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Abstract

The concept of forced orientation of graphs was first introduced by Chartrand et al. in 1994.
If, for a given assignment of directions to a subset � of the edges of a graph �, there exists an ori-
entation of ���� ��, so that the resulting graph is strongly connected, then that given assignment
is said to be extendible to a strong orientation of �. A forcing set for a strong orientation � of �
is a subset of ����, to which the assignment of orientations from�, can uniquely be extended to
� and thus result�. The size of the smallest forcing set for a strong orientation� of� is denoted
by �����.

In this note, we show that the family of all forcing sets for any particular strong orientation �
of � is a matroid, and therefore all minimal forcing for � have the same cardinality, �����. We
also characterize those graphs � that have strong orientations �, for which ����� is equal to the
trivial maximum of ������.
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1 Introduction and preliminaries

In this paper, we consider only connected graphs. The set of vertices and edges of a graph � are
denoted by � ��� and ����, respectively, or by � and � when there is no ambiguity. We follow the
definitions and notations of [12] for the concepts not defined here.

An orientation of a graph � is a digraph �, with the same vertex set, whose underlying graph is �.
A strong orientation is an orientation that is strongly connected, i.e., for any two vertices � and �
there is a directed path from � to � and a directed path from � to �.

A partial orientation of an undirected graph � is a subset of the edges of an orientation of �. For a
partial orientation � of�, we define�� as the mixed graph whose underlying undirected graph is �
and its set of directed edges is precisely � . A partial orientation � of � is called extendible if there
is a strong orientation � of � that contains � . A partial orientation � is called a strong orientation
forcing set or simply a forcing set for a strong orientation � of �, if � is the only strong orientation
of � which contains � . A minimal forcing set is a forcing set containing no other forcing set as a
proper subset.
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Notions similar to forcing sets are studied under different names of “defining sets” for combinatorial
structures such as block designs [11] and graph colorings [7, 8, 9], and “critical sets” for Latin squares
[1, 6, 7]. In [4], Chartrand et al. introduced and studied this notion for orientations of graphs. Here
we take on this last concept and investigate some of the remaining problems.

The smallest number of edges in any forcing set for a strong orientation � of � is called the forcing
number of �, and is denoted by �����. We also define ���� (also known as the forcing number of
�) and � ��� as the smallest and the largest values of �����, over all strong orientations � of �. In
[4], Chartrand et al. prove the following simple closed-form formula for ����.

Theorem A [4]. If � is a �-edge-connected graph with � vertices and 	 edges, then ���� � 	 �
�� �.

The structure of this paper is as follows. In Section 2, we present definitions and general results that
will be used throughout the paper. Section 3, studies the structure of forcing sets of a given strong
orientation of a graph. Our main result of this section states that the family of the complements
of forcing sets of a strong orientation is a matroid, and therefore every minimal forcing set of a
strong orientation is also a smallest forcing set for that orientation. The results of section 4 give
a characterization for those graphs � for which � ��� � ������. Finally, we conclude with open
problems in Section 5.

2 General results

In this section we state some useful results about orientations of graphs and their extensions. A well-
known theorem on graph orientations is Robbins’ theorem, which states that every �-edge-connected
undirected graph has a strong orientation (see [2]). In this paper, we use the following generalization
of Robbins’ theorem, due to Boesch and Tindell [3]. Notice that in the following, by a path in a mixed
graph, we mean a path in which the direction of every directed edge conforms with the direction of
the path.

Theorem B [3]. Let � be a mixed graph. The following propositions are equivalent:

(a) The undirected edges of � can be oriented in such a way that the resulting digraph is strongly
connected.

(b) The underlying undirected graph of � is �-edge-connected and for every two vertices � and �,
there is a path from � to � and a path from � to �.

(c) The underlying undirected graph of� is �-edge-connected and there is no subset 
 of the vertices
of � such that all of the edges in �
� � ��� � 
� are directed from 
 to � ��� � 
.

Theorem B leads us to the following definition.

Definition. Let � be a partial orientation of �, and �� denote the corresponding mixed graph. We
say that an edge � of � is forced by � , if there is a cut �
� � � 
� in �� such that � � �
� � � 
� and
all of the edges in �
� � � 
�, except �, are directed in the same direction.
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The following proposition provides an equivalent definition for an edge being forced by a partial
orientation.

Proposition 1 Let � be an extendible partial orientation of � and � � �� be an edge in ���� � � .
Then � is forced by � if and only if either there is no path from � to � or from � to � in �� � �.

Proof. If � is forced by � , then for some 
 � � , � � 
 and � � � �
 and all of edges in �
� � �
�,
except �, are oriented by � in the same direction, say, without loss of generality, from 
 to � � 
.
Then apparently, there is no path in�� � � from � to � since every edge incident to � �
 is directed
towards it.

Conversely, suppose there is no path from � to � in �� � �. Let 
 be the set of all vertices of � to
which there is a path from � in �� � �. Apparently � � � � 
. Consider any edge � with  � 


and � � � � 
. If � does not assign a direction to � or assigns the direction from  to �, then the
path from � to  can be extended to a path from � to � by adding � to it. But then � must belong
to 
 and this contradicts our choice of 
. Thus every edge � with  � 
 and � � � � 
 must be
oriented from � to  by � .

A very nice property of the forcing sets is their simultaneous “forcing” of the direction of every
undirected edge of the graph. This is in contrast to the way most of the corresponding notions to
forcing sets in other combinatorial contexts behave. For example, defining sets of graph colorings
[7, 8, 9], do not necessarily force the color of every uncolored vertex at the same time and may instead
only work in certain orders. The following theorem establishes this fact and is used in numerous
places throughout this paper.

Theorem 1 An extendible partial orientation � of � is a strong orientation forcing set if and only if
every edge � � ���� � � is forced by � .

Proof. The “if” part is trivial. For the “only if” part, assume to the contrary that some edge �� in
���� � � is not forced by � . By Proposition 1, there are paths in �� � �� both from � to � and
from � to �. Thus, if we orient �� in either direction, by Theorem B the resulting partial orientation
can be extended into a strong orientation of �. But then, there is more than one way to extend � into
a strong orientation.

It is worth mentioning that the above theorem gives a polynomial time algorithm for recognizing forc-
ing sets. This is in contrast to the result of Colbourn et al. [5] on the NP-completeness of recognizing
critical sets in Latin squares.

3 The forcing set matroid

In this section we study the properties of forcing sets for any particular strong orientation of a graph.
We will prove that the family the complements of forcing sets for any orientation� forms a matroid.
This leads into an efficient algorithm for finding a smallest forcing set for a given strong orientation.

The heart of the proof is the following definition of a binary relation “�” between the edges of a
digraph.

Definition. For any two edges �� and �� of a strongly connected digraph�, �� � �� if every directed
cycle � of � containing �� also contains ��. Moreover, we write �� � �� if �� � �� and �� � ��.
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The following proposition is trivial.

Proposition 2 The relation � is a preorder, i.e., it is reflexive and transitive.

This proposition implies that the relation � is an equivalence relation and thus partitions the set of
edges of � into some equivalence classes. These equivalence classes form a partial order under the
relation �. The following two lemmas give a characterization of these equivalence classes.

Lemma 1 In a strongly connected digraph� we have �� � �� if and only if there is a cut �
� � � 
�
such that �� is from 
 to � �
, �� from � �
 to 
, and every other edge in the cut is from 
 to � �
.

Proof. The “if” part is trivial. For the “only if” part, let �� � �� and suppose �� � ��. If there exists
a path from � to � in � � ��, this path together with ��, would make a cycle containing �� but not
��, contradicting the assumption that �� � ��. Now, let 
 be the set of vertices that are not reachable
from � in � � ��. Then, � � 
 and � � � � 
, and every edge in �
� � � 
� except ��, is directed
from 
 to � �
. On the other hand,� is strongly connected and thus � � must be directed from � �

to 
.

Lemma 2 Let � be a strongly connected digraph. For any two edges �� and �� in �, �� � �� if and
only if ���� ��� is a cut set.

Proof. By Lemma 1 we know that there exits a cut �
� � � 
� containing both � � and �� such that all
of its edges except �� are directed from 
 to � � 
. We claim that �
� � � 
� does not contain any
edges other than �� and ��. Assume to the contrary that there exist an edge �� in �
� � �
� other than
�� and ��. Strong connectivity of� implies that there is a path �� from the head of �� to �. This path
cannot pass through � � 
 since the only edge from � � 
 to 
 is ��. Similarly, there is a path ��

in � � 
 from � to the tail of ��. The two paths �� and �� along with �� and �� form a cycle which
contains ��, but not �� and this is a contradiction.

Corollary 1 Every pair of edges from the same equivalence class of the � relation form a cut set.

Lemma 3 Let �� and �� be two edges in a strongly connected digraph � such that �� 	� ��. If � is
a forcing set for � containing �� but not ��, then � � �� still forces the direction of ��.

Proof. By Theorem 1, there is a cut �
� � � 
� containing ��, such that every edge of this cut, except
�� belongs to � and is directed from 
 to � �
 while �� is directed from � �
 to 
. If �� 	� �
� � �
�
we are done. Otherwise, if �� � �
� � � 
�, then by Lemma 1 we obtain �� � ��, a contradiction.

Corollary 2 If we remove an edge � from a forcing set � of a strongly connected digraph �, then
the set of edges that are not forced by � � � is a subset of the set � � � � � � �.

Lemma 4 Let� be a strongly connected digraph and �� and �� be two edges of� such that �� � ��.
If � is a forcing set for �, then � 
 ���� � �� is also a forcing set for �.

Proof. It is sufficient to prove that � 
 ���� � �� forces the direction of ��. Assume to the contrary
that this does not happen. By Lemma 1, we know that there is a cut �
� � � 
�, containing � � and ��,
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so that all of its edges except �� are directed toward 
. Let � � �
� � � 
� be an edge other than ��.
If � � �� does not force the direction of �, then by Corollary 2, we have � � � �. On the other hand,
by Lemma 1, we have � � ��. This means that � � ��. An argument like the one in the proof of
Lemma 2 shows that �
� � �
� � ��� ���. But since �� � �
� � �
�, � cannot be any edge other than
��. Thus every edge in �
� � � 
�� �� is forced by � 
 ���� � ��. This, together with the fact that
�� is the only edge in �
� � � 
� directed toward � � 
, show that the direction of � � is forced by the
set � 
 ���� � ��. Thus, � 
 ���� � �� is a forcing set.

Lemma 5 Let � be a strongly connected digraph and F be an arbitrary forcing set for �. Then, any
minimal equivalence class under the relation �, must have at least one edge in � .

Proof. Assume to the contrary that � is a minimal equivalence class of the relation � and none of
its elements belong to the forcing set � . Let � be an edge in �. Then � must be forced by � . So, by
Theorem 1, there exists a cut �
� � � 
� which contains � and all of its edges except � are directed
toward 
 and are in � . Let �� be an edge in �
� � � 
� � �. By Lemma 1, �� � �. Also, we know
that �� 	� �, because �� � � and � �� � �. This contradicts the minimality of the class � under the
relation �.

The following theorem characterizes the set of all minimal forcing sets of a given strong orientation.

Theorem 2 A subset � of the edges of a strongly connected digraph � is a minimal forcing set for
� if and only if � contains exactly one edge from each equivalence class of the relation � which is
minimal under the relation �.

Proof. Follows directly from Lemma 4 and Lemma 5.

Now we are ready to state our main result of this section which follows immediately from Theorem 2.

Theorem 3 Let � be a strong orientation of a graph �. Then all minimal forcing sets for � have
the same size.

Note that Theorem 3 yields an obvious efficient algorithm for constructing smallest forcing sets for
a given strong orientation of a graph. Also, using the above results, it is easy to prove the following
theorem.

Theorem 4 For every strongly connected digraph �, the family of subsets of the edges of � whose
complement is a forcing set for �, is a matroid.

The above theorem assigns a matroid to every strongly connected digraph. A natural question will
then be whether this matroid is related to the other known matroids on graphs.

4 Orientations with a large forcing number

The forcing number of any orientation� of a graph� with � vertices and	 edges is lower bounded
by 	� ��� (by Theorem A) and upper bounded by 	. In this section, we give a simple character-
ization of graphs for which there is an orientation that attains this upper bound. In other words, we
characterize graphs � with � ��� � 	.

5



Lemma 6 Let � be a strong orientation of an undirected graph� with 	 edges. Then ����� � 	

if and only if for every edge �, � � � is strongly connected.

Proof. To prove sufficiency, assume to the contrary that � has a forcing set � of size strictly less
than	. Let � be an edge not in � . Now, since �� � is strongly connected, � is not forced by � . But
this is in contradiction with Theorem 1.

For the necessity, assume that there is an edge � in �, such that � � � is not strongly connected and
thus there is no path in � � � from one of the endpoints of � to the other. But this implies that � is
forced by � � � and therefore� � � is a forcing set of size 	� � for �.

According to the terminology of [12], a digraph � is �-strongly connected, if for any set 
 of � � �
edges of �, the graph� �
 is strongly connected. Using this definition, Lemma 6 can be restated as
“����� � 	 if and only if � is a �-strongly connected orientation of �.”

The next theorem gives a necessary and sufficient condition for a graph to have a �-strong orientation.

Theorem 5 For a graph � with 	 edges, � ��� � 	 if and only if � is �-edge-connected.

Proof. Assume that � is �-edge-connected. By a theorem of Nash-Williams (see for example [12])
this implies that � has a �-strong orientation �. Therefore by Lemma 6, ����� � 	, implying
� ��� � 	.

Now suppose � ��� � 	 and let � be a strong orientation of � for which ����� � 	 and suppose
that � has a cut set �
� � � 
� of size 	 or smaller. Each of the three edges of this cut are either
directed from 
 to � � 
, or from � � 
 to 
. Since � is a strong orientation, not all of these three
edges can agree in their directions and thus exactly one, which we call �, must disagree with the other
two. However, this means that � � � is not strongly connected and therefore � is forced by � � �.
Thus, by Lemma 6, ����� � 	, a contradiction.

5 Conclusion and open problems

‘ The main result of this paper was a nice characterization of forcing sets of a particular orientation
of a graph, leading to polynomial time algorithms for recognizing forcing sets and finding minimal
forcing sets in a digraph.

A family of problems, analogous to those considered in this papers, can be introduced by replacing
strong orientations with unilateral orientations in the definition of forcing sets (see [4, 10]). A unilat-
eral orientation of a graph �, is an orientation of � in which for every pair of vertices �� � � � ���,
there exist either a path from � to �, or one from � to � (or both). Many of the problems regarding
unilateral forced orientations are open. For example, we do not know of any efficient algorithm for
recognizing unilateral forcing sets, or finding the smallest unilateral forcing set in a given digraph.

Another open problem is to find a simple way to compute � ��� for a given undirected graph �.
Results of Section 4 solve this problem for 4-edge-connected graphs. For graphs of edge-connectivity
2 and 3 this problem is widely open.
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