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Abstract

The concept of forced orientation of graphs was first introduced by Chartrand et a. in 1994.
If, for agiven assignment of directionsto asubset S of the edges of a graph G, there exists an ori-
entation of E(G) \ S, so that the resulting graph is strongly connected, then that given assignment
is said to be extendible to a strong orientation of G. A forcing set for astrong orientation D of G
isasubset of E(G), to which the assignment of orientations from D, can uniquely be extended to
FE and thusresult D. The size of the smallest forcing set for astrong orientation D of G is denoted
by o (G).

In this note, we show that the family of all forcing sets for any particular strong orientation D
of G isamatroid, and therefore all minimal forcing for D have the same cardinality, fp(G). We
aso characterize those graphs G that have strong orientations D, for which fp (G) isequal to the
trivial maximum of |E(G))|.

Keywords: Forced orientation; defining set; strong orientation; algorithms; matroids.

1 Introduction and preliminaries

In this paper, we consider only connected graphs. The set of vertices and edges of a graph G are
denoted by V (G) and E(G), respectively, or by V' and E when there is no ambiguity. We follow the
definitions and notations of [12] for the concepts not defined here.

An orientation of agraph G isadigraph D, with the same vertex set, whose underlying graph is G.
A strong orientation is an orientation that is strongly connected, i.e., for any two vertices v and v
thereis adirected path from « to v and a directed path from v to u.

A partial orientation of an undirected graph G is a subset of the edges of an orientation of G. For a
partial orientation F' of G, we define G i as the mixed graph whose underlying undirected graphis G
and its set of directed edgesis precisely F'. A partial orientation F' of GG is called extendible if there
isastrong orientation D of G that contains F'. A partial orientation F' is called a strong orientation
forcing set or smply aforcing set for astrong orientation D of G, if D isthe only strong orientation
of G which contains . A minimal forcing set is a forcing set containing no other forcing set as a
proper subset.
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Notions similar to forcing sets are studied under different names of “defining sets’ for combinatorial
structures such as block designs[11] and graph colorings([7, 8, 9], and “ critical sets’ for Latin squares
[1, 6, 7]. In[4], Chartrand et . introduced and studied this notion for orientations of graphs. Here
we take on this last concept and investigate some of the remaining problems.

The smallest number of edges in any forcing set for a strong orientation D of G is called the forcing
number of D, and isdenoted by fp(G). We aso define f(G) (also known as the forcing number of
G) and F (@) asthe smallest and the largest values of f (), over all strong orientations D of G. In
[4], Chartrand et a. prove the following simple closed-form formulafor f(G).

Theorem A [4]. If G is a 2-edge-connected graph with n vertices and m edges, then f(G) = m —
n+ 1.

The structure of this paper is as follows. In Section 2, we present definitions and general results that
will be used throughout the paper. Section 3, studies the structure of forcing sets of a given strong
orientation of a graph. Our main result of this section states that the family of the complements
of forcing sets of a strong orientation is a matroid, and therefore every minimal forcing set of a
strong orientation is also a smallest forcing set for that orientation. The results of section 4 give
a characterization for those graphs G for which F(G) = |E(G)|. Finaly, we conclude with open
problemsin Section 5.

2 General results

In this section we state some useful results about orientations of graphs and their extensions. A well-
known theorem on graph orientationsis Robbins' theorem, which states that every 2-edge-connected
undirected graph has a strong orientation (see[2]). In this paper, we use the following generalization
of Robbins’ theorem, dueto Boesch and Tindell [3]. Noticethat in the following, by apathin amixed
graph, we mean a path in which the direction of every directed edge conforms with the direction of
the path.

Theorem B [3]. Let G be a mixed graph. The following propositions are equivalent:

(a) The undirected edges of G can be oriented in such a way that the resulting digraph is strongly
connected.

(b) The underlying undirected graph of G is 2-edge-connected and for every two vertices v and v,
thereis a path from v to v and a path fromv to u.

(c) Theunderlyingundirected graph of G is 2-edge-connected and thereis no subset S of the vertices
of G such that all of theedgesin [S, V(G) \ S] aredirected fromSto V(G) \ S.

Theorem B leads us to the following definition.

Definition. Let F' be a partial orientation of GG, and GG  denote the corresponding mixed graph. We
say that an edge e of G isforced by F, if thereisacut [S,V \ S]inG r suchthate € [S,V '\ S] and
all of theedgesin [S,V \ S], except e, are directed in the same direction.



The following proposition provides an equivalent definition for an edge being forced by a partia
orientation.

Proposition 1 Let F' be an extendible partial orientation of G and e = uv bean edgein E(G) \ F'.
Then e isforced by F' if and only if either thereis no path fromw to v or fromv tou inG g — e.

Proof. If e isforced by F', thenforsomeS C V,u € Sandv € V' \ S and dl of edgesin[S,V \ 5],
except e, are oriented by F' in the same direction, say, without loss of generality, from Sto V' \ S.
Then apparently, thereisno path in G  — e from v to u since every edgeincident to V' \ .S isdirected
towardsit.

Conversely, suppose there is no path fromwu tov in G p — e. Let S bethe set of all vertices of G to
which thereisapath fromu in Gr — e. Apparently v € V' \ S. Consider any edge zy withz € S
andy € V \ S. If F does not assign adirection to zy or assigns the direction from « to y, then the
path from v to 2 can be extended to a path from « to y by adding zy to it. But then y must belong
to S and this contradicts our choice of S. Thus every edge zy withz € Sandy € V' \ S must be
oriented fromy to x by F. [ ]

A very nice property of the forcing sets is their simultaneous “forcing” of the direction of every
undirected edge of the graph. Thisisin contrast to the way most of the corresponding notions to
forcing sets in other combinatorial contexts behave. For example, defining sets of graph colorings
[7,8, 9], do not necessarily forcethe color of every uncolored vertex at the same time and may instead
only work in certain orders. The following theorem establishes this fact and is used in numerous
places throughout this paper.

Theorem 1 An extendible partial orientation £ of GG is a strong orientation forcing set if and only if
everyedgee € E(G) \ F isforced by F.

Proof. The “if” part is trivial. For the “only if” part, assume to the contrary that some edge uv in
E(G) \ F isnot forced by F'. By Proposition 1, there are pathsin G r — wv both from « to v and
fromwv to w. Thus, if we orient uv in either direction, by Theorem B the resulting partial orientation
can be extended into a strong orientation of G. But then, there is more than one way to extend F' into
astrong orientation. [ ]

It is worth mentioning that the above theorem givesapolynomial time algorithm for recognizing forc-
ing sets. Thisisin contrast to the result of Colbourn et al. [5] on the NP-compl eteness of recognizing
critical setsin Latin squares.

3 Theforcing set matroid

In this section we study the properties of forcing sets for any particular strong orientation of a graph.
Wewill prove that the family the complements of forcing sets for any orientation D formsamatroid.
Thisleads into an efficient algorithm for finding a smallest forcing set for a given strong orientation.

The heart of the proof is the following definition of a binary relation “ <" between the edges of a
digraph.

Definition. For any two edgese; and e, of a strongly connected digraph D, e, < e if every directed
cycle C of D containing e; also containse,. Moreover, wewritee; = es ife; < ez andes < ey.



Thefollowing propositionistrivial.
Proposition 2 Therelation < isa preorder, i.e., it isreflexive and transitive.

This proposition implies that the relation ~ is an equivalence relation and thus partitions the set of
edges of D into some equivalence classes. These equivalence classes form a partial order under the
relation <. The following two lemmas give a characterization of these equivalence classes.

Lemmal Inastrongly connected digraph D we havee; < eq if and onlyif thereisacut [S,V \ S]
suchthat e; isfromStoV'\ S, e; fromV '\ Sto .S, and every other edgeinthecutisfromStoV'\ S.

Proof. The“if” partistrivial. For the“only if” part, let e; = uv and supposee; < es. If there exists
apath from v to u in D — e,, this path together with e;, would make a cycle containing e; but not
e, contradicting the assumptionthat e; < e>. Now, let S be the set of verticesthat are not reachable
fromvinD —e;. Then,u € SandV € V' \ S, and every edgein [S,V \ S] except e, is directed
fromStoV'\ S. Ontheother hand, D is strongly connected and thus e , must be directed fromV'\ S
toS. ]

Lemma2 Let D bea strongly connected digraph. For any two edgese; ande, in D, e; = e5 if and
onlyif {e1,e2} isacut set.

Proof. By Lemma 1 we know that there exitsacut [S, V' \ S] containing both e and e such that all
of its edges except e, are directed from StoV \ S. Weclamthat [S,V \ S] does not contain any
edgesother than e; and e». Assumeto the contrary that there exist an edgewwv in[\S, V'\ S] other than
ey and es. Strong connectivity of D impliesthat thereisapath P; fromthe head of e to u. Thispath
cannot pass through V' \ S since the only edgefrom V' \ S to S ise,. Similarly, thereis a path P,
inV \ S from v to thetail of e». The two paths P, and P, along with e» and uv form acycle which
contains ey, but not e; and thisis a contradiction. ]

Corollary 1 Every pair of edges from the same equivalence class of the & relation form a cut set.

Lemma3 Let e; and e betwo edgesin a strongly connected digraph D suchthates A e;. If F'is
aforcing set for D containing e, but not eq, then F' — e, still forces the direction of e;.

Proof. By Theorem 1, thereisacut [S, V' \ S] containing e 1, such that every edge of this cut, except
e1 belongsto F andisdirected from S to V'\ .S whilee; isdirectedfromV\Sto S. Ifes & [S,V'\ 5]
we are done. Otherwise, if e; € [S,V '\ S], then by Lemmal we obtaine, < e;, acontradiction. ®

Coroallary 2 If we remove an edge e from a forcing set F' of a strongly connected digraph D, then
the set of edges that are not forced by F' — e isa subset of theset {z € E | e < z}.

Lemma4 Let D beastrongly connected digraph and e and e; betwo edgesof D suchthate; < e,.
If Fisaforcing set for D, then F' U {e1} — ey isalso aforcing set for D.

Proof. It is sufficient to provethat F' U {e; } — e, forcesthe direction of e;. Assume to the contrary
that this does not happen. By Lemma 1, we know that thereisacut [S, V' \ S], containinge; and e,



so that al of its edges except e, are directed toward S. Lete € [S,V \ S] be an edge other than e 5.
If F — e, does not force the direction of e, then by Corollary 2, we have e, < e. On the other hand,
by Lemma 1, we havee < e,. Thismeansthat e &~ e2. An argument like the one in the proof of
Lemma2 showsthat [S, V' \ S] = {e,ex}. Butsincee; € [S,V '\ S], e cannot be any edge other than
e1. Thusevery edgein [S,V \ S| — eq isforced by F'U {e;} — e». This, together with the fact that
e istheonly edgein [S, V' \ S] directed toward V' \ .S, show that the direction of e » is forced by the
set FU{e;} —es. Thus, FFU{e1} — ey isaforcing set. [ ]

Lemmab Let D beastrongly connected digraph and F be an arbitrary forcing set for D. Then, any
minimal equivalence class under the relation <, must have at least one edgein F'.

Proof. Assume to the contrary that C' is a minimal eguivalence class of the relation < and none of
its elements belong to the forcing set F'. Let e be an edgein C'. Then e must be forced by F'. So, by
Theorem 1, there exists acut [S, V' \ S] which contains e and all of its edges except e are directed
toward S and arein F. Let e’ beanedgein [S,V \ S] —e. By Lemmal, e’ < e. Also, we know
thate’ ¢ C, becausee’ € F and F N C = (). Thiscontradictsthe minimality of the class C' under the
relation <. [ |

Thefollowing theorem characterizes the set of all minimal forcing sets of a given strong orientation.

Theorem 2 A subset F' of the edges of a strongly connected digraph D is a minimal forcing set for
D if and only if F' contains exactly one edge from each equivalence class of the relation ~ which is
minimal under therelation <.

Proof. Follows directly from Lemma4 and Lemma5. [ ]
Now we are ready to state our main result of this section which followsimmediately from Theorem 2.

Theorem 3 Let D be a strong orientation of a graph G. Then all minimal forcing sets for D have
thesamesize,

Note that Theorem 3 yields an obvious efficient algorithm for constructing smallest forcing sets for
agiven strong orientation of a graph. Also, using the above results, it is easy to prove the following
theorem.

Theorem 4 For every strongly connected digraph D, the family of subsets of the edges of D whose
complement is a forcing set for D, isa matroid.

The above theorem assigns a matroid to every strongly connected digraph. A natural question will
then be whether this matroid is related to the other known matroids on graphs.

4 Orientationswith alarge forcing number

Theforcing number of any orientation D of agraph G with n vertices and m edgesis|lower bounded
by m — n + 1 (by Theorem A) and upper bounded by m. In this section, we give a simple character-
ization of graphs for which there is an orientation that attains this upper bound. In other words, we
characterize graphs G with F(G) = m.



Lemma6 Let D bea strong orientation of an undirected graph G with m edges. Then f p(G) = m
if and only if for every edgee, D — e is strongly connected.

Proof. To prove sufficiency, assume to the contrary that D has aforcing set F' of size strictly less
thanm. Let e bean edge notin F'. Now, since D — e is strongly connected, e isnot forced by F'. But
thisisin contradiction with Theorem 1.

For the necessity, assume that thereisan edge e in D, such that D — e is not strongly connected and
thus thereis no path in D — e from one of the endpoints of e to the other. But thisimpliesthat e is
forced by D — e and therefore D — e isaforcing set of sizem — 1 for D. [ ]

According to the terminology of [12], adigraph D is i-strongly connected, if for any set S of i — 1
edgesof D, thegraph D \ S is strongly connected. Using this definition, Lemma 6 can be restated as
“fp(G) = mif and only if D isa2-strongly connected orientation of G

The next theorem gives a necessary and sufficient condition for agraph to have a 2-strong orientation.
Theorem 5 For agraph G with m edges, F'(G) = m if and only if G is 4-edge-connected.

Proof. Assume that G is 4-edge-connected. By a theorem of Nash-Williams (see for example [12])
thisimplies that G has a 2-strong orientation D. Therefore by Lemma 6, f p(G) = m, implying
F(G) = m.

Now suppose F'(G) = m and let D be astrong orientation of G for which f ,(G) = m and suppose
that G hasacut set [S,V — S] of size 3 or smaller. Each of the three edges of this cut are either
directedfromStoV \ S, or fromV \ Sto S. Since D is astrong orientation, not all of these three
edges can agreein their directions and thus exactly one, which we call e, must disagree with the other
two. However, this meansthat D — e is not strongly connected and therefore e is forced by D — e.
Thus, by Lemma6, fp(G) < m, acontradiction. [

5 Conclusion and open problems

* The main result of this paper was a nice characterization of forcing sets of a particular orientation
of a graph, leading to polynomial time algorithms for recognizing forcing sets and finding minimal
forcing setsin adigraph.

A family of problems, analogous to those considered in this papers, can be introduced by replacing
strong orientations with unilateral orientationsin the definition of forcing sets (see[4, 10]). A unilat-
eral orientation of agraph G, is an orientation of G in which for every pair of verticesu, v € V(G),
there exist either a path from « to v, or one from v to u (or both). Many of the problems regarding
unilateral forced orientations are open. For example, we do not know of any efficient algorithm for
recognizing unilateral forcing sets, or finding the smallest unilateral forcing set in a given digraph.

Another open problem is to find a simple way to compute F(G) for a given undirected graph G.
Results of Section 4 solve this problem for 4-edge-connected graphs. For graphs of edge-connectivity
2 and 3 this problem is widely open.
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