak diffrac- 
tions off truncated beds (Figure la). Reflections of continuous 
beds may be separated from diffractions and noise after focus- 
ing with slant stacks. We define slant stacks by the inverse 
transform d(x, t) = j d’(p, 7 = t - px). (See Appendix A on slant 
stacks.) Slant stacks map lines of constant dip into points, 
thereby focusing bed reflections laterally. p specifies the slope of 
the dipping event, and 7 denotes the vertical time intercept. 
Slant stacks may be said to remove the first-order predictability 
of gently curving events. Coherence remaining after a slant 
stack shows curvature in the original events. Events with rap- 
idly changing dips, such as noise and diffractions, do not focus. 
Points map roughly to lines, thereby defocusing noise and 
diffusing its energy. More general transforms will allow better 
extractions of continuous reflections. We introduce localness or 
curvature into our slant stacks in a later section. 

The results of previous sections apply directly to the esti- 
mation and removal of bed reflections. 

(1) 

(2) 

(3) 

(4) 

(5) 

Slant stack artificially incoherent data (with random- 
ly reversed traces) and estimate fin,(x) locally from 
histograms. 
Slant stack data and estimate pd, (x) locally from his- 
tograms. Estimate p,(x) from step (1). 
Evaluate E(s 1 d’) for each sample of the transformed 
data. Smoothly zero samples containing significant 
noise. 
Invert the extracted signal and subtract from the 
original data (Figures 1 b and lc). 
Use this section to reestimate b,,(x) and repeat steps 

(2~4). 

0 “8 
1600 1700 1800 1900 iToo 2100 

velocity fy Cm/s1 

FIG. 2. Migration of the extracted diffractions in Figure lc 
maximizes the focusing measure F at the best velocity. 

(2) 

(3) 

(4) 

(5) 

(6) 

over a physical range of velocities. 
For each migrated section, smoothly zero those sam- 
ples containing significant noise. 
Diffract (invert the migration of) each section at the 
extraction velocity. 
Find the least-squares superposition of these diffrac- 
ted sections best resembling the data without bed 
reflections (Figure Id). 
Migrate this superposition over the previous range of 
velocities. 
Determine the best migration velocity by evaluating 
the focusing measure (Figure 2). 

To allow the rms velocities of extracted diffractions to vary 
vertically and laterally, use the modifications of Appendix E. 
De Vries and Berkhout (1982) examined the use of varimax 
norms for estimation of migration velocities. Harlan et al. 
(1983) emphasized the necessity of the extraction of diffractions. 

In practice, a full slant stack is not necessary for step 1. Sum- 
ming should be performed at enough dip values to provide the 
local statistics of noise. 

Extracting diffractions from noise 

To, extract diffractions and estimate velocities implement 
equations (3) and (4) using migration and velocity as the appro- 
priate transform and parameter. The appropriate migration is 
defined in Appendix D [equation (D-3)]. For the present, 
assume that all diffractions within the window express the same 
unknown velocity u. For interval velocities one could estimate 
velocities in upper windows, then downward continue lower 
events. Velocities can be estimated as locally as the density of 
diffractions permits. For particularly deep events the aperture 
of offsets is much smaller than the depth, so diffractions become 
the only source of velocity information. 

We summarize the extraction of diffractions from noise. Pre- 
vious methods are assumed for the estimation of the noise and 
signal distributions. 

(1) Migrate the data, without continuous bed reflections, 

FURTHER APPLICATIONS AND GENERALIZATIONS 

Now let us exploit the generality of the previous sections. We 
use a local slant stack for a laterally adaptable extraction of 
locally linear events. Using both slant stacks and migration, 
velocity analyses of CMP sections can avoid noise and trunca- 
tion problems and can image dipping beds. The most identifia- 
ble non-Gaussian noise may be subtracted from data without 
harming the signal underneath. Finally, a treatment of static 
shifts demonstrates how hidden signal coherence can often be 
recovered. 

Extraction of continuous events with a local slant stack 

A local slant stack specifies events as a sum of short, tapered 
line segments of all dips. Global slant stacks require the signal 
to be easily expressed as a sum of lines extending across the 
section; such an assumption produces corresponding artifacts 
when the data do not agree. The local slant stack maps a data 
set to a narrow cube with the transformation 
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. d[x, t = 7 + p(x - x,)] dx * rho(r). (5) 

W(x) represents a windowing function, i.e., in the simplest case 
a rectangle function as in equation (A-7). x, fixes the center of 
the window, and X, the width. p is the slope of the short linear 
event, and r the vertical time intercept at x = x,. For an 
explanation of the convolution by a rho filter, see Appendix C 
on slant stacks. Choose the inverse transformation simply as 

Midpoint (rnctcrs) 

(b) 

FIG. 3. (a) A window of stacked data contains weak, coherent 
reflections, much obscured by strong Gaussian noise. (Data 
courtesy of Trans-Pacific Geothermal.) (b) We extract that 
component of the data easily expressed as a sum of short, 
dipping line segments, that signal focused best by a local slant 
stack. (c) We subtract (b) from (a). The chosen range of p values 
excluded highly dipping diffraction tails, now appearing with 
the incoherent noise. (All panels are scaled the same.) 

d(x, t) = d’(p, s,. = x, 7 = t) dp. (6) 

Equation (5) decomposes the array into planes containing 
narrow ranges of dip. Adding these planes together as in ex- 
pression (6) reconstructs the original data. Frank Rieber (1936) 
first began applying similar local stacks, called sonograms, to 
prestack seismic data. We merely present a simple invertible 
expression for them. 

The width X, of the window specifies the number of traces 
over which an event should be linear. A natural uncertainty 
principle results: lateral resolution must be balanced with dip 
resolution. A larger X, will improve the dip resolution of 
genuinely linear events. But wider windows may see greater 
curvature, increasing the number of p values needed to describe 
an event. At some critical X,, analogous to a Fresnel zone, dip 
resolution will no longer improve. 

Some simplifications make the local slant stack inexpensive. 
For a window of few traces, an Y - t implementation becomes 
less expensive than the Fourier implementation. The loop over 
p should be the outermost, with sums over various windows 
and intercepts inside. If the weighting function W is a rectangle, 
then forward transformation requires linear moveout of the 
entire section and horizontal sums over narrow windows of 
traces. The rho filter may be performed first. The sum for a 
window may be calculated from an adjacent one by the addi- 
tion of a trace and the subtraction of another (cf., Robinson and 
Robbins, 1978). This transform becomes only twice as expen- 
sive as the equivalent global x ~ I slant stack. 

The great advantage of a local slant stack lies in its resistance 
to artifacts. Lateral adaptability prevents the oversimplification 
of focused events and prevents the straightening out or exten- 
sion of their inverses after extraction, This transform will easily 
extract events with high curvature such as shallow diffractions 
if X, is small, say 4-S traces (50 m sampling). 

A local slant stack successfully extracts weak signal from 
behind Gaussian noise in Figure 3. Non-Gaussian noise may be 
successfully removed without harming signal as we discuss in a 
later section. Gaussian noise, however, never focuses or defo- 
cuses after transformation. Only extracting the most reliable 
signal will ease the interpretation of this section. For the data 
window in Figure 3a, we extract those events showing signifi- 
cant coherence over at least four traces (Figure 3b). We take 
X, = four traces and W(x) = exp (- rrx’) in equation (5). We 
subtract the most reliable signal from the data (Figure 3~). The 
chosen range of p values excludes that of highly dipping diffrac- 
tion tails now appearing with the incoherent noise. In this way, 
extractions with different ranges of slopes will separate overlap- 
ping coherent events as well as noise and will even remove 
unwanted coherent events. 

An even more general transformation could express the data 
as a sum of short second-order curves. defined as 

+ (p’ + p)(x - x,‘)] dx *rho (7’). (7) 

This transformation, defined in terms of equation (5), detects 
linear spatial changes in the slope of events, i.e., the curvature. 
This more general transformation increases the focusing of 
curved events for a fixed window width. Alternatively, increas- 
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ing the width of windows increases the signal-to-noise (S/N) 
ratio in focused events. Summing planes over p and p’ inverts 
the transformation. 

General, local extractions of coherent events should con- 
siderably improve the appearance of stacked sections and sums 
of traces stretched to look alike. Stacking is generally expected 
to improve the S/N ratio; however, processors of noisy data 
often notice that reducing the number of traces in the stack 
improves the result. A simple guide for stacking results: do not 

stack beyond the coherent width of an event. Otherwise, samples 
containing only noise will add to the sum. As signal reduces to 
widths of a few traces, of course, it becomes indistinguishable 
from random alignments of noise. A sufficiently local extraction 
would not make signal wider or narrower than statistically 
reasonable. Stacking extracted signal is superfluous for re- 
ducing noise. Slices of the cube should be preferable to projec- 
tions. Changes of waveforms with offset contain much strati- 
graphic information. 

A closely related process, extrapolation, attempts to fill in 
missing data intervals in a way consistent with known data. 
One naturally prefers the simplest possible description of the 
missing events. Wider extrapolations require more global fo- 
cusing transformations in order to span known data; the far- 
ther extrapolated events must become simpler. The window 
parameter X, need only increase smoothly over such intervals. 

Wave-equation velocity analyses 

Wave-equation velocity analyses of CMP gathers have long 
been discouraging. Much non-Gaussian noise appears in gath- 
ers, including glitches, dead or overamplified traces, and static 
shifts. A wave-equation migration will image and focus signal, 
but defocused non-Gaussian noise overwhelms the eye with 
meaningless coherent events. The truncation of events at the 
maximum offset acts like severe non-Gaussian noise, contain- 
ing the negative of the reasonable events one expects. Large 
amounts of data would seem necessary. Finally, without infor- 
mation orthogonal to the CMP gather, a migration must 
assume that reflections have no dip, just as will an NM0 
velocity analysis, the warhorse of conventional processing; esti- 
mated velocities suffer enormously. 

We tackle each problem with tools already at hand. An 
signal/noise separation will avoid noise artifacts and allow the 
focusing measure to estimate velocities. A local slant stack will 
detect the dip of reflections along midpoint. Four to eight 
adjacent midpoint gathers suffice. A dip-dependent migration 
will recognize velocity-dependent coherence over offset. The 
algorithm follows 

(1) Using the local slant stack equation (5) decompose a 
midpoint gather into events dipping differently over 
midpoint: d’(h, t, p,) where h is offset, pY the dip over 
midpoint, and t the time at which the event intercepts 
the gather (equivalent to T). See Appendix B. 

(2) Remove noise by accepting only those samples con- 
taining a high percentage of signal. 

(3) For each pr migrate the corresponding gather using 
the dispersion relation [equation (D-4)] in Appendix 
D. 

(4) Extract those events focused by migration at various 
velocities and dips. 

(5) Find the least-squares superposition of these events 
best resembling the gather before extraction. Use the 
depth variable versions [equations (E-l) and (E-2)] in 
Appendix E. 

(6) Estimate migration velocities locally with the focus- 
ing measure. 

Noise disperses and avoids extraction; extracted events possess 
longer tails than the original events, extending into the trunca- 
ted offsets. If the least-squares superposition does not constrain 
the missing tails of events, then only known offsets will affect 
the estimation of velocities. If too much signal is replaced by 
truncation noise, however, focusing will be weak, particularly 
for deep events with little curvature. Only a crude idea of the 
moveout of events makes the simplification of (E-3) equally 
effective. 

Frank Rieber’s controlled directional sensitivity (1936) first 
used many of the principles exploited here. Russian seismol- 
ogists, particularly Dr. Rjabinkin and Boris Zavalishin (pers. 
comm.), have made Rieber’s work the basis of their standard 
processing. Sonograms, slant stacks without rho filters, assign 
an angle to the energy arriving at a given time in a narrow 
window of the data cube. Ray tracing finds the corresponding 
images. Refinements certainly exist, but imaged reflections do 
not use waveforms. They successfully image dipping structures 
in data too noisy for Western methods. 

Extracting non-Gaussian noise 

Often, for interpretation, one would like to remove the most 
identifiable noise from a section without harming the signal 
underneath. We first remove the most identifiable signal from 
the section by one of the previous methods. An appropriate 
function E(n 1 d) will then identify samples containing the high- 
est percentage of noise. Those samples containing a significant 
percentage of signal may be zeroed; what remains represents 
the most reliable noise and may be subtracted from the original 
data. Gaussian noise, unfortunately, neither focuses nor diffuses 
after an invertible transformation and cannot be distinguished 
from signal. The removable non-Gaussian noise distracts the 
eye most, however. 

The following algorithm seems effective. 

(1) Remove the most recognizable coherent events from 
the data using a (not particularly) local slant stack. 

(2) Zero samples containing significant amounts of re- 
maining coherent events; the most reliable noise 
must remain. 

(3) Subtract this noise from the original data. 
(4) Repeat if necessary. 

Once non-Gaussian noise has been removed, coherent events 
may be estimated more accurately. At least two iterations are 
recommended. 

We apply this procedure to a shot gather with common noise 
problems. Figure 4a displays a common shot gather (provided 
by Western Geophysical Co.) corrupted by strong aliased 
groundroll, sharp static shifts, and overamplified traces. Figure 
4b contains the extracted groundroll and other noise; no reflec- 
tions are visible. Figure 4c shows the data with groundroll 
subtracted. Because groundroll possesses substantial coherence 
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FIG. 4. (a) Strong, aliased ground roll obscures reflections in this 
window of a common-shot gather. (Data provided by Western 
Geophysical Co.: extending 4.8 km at 50 m sampling.) (b) By 
removmg the most reliable signal from the data (employing 
slant stacks), we recognize samples containing a small percent- 
age of signal and extract them as noise. (c) We subtract the most 
identifiable noise from the original data and uncover previously 
obscured events. After removing the extracted noise, we repeat 
the process with a better extraction of the signal. We used two 
iterations for these results. (Panels have slightly different scal- 
ing.) 

of its own, a few residual events remain at dip aliases, but 
certainly most interfering waveforms are gone. Note that events 
not originally covered by groundroll or other noise are unaffec- 
ted. A dip filter, by contrast, would have removed high dips 
from all events. 

Land data often contain traces shifted by uneven topography 
and variations in surface velocities. Almost all information 
remains ; only the exams zero iirm is uncertain ‘f et if nut COT- 

rected, this trace will interfere as pure noise. A static correction 
should be that shift of the entire trace adding the most coher- 
ency to the data. 

Let us first extract the most identifiable signal in the data by 
a method from previous sections. High-frequency static shifts 
interfere as noise and do not contribute to the estimate. Let us 
crosscorrelate original traces with the extracted signal, shifting 
the original trace by varying amounts and taking the scalar 
product with the extracted trace. This correlation will appear 
largest at the static shift time placing events in the most coher- 
ent position. Traces may then be corrected and the procedure 
repeated for second-order improvements. 

By recognizing the lateral coherence of various geologic 
events, one may extract the components most useful for a 
velocity analysis or interpretation. Geophysical events possess 
distinctive coherence because of wave spreading and reflector 
continuity. Local statistics are easily estimated from a data 
array, but statistical dependencies between samples are under- 
determined. Thus, signal is most easily estimated when the data 
samples are made statistically independent (focused) by an 
invertible transformation. Focusing signal necessarily defocuses 
noise. Because of the central-limit theorem, focusing makes 
signal more non-Gaussian and noise more Gaussian. Using 
cross entropy, one may define a measure of non-Gaussianity 
and thereby of focusing. 

A Bayesian estimator exists to estimate focused signal lo- 
cally. The estimator requires local probability density functions 
for signal and noise, easily estimated from local histograms. We 
extract signal by accepting those focused samples containing a 
low percentage of noise. 

To estimate velocities from diffractions in stacked CMP 
sections, first remove continuous bed reflections containing no 
velocity information. Slant stacks focus continuous reflections 
well but not events with large curvature such as diffractions or 
noise. We successfully separate diffractions and noise. Some 
migration, dependent upon velocity, focuses diffractions best. 
We extract diffractions over a range of velocities and find the 
least-squares superposition best resembling the original data. 
The focusing measure shows which velocity focuses this super- 
position best. A spatially variable least-squares superposition 
allows local estimations of velocity. 

A local slant stack allows extraction of signal most easily 
expressed as a sum of short dipping lines. We successfully 
extract weak events with laterally variable coherency from 
behind strong Gaussian noise. .4 more general transformation 
expresses events as a sum of short second-order curves. 

The procedure used to extract diffractions may also be used 
for wave-equation stacks of field (shot) gathers and CMP gath- 
ers. Using local slant stacks in the orthogonal direction allows 
one to recognize various reflector dips and image them correct- 
ly in the stack. (NM0 does not.) 
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Finally, one may wish merely to remove noise from data. 
Gaussian noise cannot be distinguished from signal, but non- 
Gaussian noise can. First we remove the most identifiable 
signal and extract those samples containing a high percentage 
of noise. Then we zero those samples containing a significant 
percentage of signal and subtract the remaining noise from the 
original data. We successfully remove groundroll, over- 
amplified traces, and sharp static shifts from a shot (field) 
gather. 
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APPENDIX A 
DERIVING THE FOCUSING MEASURE 

Cross entropy [defined first by Kullback (1954) as directed 
divergence] measures the unpredictability of a given pi(x) with 
respect to some reference p2(x): 

I[P,(x): &)I = 
s 

Pi log CP~(XVP~(X)I dx. (A-1) 

If p2 is uniform then cross entropy becomes the negative of 
Shannon’s statistical entropy. I approaches the minimum value 
of 0 when p, is most like p2. Define a measure of non- 
Gaussianity F as the minimum cross entropy of the data mdf’s 
with respect to Gaussian distributions of all variances cr’. F 
increases with non-Gaussianity and thereby with the focusing 
of the data. (Assume zero-mean processes for simplicity in 
notation. A mean is easily estimated and subtracted.) For a 
single mdf, define 

F[p(x)] = min I[p(x): Gaussian (a, x)] 
0 

= rnjn jp(x) log [p(x),/(& emX2/z02)] dx 

= min 
{S 

p(x) log p(x) dx 
0 

+ & 
s 

x2p(x) dx + log o + log fi (A-2) 

Not surprisingly, F attains this minimum value when the Gaus- 
sian distribution possesses the same standard deviation as p(x): 

$ I[&): Gaussian ((T, x)] = - $ 
s 

,?p(x) dx + k = 0 

I 

(A-3) 
--to2 = x’p(x) dx. 

Substitute this result into equation (A-2) to obtain 

F[p(x)] = 
I 

p(x) log P(X) dx + ; log 
s 

x’p(x) dx + C, (A-4) 

where C = log J% + f, Expression (A-4) provides a simpler 
working definition of F. Notice that expression (A-4) is scale- 
invariant: multiplying the random variable x by a constant a 
does not affect F: 

F bp: 
[ 01 = F[p(.x)]. (A-5) 

Finally, we may prove a posteriori that a Gaussian distribution 
minimizes equation (A-4). First replace p(x) in equation (A-4) 
by a perturbed (1 - E)~(x) + &6(x - x0). 6(x) is the Dirac delta 
function with unit area. Then, setting the E derivative equal to 
zero yields 

s 2 

_ p(x) log p(x) dx + log p(x,) dx + 2 - ; = 0 

(A-6) 

+ P(x0) = mX0/202 and Q(x)] = 0. 

Expression (A-6) gives the equation of a Gaussian; (A-3) again 
defines the variance. The constraint of unit area requires that 
the measure attain a minimum value of 0. 

In practice, evaluate equation (A-4) from discrete histograms 
functioning as mdf’s. Represent the sampled versions as {pi} 
defining each sample (indexed with i) as an average of p(x) over 
a short interval of x. Assume that the {pi} are sampled N times 
per standard deviation, and write 

pi=&j$T)p(x)dx, (A-7) 
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n(x)- {’ 
--f<x< +f Let {qi = opi/N} be the probabilities of the amplitude bins. If a 

0 elsewhere histogram selects a fixed N bins per standard deciarion, then the 

The sampling reduces FMx)] by some E made arbitrarily small 
focusing measure equals Shannon and Weaver’s (1963) statis- 

by large N as follows: 
tical entropy plus constants, i.e., 

FC(qtIl = 1 4i log 4, + log N + C (A-8b) 

F[p(x)] = 
J 

p(x) log p(x) dx + log (T + C 
I 

The focusing measure requires two inexpensive passes 

= 10 p, log pi + log 0 + c + & 
through the data: first to find the standard deviation from a 

iN 
sum of squares; and second, to calculate a coarse histogram 
scaled accordingly. 

= T (i pi) log (G pi) + log N + C + E. (A-8a) 

APPENDIX B 
OVERESTIMATING TRANSFORMED NOISE 

Let us extract the most reliable transformed signal from randomly reversing the polarity of traces will artificially de- 
samples with low percentages of noise. Let d = L ‘S + fi, where stroy lateral coherence without altering noise distributions. 
d contains data, S focused signal, and fi laterally incoherent However, signal would defocus rather than focus after transfor- 
events. L- ’ is the right inverse of the linear transform L focus- mation. and resulting mdf’s would become double convolu- 
ing signal. Write the linear transformation d’ = Ldas tions of the originals, i.e., 

d: = c a,jd,. 
i 

(B-l) 

Primes specify a component transformed out of its defined 
domain. 

The transformed data and noise distributions are most easily 
estimated directly from the data. Local histograms of the trans- 
formed data will estimate p&). Estimating a noise distribution 
is less straightforward. After transformation (B-l), the mdf’s for 
transformed noise become multiple convolutions of the orig- 
inals where these convolutions bring the distributions nearer 
Gaussianity, i.e., 

The a,; ’ correspond to the inverse transform L- ‘. Such adulter- 
ated signal approaches Gaussianity well. Transformation of 
artificially incoherent data produces the mdf 

& (.y) = li,, (.u) * p,,,(u) (B-4) 

The variances of the two right distributions are additive: t,,.(x) 
has a variance guaranteed larger than that of p,,.(x). In the 
absence of signal, the signal mdf becomes a delta function and 
the estimate I;,,,(x) = p,,,(x). p^,,.(x) overestimates and prevents 
noise from appearing as signal. We can reestimate this noise 
distribution with greater accuracy after extracting the most 
identifiable signal, and then transform artificially incoherent 
data and calculate b,,,(x) from local histograms. Calculate pS (x) 
from the other two distributions in equation (1). Enough infor- 
mation then exists to find a lower bound for E(s [ d’) in equation 

(2). 

P”,, (-x) = n * 
J 

[; P? (;)I. (B-2) 

Our notation specifies convolutions of all p,,(x) with each 
other. If lateral coherence could be ignored or destroyed in the 
original data without harming marginal distributions, then the 
mdf’s of transformed noise would not change. For example, 

APPENDIX C 
IMPLEMENTATION OF SLANT STACKS 

We now derive formulations of global and local slant stacks. 
First we derive a global, frequency-domain version with suf- 
ficient dips for inversion. Then we discuss how to avoid possible 
artifacts from the frequency-domain interpolation. 

Frequency-domain slant stacks 

For sections of many traces a frequency-domain slant stack 
becomes less expensive than the space-time version. Lateral 
wraparound may be avoided with the proper interpolator. 
Define slant stacks by the inverse transformation 

d(u, I) = LA!’ = 
s 

d’(p, T = t - px) dp. (C-1) 

Thus, a single point in the slant stack domain d’(p, 7) = 
S(p ~ p&r ~ TJ will map to a line in the spatial domain. Two 
points map to two additively superimposed lines. Let the vari- 
ables (x, t, p, T) have the Fourier duals of (k, s, q, v). Fourier 
transforming to d(.u, s) and d’(q, v) yields the simplified relation 

d(u, f) = 
Ijj 

&2W - P$&Wd’(q, v) dp dq dv (C-2) 

= e12nPlq~~\x)ei2nvrdr(q, “) dp dq dv 
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= 
i 

eiznvfd’(q = vx, v) dv 
J 

+ d(x, s) = d’(q = sx, v = s). (C-3) 

This transformation may be performed as a frequency-domain 
stretch. Unfortunately, in the forward direction a rectangle is 
mapped to a triangle. Dips not in the range of calculated p’s 
must be aliased. The adjoint transformation, however, im- 
plicitly zeros those dips omitted from d, i.e., 

d’(p, T) = L*d = 

s 
d(x, t = 7 + px) dx (C-4) 

and 

+d’(p,v)=d(k= -vp,s=v). (C-5) 

Use equation (C-3) by first performing expression (C-5), then 
following with an equivalent of the rho filter of Radon trans- 
forms (c.f., Thorson, 1978). This filter is the inverse (L*L)- ‘. The 
result is 

J(,, v) = CLB’ 

= 
ss 

e’zn’vp)xe~i2nqpd,(q = vy, v) dx dp (C-6) 

= 
s 

6(v.x - q)d’(q = vx, v) dx 

=j&Zi(.x-;)d’(q=vx.v)dx 

= fi d’(q, v) dx 
V 

+ d’(p, v) = L- ‘d = (Z_*L)- ‘L?d 

= 1 v 1 d(k = - vp, s = v). (C-7) 

Forward transform with equation (C-7) to avoid aliasing dips 
and inverse transform with equation (C-3). 

p values should be sampled well enough to avoid aliasing 
frequencies in traces at high x. Equivalently, the sampling in 
expression (C-7) should satisfy 

Ap.smax < Ak. 

The discrete equivalent becomes 

2At 
Ap < - 

N,Ax ’ 
(C-8) 

where N, is the number of x samples. 

Frequency-domain interpolation 

Jn+6n-m(<1.2L. 
NW 

The number of terms in the interpolator should be greater than 
- 3N, JN,. 

The discrete frequency-domain stretch over k requires an Note that smaller N,‘s allow larger Ap’s. When n, = 0, N, 
interpolation operator to zero implicitly space-domain repli- may replace N, in equation (C-8). 

cations responsible for “wraparound.” Interpolation operators 
are equivalent to convolutions. Convolving by a function over 
k is equivalent to multiplying by its Fourier transform over x. 
d(x, t) should be multiplied by a rectangle function that drops 
to zero before the first trace and after the last. Let us derive a 
general interpolator and allow arbitrary implicit windowing 
functions in the other domain. A local slant stack should use a 
Gaussian window. Stolt migration requires a similar stretch 
over temporal frequencies; a rectangular window should adjust 
to the location of zero time

Define three parameters: x,, the coordinate to be newly 
assigned the value of zero in the x domain; x, , the center (in 
new coordinates) of the function to multiply the x domain; and 
X,, the width of the function to multiply the x domain. Assume 
the function W(x) to be symmetric about zero. Windowing d(x) 
with W(x) gives the transform 

$7) d(x)+ je - iZnx,(k m~‘)X,,fP[X, (k _ k’)] 

xe iZnx,k d’(k’) dk’, (C-9) 

(We suppress dimensions not being stretched.) W’(s) is the 
Fourier transform of W(x). Interpolation merely adapts equa- 
tion (C-9) to the discrete case. Let nrr n,, and N, be the 
important parameters in samples, and there results 

x e~i2nn,(n+6n~m),N,ei2nn,m~N, & 

m (C-10) 

For a global slant stack and for Stolt migration with the surface 
at the first sample use ni = 0, n, = N,/2, and N, = N,. Trans- 
form the rectangle function of equation (A-7) into the sine 
function. The following simplification occurs (cf., Rosenbaum 
and Boudreaux, 1981): 

1 N,-1 
d “+&” = - e m’n6n sin rr6n 1 d,/(n + Fn - m). (C-11) 

x Ill=0 

Equation (C-l 1) may be tapered to a few terms. 
When the windowing function W(x) becomes a Gaussian, 

one may minimize the number of terms in the interpolation 
operator. Let W(x) = exp (-xx’) so that X, governs the dis- 
tance between half-amplitude points [W(O.S) z OS]. Then 
W’(s) = exp ( -m2). If we preserve all terms in expression 
(C-10) with coefficient magnitudes greater than 0.01, then 

N 

APPENDIX D 
FREQUENCY-DOMAIN MIGRATION 

For convenience we briefly derive the dispersion relations 
used for migration in this paper. Constant velocity formu- 
lations suffice because our least-squares superposition are spa- 
tially variable. Streamlined Stolt (1978) (f-k) or Gazdag (1978) 

(phase shift) algorithms are the most efficient for multiple 
constant-velocity migrations. 

Let us begin in every case with the double square root (DSR) 
equation. Assume data are recorded as a function of (s, g, t) 
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which have the Fourier duals (k,, k,, co). s is the horizontal 
coordinate of the shot, g of the geophone; t is the arrival time
; is the depth of an imaged reflector, and k, its dual. Then we 
have 

where 

(D-1) 

See Claerbout (1984) for a derivation and justification of this 
relation. In short, a single square root derives from the scalar 
wave equation o2 = kz + kz ; reciprocity allows shots to be 
downward continued just as geophones. No one uses this rela- 
tion directly. Nevertheless, in theory one could migrate by 
mapping the data from (k, , k,, o) to (k, , k, , k,) and by imaging 
at (s = y, z). Ottohni (1982) provides some perceptive use of this 
relation in various coordinate systems. 

Often, midpoint-offset coordinates ar: more convenient. For 
such a case y = (g + s)/2, h = (g - s)/2 and we have 

k, = ; [,/l - (Y + H)’ + Jl - (Y - H)‘], (D-2) 

where 

LW LO 

A stacked section is a sum of constant-offset s ctions 

stretched (by NM0 and perhaps dip moveout) to resemble the 
zero offset. The data then are a function of (y, t) and supposedly 
invariant over h; thus k, = 0. Migration requires mapping from 
(k,, co) to (k,, k,) with 

(D-3) 

Stolt (1978) and Ciazdag (1978) give two widely used algorithms 
for this mapping. the most common migration. Stolt’s is fastest, 
but Gazdag’s will treat depth variable velocities accurately. We 
use Stolt’s method to estimate velocities from diffraction events. 
These algorithms also apply to the next dispersion relation. 

Wave-equation stacks of CMP gathers should recognize dips 
in the orthogonal direction, along midpoint. We begin with a 
narrow cube of seismic data d(y, h, t) containing four to eight 
adjacent midpoint gathers, decompose d(~‘, h, t) over 4’ and t 
with equation (5), and select the yc of the central gather: d’(y, , h, 
t, p,). Signal estimation should follow to discriminate against 
noise and artifacts from truncation of the data. A given CMP 
gather contains only events with a known dip along midpoint 
pr = kr~m. We next map (J; , pv, k,, o) to (J, , py, k,, k,) with 

k: = ; Ct’ f - (H + ~522)~ + JI - (H - vp,/2)q. (D-4) 

Migrating with equation (D-4) as L,. in expressions (E-l) and 
(E-2) of Appendix E will provide a depth variable extraction of 
events containing velocity information. The focusing measure 
will then identify the best depth variable velocities. 

APPENDIX E 
EXTRACTING DIFFRACTIONS WITH SPATIALLY 

VARIABLE VELOCITIES 

We prefer to extract diffractions over larger windows where 
velocities may vary vertically and laterally. The results of the 
previous section could be applied directly by partitioning the 
migrated sections and extracting diffractions independently in 
each. This approach, however, requires troublesome data orga- 
nization and has particular problems at partition boundaries. 
Instead let us assume smooth polynomial variations in rock 
velocities. (Other smooth modulations, such as low-frequency 
sines and cosines, also apply.) 

To allow polynomial variations of diffraction velocity with 
depth, rewrite equations (3) and (4) to read 

?F = L,‘{gain by z”{extract{~v{dj}}}, (E-1) 

and 

LI m H’ 

An additional gain multiplies by powers of the depth coordi- 
nate 2. Lateral changes could be added with lateral gains. The 

least-squares solution may now smoothly change the weighting 
of extracted events spatially. Solving (E-2) requires inverting a 
symmetric matrix of an order equal to the number of velocities 
times the number of gains. Unfortunately, each additional 
power in the polynomial variation should require another in- 
verse transform L,: ’ for each velocity. 

If diffractions with substantially different velocities do not 
overlap in the time section, however, then the gain and the 
inverse transform should commute well. The result is 

P: = gain by t”{ LLT ‘{ extract{~,.(d~}}} (E-3) 

Gains over the time coordinate t may be made implicitly in the 
scalar products. Thus, the additional inverse transforms may be 
avoided, and variable velocities may be added cheaply by cal- 
culation of additional scalar products. 

Since the superposition allows spatially variable velocities, 
all migrations and diffractions may use constant velocities. To 
estimate the spatially variable velocities, migrate s^ over the 
proper range of velocities and evaluate the focusing measure in 
tapered windows. 


