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ABSTRACT

The Radon transform is a powerful method that has been
used to filter coherent noise from seismic records and to
reconstruct seismic data. In addition, it has a long history in
image processing as a tool for feature extraction. An impor-
tant shortcoming in exploration seismology, however, is the
requirement of simple integration paths that often do not
match well enough the spatio-temporal structure of seismic
waveforms.  The latter can be avoided by adopting local
Radon transforms.

We show that local Radon transforms (with arbitrary integra-
tion paths) can be implemented with a generalized deconvo-
lution approach. In this case, the data are represented via the
convolution of Local Wavefield Operators (LWO) and an
ensemble of filters that represent the local Radon panels.
Deconvolving the LWOs from the data yields the unknown
suite of filters that can be used to reconstruct seismic data,
reject coherent noise, and analyze seismic waveforms.

This paper also discusses two regularization strategies for the
computation of the local Radon transform. The first one is
based on conventional regularized least squares; the second
one is based on a sparse reconstruction approach where we
attempt to estimate sparse local Radon panels.

1. INTRODUCTION

A chief problem in seismic data processing is the filtering of
unwanted events like ground roll and multiples. Methods to
deal with this problem often exploit moveout or curvature
differences between offending events and the events one
would like to preserve [1]. In particular, removal of multiple
reflections based on moveout discrimination can be attained
via parabolic and hyperbolic Radon transforms. In the para-
bolic transform, seismic data (after normal-moveout correc-
tion) are assumed to be composed of a superposition of pa-
rabolas; in the second case, the data are assumed to be a
superposition of hyperbolas.  Methods exist to enhance the
resolution of both hyperbolic [2] and parabolic Radon trans-
forms [3]. In both cases, the operator capable of inverting
the Radon transform is designed in such a way that the Ra-
don panel exhibits minimum entropy or maximum sparse-
ness. The latter is equivalent to finding a Radon panel where
waveforms are focused to impulsive signals. The sparseness

assumption might not be optimal when there is a mismatch
between the integration path of the Radon operator and the
spatial-temporal signature of the seismic event. The latter
can be overcome by constructing local operators [4]. In
other words, we propose to use operators that match the
structure of the wavefield on small spatio-temporal aper-
tures. Alternatively, one could attempt a much more ambi-
tious path where operators are directly extracted from the
data (data driven process). This paper describes a method to
construct local Radon operators. This new class of Radon
operators is implemented through a strategy that is based on
Generalized Convolution (GC) and Generalized Deconvolu-
tion (GD) [4]. We describe this idea in the following section.

2. THEORY

In classical applications of the Radon transform to seismic
data processing [1], we attempt to represent the data, 

€ 

D ,
with a finite number of waveforms defined over the com-
plete seismic signal aperture by means of the following ex-
pansion:

€ 

D = αkΦk
k
∑ ,                                   (1)

where 

€ 

Φk ,k = 1..N are the basis functions  (waveforms with
linear, hyperbolic or parabolic paths) and 

€ 

αk ,k = 1,N  are
the coefficients of the expansion. In general, the coefficients

€ 

αk ,k = 1..N  represent the non-zero coefficients of the Ra-
don panel. In the new approach we propose to adopt basis
functions that are local (waveforms that can operate on a
sub-aperture of the seismic data). In this case we propose to
represent the data using the following model (GC):

€ 

D = Fk ⊗ Bk
k=1

N

∑                                  (2)

In equation (2), the data are represented via the convolution
of compact Local Wavefield Operators (LWO) 

€ 

Bk  and an
unknown suite of filters 

€ 

Fk ,k = 1,N . The symbol 

€ 

⊗  repre-
sents multi-dimensional convolution. The problem reduces
to finding the filters

€ 

Fk  given the data 

€ 

D  and the operators

€ 

Bk . It is clear that noise in the data must be considered and,



therefore, the filters are computed by minimizing the fol-
lowing cost function:

€ 

J = D − Fk ⊗ Bkk=1

N
∑

2
+ µ Fk

2

k=1

N
∑          (3)

In the previous expression we have incorporated a regulari-
zation term. The trade-off parameter

€ 

µ  controls the degree
of fitting of the modelled data to the observations. Equation
(3) is minimized using the method of conjugate gradients   It
is important to stress that the inner products required by the
CG algorithm are implemented via optimized convolution
and cross-correlation algorithms computed with multi-
dimensional FFTs. We designate the solution computed by
minimizing equation (3) the damped least-squares solution
(DLS).

The Local Wavefield Operators (LWO) proposed in [4] con-
sists of waveforms of constant ray parameter defined on a
small aperture (5-7 traces). A suite of N=25 LWOs were
numerically designed for the purpose of computing local
linear Radon transforms (local slant stacks). The operators
are shown in Figure 1. Each operator is parameterized with a
ray parameter, a band-limiting seismic source function and
an operator aperture. The ensemble of operators was con-
structed with N=25 ray parameters or dips.

 In Figure 2 we examine the decomposition of a seismic
record containing hyperbolic and linear events. Multi-
dimensional generalized filters 

€ 

Fk  are first estimated by
inverting equation (2). Then, a subset of operators

€ 

Bk ,k = kl,...kh  is used to reconstruct the data. The recon-
structed data are computed with the following expression:

  

€ 

) 
D = Dk

k= kl

kh

∑ , Dk = Fk ⊗ Bk                  (4)

In our example, kl=11, kh=15. Each member of the sum in
equation (3) (

€ 

Dk ) is called a mode.  The k-mode is a panel

of size equal to the size of the data; it captures waveforms
primarily and locally modelled by the operator 

€ 

Bk . We have
reconstructed the data using dips that locally model the hy-
perbolas. It can be seen that residual energy from linear
events leaks in the reconstructed model of hyperbolas. The
signals are non-orthogonal to each other and therefore, some
degree of leakage is expected. Sparse regularization strate-
gies for inverse problems can be adopted to alleviate the
aforementioned problem. This is discussed in the following
section.

The procedure outlined above was also used to eliminate
ground roll (surface waves) from a multichannel seismic
record from the Western Canadian Sedimentary Basin (Fig-
ure 3). In this example, N=41 LWOs were adopted for the
generalized deconvolution. A subset of 11 modes was re-
tained to reconstruct the data. Low velocity linear coherent
noise has been eliminated and the resulting filtered seismic
record reveals quite well the seismic reflections.

Figure 3. Linear noise removal using Generalized Deconvolution.
Linear Local Wavefield Operators were deconvolved from the
data. The modes capturing dips associated to the ground roll were
eliminated from the data (right).

Figure 2.  Synthetic shot gather (left). Reconstruction using
modes k=11…14 associated to the Local Wavefield Opera-
tors in Figure 1 (center). Residual panel (right).

Figure 1. Linear Local Wavefield Operators (N=25).



3. PARABOLIC LOCAL RADON TRANSFORM
WITH SPARSE REGULARIZATION

We adopt the same mathematical structure to model seismic
data but now the LWOs represent waveforms with parabolic
moveout (a good approximation, for instance, to model dif-
fracted multiple reflections). Each waveform is parameter-
ized by a curvature parameter. Figure 4 displays the syn-
thetic seismic record used to test our algorithm. The goal is
to separate the two events using generalized deconvolution.
A suite of 11 LWOs with parabolic moveout is depicted in
Figure 5. In Figure 6 we portrayed the filters 

€ 

Fk ; the associ-
ated modes are portrayed in Figure 7. In this case the filters
were computed using the damped least-squares method. The
modal decomposition cannot capture the individual wave-
forms in the original data. The least squares method yields a
solution where the energy is distributed over all the modes.
The problem can be circumvented by introducing sparse
regularization into the solution of equation (2)  [2]-[5]. In
this case, we minimize

€ 

J = D − Fk ⊗ Bkk=1

N
∑

2
+ µ R(Fk )k=1

N
∑ ,        (5)

where the function

€ 

R(x)used to regularize the problem is a
Cauchy norm [2]-[5]:

€ 

R(x) = ln (1+
x j
2

σ 2 )j∑ .                              (6)

The Cauchy norm has been proposed in [2] to estimate sparse
solutions of inverse problems arising in seismic signal proc-
essing scenarios. In addition, an application to data recon-
struction in the Fourier domain was proposed in [5]. Other
norms capable of retrieving sparse models could have also
been used, for instance, the

€ 

l1norm  [6]. The cost function in
equation (5) is non-quadratic. Therefore, equation (5) is
minimized using iterative re-weighted least squares [7]-[8]

 We observe that the ensemble of filters computed with the
sparse regularization can capture the two signals quite well
(Figure 8). The modal decomposition in Figure 9 has cor-
rectly identified the two waveforms. The full reconstruction
of the data (sum of all the modes) has provided the right
reconstruction for both the DLS solution and the Sparse
Least-Squares solution. The advantage of using a solver
with a sparseness regularization term is quite evident: we
have achieved simplicity in the filters and event separation
in the modes.

4. SUMMARY

We have presented a generalized convolution/deconvolution
approach to solve the problem of waveform separation and
filtering. The methodology is designed to represent seismic

data in terms of Local Wavefield Operators. The ideas pre-
sented in this paper have numerous applications: random
and coherent (aliased) noise attenuation, interpolation be-
yond aliasing, wavefield separation, filtering of diffracted
multiples, etc. Similarly, these ideas can lead to interesting
algorithms for migration velocity analysis where the focus-
ing power of the filter ensemble may well be used for ve-
locity estimation.
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Figure 4. Synthetic example used to test the
decomposition with parabolic Local Wave-
field Operators.

Figure 5. Local Wavefield Operators with parabolic
moveout.

Figure 6. Filters computed using the damped least-squares method. Figure 7. Modes obtained by convolving the filters from
Figure 6 with parabolic Local Wavefield Operators. The last
sub panel is the full data reconstruction (sum of all modes).

Figure 8. Filters computed using the least-squares method with
sparseness constraint regularization.

Figure 9. Modes obtained by convolving the filters from
Figure 7 with parabolic Local Wavefield Operators. The last
sub panel is the full data reconstruction (sum of all modes).
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