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Abstract

Let G(V,E) be a connected undirected graph with n vertices and m edges, where each
vertex v is associated with a cost C(v) and each edge e = (u,v) is associated with two
weights, W(u! v) and W(v! u). The issue of assigning an orientation to each edge
so that G becomes a directed graph is resolved in this paper. Determining a scheme
to assign orientations of all edges such that maxx2V CðxÞ þ

P
x!zW ðx! zÞ

� �
is mini-

mized is the objective. This issue is called the edge-orientation problem (the EOP).
Two variants of the EOP, the Out-Degree-EOP and the Vertex-Weighted EOP, are first
proposed and then efficient algorithms for solving them on general graphs are designed.
Ascertaining that the EOP is NP-hard on bipartite graphs and chordal graphs is the sec-
ond result. Finally, an O(n logn)-time algorithm for the EOP on trees is designed. In
general, the algorithmic results in this paper facilitate the implementation of the
weighted fair queuing (WFQ) on real networks. The objective of the WFQ is to assign
an effective weight for each flow to enhance link utilization. Our findings consequently
0020-0255/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2005.09.001

q This research was supported by the National Science Council, Taiwan, ROC, under the contract
number NSC-90-2213-E-128-003.
qq The preliminary version of this paper has been published in the Proceedings of International
Computer Symposium 2002, National Dong Hwa University, Hualien, Taiwan, ROC, pp. 910–917.

* Tel.: +886 2 22368225x3365; fax: +886 2 22367114.
E-mail address: ckyen001@ms7.hinet.net

mailto:ckyen001@ms7.hinet.net


2792 W.C.-K. Yen / Information Sciences 176 (2006) 2791–2816
can be easily extended to other classes of graphs, such as cactus graphs, block graphs,
and interval graphs.
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1. Introduction

The input graphs of most traditional graph problems, such as minimum
domination and minimum spanning trees, are either undirected or directed.
The issue of transforming an undirected graph G = (V,E) into a directed graph
(digraph) via assigning each edge e = (u,v) an orientation, either from u to v or
from v to u, is studied in this paper. Throughout the paper, all input graphs are
simple, undirected, and connected. Meanwhile, n and m denote the number of
vertices and the number of edges of the input graph, respectively.

Before formally defining the problem, a simple network system of four
nodes a, b, c, and d as shown in Fig. 1 will be considered. Assume that the link
e = (u,v) connecting any pair of nodes, u and v, can be maintained by the tech-
nical staff of either u or v. The different maintenance costs are denoted as
W(u! v) and W(v! u), respectively. For example, the maintenance costs of
the link (c,d) are 46 (by the node c) and 15 (by the node d). Furthermore, each
vertex (node) v is associated with a cost C(v) to indicate the fixed cost for main-
taining its incident links.

The maintenance cost for each link (edge) e = (u,v) will constitute the total
cost of u (or v) if the edge is maintained by u (or v). The two different link-main-
tenance schemes of Fig. 1 are illustrated in Fig. 2. The italic boldface numbers
represent the total cost of each vertex in each scheme. Keeping the maximum
total cost of all vertices, denoted as l values, as small as possible is the central
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Fig. 1. A simple network system with maintenance costs.
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Fig. 2. Two link-maintenance schemes.
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issue of this paper. The l values of scheme (a) and scheme (b) in Fig. 2 are 64
and 32, respectively, and scheme (b) is a link-orientation scheme such that its l
value is minimized.

The above discussions imply the equivalence property of the following two
tasks: (1) To determine a link-maintenance scheme such that its l value is min-
imized. (2) To assign each edge e = (u,v) an orientation, either from u to v or
from v to u, such that maxx2V CðxÞ þ

P
x!zW ðx! zÞ

� �
is minimized. Theoret-

ically, there are 2m ways to assign the orientations of all edges and each way is
called an edge-orientation scheme hereafter. The problem explored in this paper
can thus be precisely defined as follows.

The edge-orientation problem (the EOP) [37]: Given a graph G(V,E) in which
each vertex v is associated with a cost C(v) and each edge e = (u,v) is associated
with two weights, W(u! v) and W(v! u). Denote l(A) as maxx2V CðxÞþfP

x!zW ðx! zÞg, for each edge-orientation scheme A. The valueP
x!zW ðx! zÞ is defined as zero if outdeg(x) = 0 within A, where outdeg(x)

is the out-degree of the vertex x. Identifying an edge-orientation scheme A*

such that l(A*) is minimized is the objective. Let l(G) = min{l(A) jA is an
edge-orientation scheme of G} hereafter.

We now describe the motivation of the EOP from the perspective of practical
applications. Modern information networks, including Internet, private Intra-
nets, and private Extranets, provide people with easy and efficient environments
for information access. Achieving high efficiency, quality, and throughput, are
the major concerns of information services over various networks. Extensive
research has dealt with many fundamental network problems, such as resource
allocations (e.g., replication of data objects on a distributed database), quality
of service (QoS) and routing, load balancing, and flow controls [1,7,22,24,26–
29,35]. In [37,38], we proposed that the link-orientation problem (the LOP) is
highly related to the efficient assignment of flow orientations in links of a com-
puter network. In the applications of flow controls, each link is assigned an
effective weight corresponding to the switch router for fairness of buffers. A
switch router often uses the peer-link to determine the effective weight for each
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queue (flow). Many approaches for flow controls and related issues in QoS
monitoring have been investigated [6,25,26,34]. Among them, a powerful vari-
ant of the fair queuing (FQ), called the weighted fair queuing (WFQ), has been
proposed [31]. The WFQ was designed to allocate resources in a fairer manner
and to enhance the utilization of links. In general, a router performing the WFQ
must determine the best weight for each flow. Previous literature often assumed
that it is possible to split the flow according to the actual weight of each link.
The direction of message flows within a link e = (u,v) can be oriented, either
from u to v or from v to u, in an asynchronous network. The basic issue is to
determine which orientation will be the most helpful for the WFQ and other
network applications such as routing and load balancing.

The following two special versions of the EOP have been established to dem-
onstrate the inner spirit and the significance of our research.

The vertex-weighted edge-orientation problem (the Vertex-Weighted EOP)
[37]: Given a vertex-weighted graph G(V,E,C), denote p(A) as maxx2V{C(x) +
outdeg(x)}, for any edge-orientation scheme A. Identifying an edge-orientation
scheme A* such that p(A*) is minimized is the aim. Let p(G) = min{p(A) jA is
an edge-orientation scheme of G} hereafter.

The out-degree edge-orientation problem (the Out-Degree-EOP) [37]: Given a
graph G(V,E), let h(A) = maxv2V{outdeg(v)}, for each edge-orientation scheme
A. Obtaining an edge-orientation scheme A* such that h(A*) is minimized is the
objective. Let h(G) = min{h(A) jA is an edge-orientation scheme of G}
hereafter.

The Vertex-Weighted EOP is in fact the edge-direction assignment problem
(the EDA problem) originally proposed and studied in [39,40]. The EDA Prob-
lem has been applied to successfully design linear-time optimal algorithms for
solving the searchlight guarding problem on cographs and interval graphs
[39,40]. The Vertex-Weighted EOP is also the LOP addressed in [38] and lin-
ear-time algorithms were designed to deal with the problem on weighted com-
plete networks and weighted trees. In another, the Out-Degree-EOP plays the
key role in solving the bottleneck searchlight guarding problem [37]. A linear-
time optimal algorithm for the EOP on complete-split graphs has also been
designed by the recursive greedy approach [4,38].

The rest of this paper is organized as follows. A survey of related works on
graph orientation problems will be addressed in Section 2. Then, an
O(mnd logv)-time algorithm for the Out-Degree-EOP on general graphs will
be proposed in Section 3, where d = maxv2V{deg(v)}, in which deg(v) denotes
the degree of any vertex v and v ¼ max 1; d� m

n

� �� �
. Section 4 will generalize

the algorithmic result of Section 3 to the Vertex-Weighted EOP. The time-com-
plexity of the new algorithm is O(mnd logd). Section 5 will prove that the EOP
is NP-hard on bipartite graphs and chordal graphs. Then, an O(n logn)-time
algorithm for the EOP on trees will be designed in Section 6. The conclusions
and future research directions finally will be discussed in Section 7.
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2. Related works and literature review

A directed graph D is called an orientation of an undirected graph G if G is
the underlying undirected graph of D [33]. The EOP can be viewed as one var-
iant of graph orientation problems by this definition. Chapter 61 of Schrijver�s
book provided an elegant survey on the topics related to graph orientation.
The following variants of graph orientation were discussed [33].

2.1. Orientations with bounds on in- and out-degrees

This type of orientation is to derive orientations of an undirected graph G

satisfying the bounds conditions on the in-degrees and/or out-degrees. The
results can be proved quite directly from bipartite matching or flow theory.
The major results are shown by the following theorems.

Theorem 1 [21]. Let G(V, E) be an undirected graph and let l :V! Z+. Then G

has an orientation D(V, A) with degin
A ðvÞP lðvÞ, for each v 2 V, iff each U � V is

incident with at least l(U) edges.
Theorem 2 [12]. Let G(V, E) be an undirected graph and let l, u : V! Z+ with

l 6 u. Then G has an orientation D(V, A) with lðvÞ 6 degin
A ðvÞ 6 uðvÞ, for each

v 2 V, iff each U � V is incident with at least l(U) edges and spans at most

u(U) edges.
2.2. Two-edge-connectivity and strongly connected orientations

This type of orientation is to derive an orientation D of an undirected graph
G such that D is strongly connected. The following is the well-known Robbins�
Theorem.

Theorem 3 (Robbins� Theorem [32]). An undirected graph G has a strongly

connected orientation iff G is two-edge-connected.

The following corollary can be obtained directly.

Corollary 1 ([32,33]). Given a two-edge-connected graph G, a strongly con-

nected orientation of G can be found in linear-time.

Robbins� Theorem extends to the following results of Frank [11] and Bosech
and Tindell [2] for mixed graphs.

Theorem 4 ([2,11,33]). Let G(V,E) be a graph in which part of the edges are

oriented. Then the remainder of the edges can be oriented so as to obtain a
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strongly connected digraph iff G is two-edge-connected and there is no non-empty

proper subset U of V such that all edges in d(U) are oriented from U to VnU,

where d(U) is the set of edges of G connected U and VnU.
Corollary 2 ([3,33]). An orientation as described in Theorem 4 can be found in

linear-time.

The following theorem extends the Robbins� Theorem to the case where
upper and lower bounds are prescribed on the in-degrees of the orientation,
where j(G) denotes the number of the components of any graph G.

Theorem 5 [12]. Let G(V,E) be a two-edge-connceted undirected graph and

let l; u : V ! ZV
þ with l 6 u. Then G has a strongly connected orientation

D(V, A) satisfying lðvÞ 6 degin
A ðvÞ 6 uðvÞ, for each v 2 V, iff each

U � V : jE[U]j + j(G � U) 6 u(U) and jE[U]j + jd(U)j � j(G � U) P l(U).
2.3. Nash-Williams� Orientation Theorem

Nash-Williams� Theorem is an extension of the Robbins� Theorem, where
kD(s, t) denotes the maximum number of arc-disjoint s � t paths in any orien-
tation D of a graph G.

Theorem 6 (Nash-Williams� Orientation Theorem [30]). An undirected graph

G(V, E) has an orientation D(V,A) with kDðs; tÞP 1
2 kGðs; tÞ
� �

, for all s, t 2 V.
2.4. k-arc-connected orientations of 2k-edge-connected graphs

Nash-Williams� Theorem directly implies the following theorem.

Theorem 7 ([30,33]). An undirected graph G has a k-arc-connected orientation
iff G is 2k-edge-connected.

The following theorem can be established by the complexity of the
Edmonds–Giles Problem.

Theorem 8 ([5,16,33]). A k-arc-connected orientation of a 2k-edge-connected

undirected graph G can be found in polynomial-time.

The case where lower and upper bounds of the in-degrees of the vertices are
prescribed in Theorem 7 is as follows.

Theorem 9 [10]. Let G(V,E) be a 2k-edge-connected undirected graph and let

l; u : V ! ZV
þ with l 6 u. Then G has a k-arc-connected orientation D with
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lðvÞ 6 degin
D ðvÞ 6 uðvÞ, for each v 2 V, iff jE½W �j þ jdðP ÞjP jðP Þþ

max
P

v2W lðvÞ;
P

v2W ðdegGðvÞ � uðvÞÞ
� �

, for each subpartition P of V with

non-empty classes, where W :¼ V n
S

P .
2.5. Other graph orientation issues

Edmonds� Disjoint Arborescences Theorem implies the following
theorem.

Theorem 10 ([10,33]). Let G(V, E) be an undirected graph and r 2 V. Then G
has an orientation such that each non-empty subset U of Vn{r} is entered by at

least k arcs iff G contains k edge-disjoint spanning trees.

Other important graph orientations include graph orientations satisfying
parity and connectivity conditions [13–15], orientations preserving prescribed
shortest paths [23], and applying submodularity to orientation problems
[8,9]. Meanwhile, a strongly polynomial-time algorithm for finding a mini-
mum-cost k-arc connected orientation was proposed in [17].

Previous research related to various graph orientation problems, as
described above, seldom deal with edge-orientation problems on weighted
graphs, i.e., the input graphs of most orientation problems so far have been
unweighted. We will give an original research for edge-orientation problems
on graphs with costs (weights) on both vertices and edges. Although the author
in [36] recently pointed out that the Out-Degree-EOP arises in the design of
restorable telecommunication networks and proposed an O(m2)-time algorithm
to solve the problem on general graphs, this paper will demonstrate a
more intuitive and easier approach to design another O(mnd logv)-time algo-
rithm for solving the same problem, where d = maxv2V{deg(v)} and
v ¼ max 1; d� m

n

� �� �
. The time-complexity of our algorithm can be reduced

to O(mn) when d is a constant. This greatly improves on the result of [36].
In general, our research is original and is the first study which extracts edge-ori-
enting problems on weighted graphs from practical applications and then
solves the extracted problems.
3. The Out-Degree-EOP on general graphs

Our idea for solving the Out-Degree-EOP has arisen from the following cor-
responding decision problem, where d = maxv2V{deg(v)}.

The out-degree bounded edge-orientation problem (the Out-Degree Bounded
EOP): Given a graph G(V,E) and an integer 1 6 k 6 d, determine whether
there exists an edge-orientation scheme A* such that h(A*) =
maxv2V{outdeg(v)} 6 k.
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Lemma 1. For any graph G(V, E), let GQ(VQ,EQ) be the subgraph induced by

any vertex subset Q of V. Then, h(GQ) 6 h(G).
Proof. Let A be an edge-orientation scheme of G with h(A) = h(G). Then, out-
deg(v) 6 h(G), for each v 2 V. Suppose that AQ is the edge-orientation scheme
via deleting all edges in (E � EQ). Verifying that AQ is an edge-orientation
scheme of GQ and outdeg(v) 6 h(G), for all v 2 VQ, within AQ is easy. This
implies that h(GQ) 6 h(G). h
Lemma 2. Given a graph G(V, E) and an integer 1 6 k 6 d, if the answer of the

Out-Degree Bounded EOP is �YES�, then k * n P m. This means that the smallest

possible value of k such that the Out-Degree Bounded EOP has a solution is m
n

� �
.

Proof. Suppose that A is an edge-orientation scheme of G such that h(A) 6 k.
Then, outdeg(v) 6 k, for each v 2 V. We must have m ¼P

v2V outdegðvÞ 6
Pn

j¼1k ¼ k � n according to the definition of edge-orientation
schemes. h

Now, consider a graph G(V,E) and an integer k such that k * n P m for the
Out-Degree Bounded EOP. Make a restriction that outdeg(v) 6 k, for each
v 2 V, after assigning the orientations of all edges. Therefore, a partial edge-ori-
entation scheme H can be obtained through executing the following procedure.

Procedure Partial-EOS

Input: A graph G(V,E) and an integer k such that k * n P m.
Output: A partial edge-orientation scheme H such that outdeg(v) 6 k, for
each v 2 V.
Method:
H = ;; /* H is set to be empty, initially. */
for each vertex u

outdeg(u) = 0;
for each edge e = (u,v) incident with u
if (outdeg(u) 6 (k � 1)) and (the orientation of e is undetermined)
{

H = H [ {u! v};
/* The orientation of e is from u to v. */
outdeg(u) = outdeg(u) + 1;

}
else

discard e; /* Let the orientation of e be undetermined */
endif

endfor
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endfor

End Partial-EOS

An edge e = (x,y) now is called an undetermined edge if its orientation has not
been determined. Otherwise, e is called a determined edge. If the orientations of
all edges in G currently have been assigned within H, then h(G) = h(H) 6 k and
the answer of the Out-Degree Bounded EOP is certainly �YES�. Handling the
situation where undetermined edges exist is the remaining task.

Lemma 3. Suppose that e = (x,y) is an undetermined edge when Procedure

Partial-EOS has terminated. Then, the following properties hold. (1)

outdeg(x) = outdeg(y) = k, and (2) there must exist a vertex z such that
outdeg(z) 6 (k � 1) and all edges incident with it are determined edges.
Proof. (1) This is trivial from the logic flow of the codes in Procedure Partial-
EOS.

(2) It is trivial that outdeg(v) 6 k, for each v 2 V, after executing Procedure
Partial-EOS. The fact that e = (x,y) is undetermined implies that if out-
deg(v) = k, for each v 2 V, then m P k * n + 1. This contradicts the assumption
that m 6 k * n. Next, assume that z is a vertex such that outdeg(z) =
k 6 (k � 1). If there exists an undetermined edge (z,u), then the orientation
of this edge must have been assigned as ‘‘z! u’’ during the execution of
Procedure Partial-EOS and outdeg(z) P (k + 1). Another contradiction
occurs. h

Let V=k = {v 2 V joutdeg(v) = k} and V<k = {v 2 V joutdeg(v) < k}. Lemma
3 implies that V<k 5 ;, V=k 5 ; and V = V=k [ V<k. For each u 2 V, let
X(u) = {v 2 V j there exists a directed path from v to u within H}, i.e., X(u) is
the set of vertices which can reach u via directed edges within H, and X(Q) rep-
resents the set

S
u2QXðuÞ, for any Q � V. Similarly, let C(u) = {v 2 V j there

exists a directed path from u to v within H}, i.e., C(u) is the set of vertices that
can be reached from u via directed edges within H, and C(Q) represents the setS

u2QCðuÞ, for any Q � V.

For any undetermined edge e = (x,y), if a directed path Pe:
u0! u1! � � � ! uq�1! uq exists such that u0 2 {x,y}, {u1, . . . ,uq�1} � V=k,
and uq 2 V<k, then let He be the new edge-orientation scheme modified from
H by performing the following two steps. After then, checking that
h(He) = h(H) = k is an easy task.

Step 1: Reverse the orientations of all edges in Pe.
Step 2: If u0 is x then assign the orientation of e as ‘‘x! y’’. Otherwise, the

orientation of e is assigned as ‘‘y! x’’.
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Lemma 4. Let H be any partial edge-orientation scheme of G(V, E) by executing

Procedure Partial-EOS and assume that e1, . . . , et, t P 1, are undetermined

edges. The undetermined edges are now examined from e1 to et sequentially. The

answer of the Out-Degree Bounded EOP is �Yes� iff a directed path P ej exists, for

all 1 6 j 6 t.
Proof. The definition of P ej �s directly implies that if a directed path P ej exists,
for all 1 6 j 6 t, then the answer of the Out-Degree Bounded EOP is �Yes�.

The case when P ej does not exist for some ej = (xj,yj) implies that
xj 62 X(V<k) and yj 62 X(V<k), i.e., (C(xj) [ C(yj))�V=k, by the definitions of
V=k and V<k. Let GejðV ej ;EejÞ be the subgraph induced by the vertex-set
V ej ¼ fxj; yjg [ ðCðxjÞ [ CðyjÞÞ. Then, outdeg(v) = k, for each v 2 V ej , and
jEej jP k � jV ej j þ 1. We must have hðGejÞ > k. The inequality h(G) > k can be
derived from Lemma 1, i.e., the answer of the Out-Degree Bounded EOP is
�No�. h

The following algorithm can now be designed for correctly solving the Out-
Degree-EOP on general graphs.

Algorithm Out-Degree-EOP

Input: A graph G(V,E) with n vertices and m edges.
Output: An edge-orientation scheme A* such that h(A*) = maxv2V{out-
deg(v)} is minimized.
Method:� �
lb ¼ m
n ; ub ¼ maxfdegðvÞjv 2 V g; A* = ;;

while (lb 6 ub)
mid = (lb + ub)/2;
H = Partial-EOS(G,mid);
/* Find a partial edge-orientation scheme H such that h(H) 6 mid. */
EU = the set of undetermined edges;
if (EU 5 ;)
{/* Assume that EU = {e1, . . . ,et} */
for each edge ej, 1 6 j 6 t

P ej ¼ Find-PathðÞ;
/* Find a directed path as stated above. */
if (P ej is not empty)
{

Adjust(H);
/* Adjust H by reversing the orientations of all edges in P ej

and assign the orientation of ej accordingly. */
EU = EU � {ej};

}
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else /* P ej does not exist. */
break; /* Terminate the for . . . endfor loop. */

endif

endfor

}
endif
if (EU == ;)
{A* = H; ub = mid � 1;}

else
lb = mid + 1;
endif

endwhile

return A*;
End Out-Degree-EOP
Theorem 11. The Out-Degree-EOP on general graphs can be solved in� �� �

O(mnd logv)-time, where v ¼ max 1; d� m

n .
Proof. Determining the time-complexity of Algorithm Out-Degree-EOP is the
task here. Assume that {e1, . . . ,et} is the set of undetermined edges after execut-
ing Procedure Partial-EOS. Let ej = (uj,vj), 1 6 j 6 t. The discussions so far
imply that uj,vj 2 V=k, 1 6 j 6 t. Thus, it can be derived that t 6 d * jV=kj 6
d * n.

The time-complexity of the algorithm can be summarized as follows:

(1) If m = 1, the number of iterations of the while . . . endwhile loop is 1.
Otherwise, it is at most log d� m

n

� �� 	
.

(2) The number of iterations of the for . . . endfor loop is at most d * n.
(3) The time-complexity for Procedure Partial-EOS is clear O(m).
(4) Procedure Find-Path and Procedure Adjust can be done in O(m)-time,

respectively.

The time-complexity of Algorithm Out-Degree-EOP is O(mnd logv)-time via
summarizing the above reasoning, where v ¼ max 1; d� m

n

� �� �
. h

If the degrees of all vertices are bounded by a constant, i.e., d is a constant,
then the time-complexity of Algorithm Out-Degree-EOP can be clearly reduced
to O(mn).

Theorem 12. The Out-Degree-EOP on general graphs with bounded degrees can

be solved in O(mn)-time.



2802 W.C.-K. Yen / Information Sciences 176 (2006) 2791–2816
4. The Vertex-Weighted EOP on general graphs

This section will generalize the algorithmic result of the Out-Degree-EOP to
the Vertex-Weighted EOP. Suppose that G(V,E,C) is an input instance of the
Vertex-Weighted EOP and assume that b = maxv2V{C(v)}. For any edge-orien-
tation scheme A, define D(v) = C(v) + outdeg(v), for each v 2 V. The following
lemma can be established from the definition of the Vertex-Weighted EOP
directly.

Lemma 5. Let A be any edge-orientation scheme of the Vertex-Weighted EOP

on the graph G(V,E,C). Then, pðAÞ ¼ maxv2V fDðvÞgP b.

Lemma 5 implies that we can start from the following corresponding deci-
sion problem, where d has been defined as maxv2V{deg(v)} in the previous
sections.

The bounded vertex-weighted edge-orientation problem (the Bounded Vertex-
Weighted EOP): Given a graph G(V,E,C) and an integer 0 6 k 6 d, determine
whether there exists an edge-orientation scheme A* such that p(A*) 6 (b + k).

Lemma 6. For any vertex-weighted graph G(V, E,C), letGQ(VQ,EQ) be the

subgraph induced by any vertex subset Q of V. Then, p(GQ) 6 p(G).
Proof. Suppose that A is any edge-orientation scheme of G such that
p(A) = p(G). Then, D(v) 6 p(G), for each v 2 V. Let AQ be the edge-orientation
scheme via deleting the edges in (E � EQ). Ascertaining that AQ is a feasible
edge-orientation scheme of GQ and D(v) 6 p(G), for each v 2 VQ, within AQ

can be easily done. This implies that p(GQ) 6 p(G). h

Given any non-negative integer k, define quota(v) = (b + k) � C(v), for each
v 2 V.

Lemma 7. Given a vertex-weighted graph G(V,E, C) and a non-negative integer

k, if the answer of the Bounded Vertex-Weighted EOP is �YES�, thenP
v2V quotaðvÞP m.
Proof. Suppose that A is an edge-orientation scheme such that p(A) 6 (b + k).
This implies that the following inequalities hold, for each v 2 V:

DðvÞ 6 ðbþ kÞ ) ðCðvÞ þ outdegðvÞÞ 6 ðbþ kÞ
) outdegðvÞ 6 ððbþ kÞ � CðvÞÞ
) outdegðvÞ 6 quotaðvÞ.
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We must have m ¼
P

v2V outdegðvÞ 6
P

v2V quotaðvÞ according to the definition
of edge-orientation schemes. h

Consider a graph G(V,E,C) and a non-negative integer k such thatP
v2V quotaðvÞP m for the Bounded Vertex-Weighted EOP. Make a restriction

that D(v) 6 (b + k), for each v 2 V, after assigning the orientations of all edges.
A partial edge-orientation scheme R can be obtained by performing the follow-
ing procedure:

Procedure Partial-EOS-2

Input: A graph G(V,E,C) and an integer k P 0 such thatP
v2V quotaðvÞP m.

Output: A partial edge-orientation scheme R such that D(v) 6 (b + k), for
each v 2 V.
Method:
R = ;; /* R is set to be empty, initially. */
for each vertex u

{
outdeg(u) = 0; D(v) = C(v);
for each edge e = (u,v) incident with u
if D(v) 6 ((b + k) � 1) and (the orientation of e is undetermined)
{

R = R [ {u! v}; /* The orientation of e is from u to v. */
outdeg(u) = outdeg(u) + 1; D(v) = D(v) + 1;

}
else

discard e; /* Let the orientation of e be undetermined */
endif

endfor

}
endfor

End Partial-EOS-2

If all edges in G are already determined, then p(G) = p(R) 6 (b + k) and the
answer of the Bounded Vertex-Weighted EOP is �YES�. The remaining task is
to assign the orientations of all undetermined edges.

Lemma 8. Suppose that e = (x,y) is an undetermined edge when Proce-

durePartial-EOS-2 terminated. The following properties must hold. (1)

(D(x) + 1) > (b + k) and (D(y) + 1) > (b + k). (2) There must exist a

vertex z such that D(z) 6 ((b + k) � 1) and all edges incident with it are

determined edges.
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Proof. (1) The statement is trivially true based upon the logic of the codes in
Procedure Partial-EOS-2.

(2) It is trivial that D(v) 6 (b + k), for each v 2 V, after executing Procedure
Partial-EOS-2. Since e = (x,y) is undetermined, if D(v) = C(v) + out-
deg(v) > (b + k), for each v 2 V, then outdeg(v) > ((b + k) � C(v)) P quota(v).
This implies that m ¼

P
v2V outdegðvÞ >

P
v2V quotaðvÞ þ 1. This is contradic-

tory to the assumption that m 6
P

v2V quotaðvÞ. Next, assume that z is a vertex
such that D(z) = k 6 ((b + k) � 1). If there exists an undetermined edge (z,u),
then the orientation of this edge must have been assigned as ‘‘z! u’’ during the
execution of Procedure Partial-EOS-2 and outdeg(z) P k + 1. Another con-
tradiction occurs. h

Let V1 = {v 2 V j (D(v) + 1) > (b + k)} and V2 = {v 2 V j (D(v) + 1) 6
(b + k)}. Lemma 8 implies that V1 5 ;, V2 5 ; and V = V1 [ V2. For any unde-
termined edge e = (x,y), if a directed path Pe: u0! u1! � � � ! uq�1! uq exists
such that u0 2 {x,y}, {u1, . . . ,uq�1} � V1, and uq 2 V2, then let He be the new
edge-orientation scheme modified from H by performing the following two
steps. After that, the property that p(He) = p(H) = (b + k) can be easily verified.

Step 1: Reserve the orientations of all edges in Pe.
Step 2: Assign the orientation of e as ‘‘x! y’’ if u0 is x. Otherwise, the orien-

tation of e is assigned as ‘‘y! x’’.
Lemma 9. Let H be any partial edge-orientation scheme of a graph G(V,E,C)

by executing Procedure Partial-EOS-2. Assume that e1, . . . , et, t P 1, are all

undetermined edges and they are examined from e1 to et one by one. The answer of

the Bounded Vertex-Weighted EOP is �Yes� iff a directed path P ej exists, for all
1 6 j 6 t.
Proof. The definition of P ej �s directly implies that if a directed path P ej

exists, for all 1 6 j 6 t, then the answer of the Bounded Vertex-Weighted
EOP is �Yes�.

The notations X(Q) and C(Q) have been defined in Section 2 for each vertex
Q � V. The case when P ej does not exist for some ej = (xj,yj) implies that
xj 62 X(V2) and yj 62 X(V2), i.e., (C(xj) [ C(yj)) � V1 by the definitions of V1 and
V2. Let GejðV ej ;EejÞ be the subgraph induced by the vertex-set
V ej ¼ fxj; yjg [ ðCðxjÞ [ CðyjÞÞ. Then, (D(v) + 1) > (b + k), for each v 2 V ej ,
and jEej jP

P
v2V ei

quotaðvÞ þ 1

 �

. We must have pðGejÞ > ðbþ kÞ. We can
derive that p(G) > (b + k) by Lemma 6, i.e., the answer of the Bounded Vertex-
Weighted EOP with G and k is �No�. h

The following algorithm can now be designed to correctly solve the Vertex-
Weighted EOP on general graphs.
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Algorithm Vertex-Weighted-EOP

Input: A graph G(V,E,C) with n vertices and m edges.
Output: An edge-orientation scheme A* such that p(A*) = maxx2V{C(v) +
outdeg(x)} is minimized.
Method:

lb = 0; ub = maxv2V{deg(v)};
A* = ;;
while (lb 6 ub)
mid = (lb + ub)/2;
H = Partial-EOS-2(G,mid);
/*
Find a partial edge-orientation scheme H such that p(H) 6 (b +
mid).
*/
EU = the set of undetermined edges;
if (EU 5 ;)
{/* Assume that EU = {e1, . . . ,et} */

for each edge ej, 1 6 j 6 t
P ej ¼ Find-Path-2ðÞ;
/* Find a directed path as stated above. */
if (P ej is not empty)
{

Adjust-2(H);
/* Adjust H by reversing the orientations of all edges in P ej

and assign the orientation of ej accordingly. */
EU = EU � {ej};

}
else /* P ej does not exist. */

break; /* Terminate the for . . . endfor loop. */
endif

endfor

}
endif

if (EU == ;)
{A* = H; ub = mid � 1;}
else

lb = mid + 1;
endif

endwhile

return A*;
End Vertex-Weighted-EOP
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Theorem 13. The Vertex-Weighted EOP on general graphs can be solved in
O(mnd logd)-time.
Proof. Assume that {e1, . . . ,et} is the set of undetermined edges after executing
Procedure Partial-EOS-2. Let ej = (uj,vj), 1 6 j 6 t. From the discussions so
far, we know that uj, vj 2 V1, 1 6 j 6 t. Thus, we can derive that
t 6 d * jV1j 6 d * n.

The time-complexity of Algorithm Vertex-Weighted EOP is O(mnd logd) by
the following reasoning:

(1) The number of iterations of the while . . . endwhile is at most logd.
(2) The number of iterations of the for . . . endfor loop is at most d * n.
(3) The time-complexity for Procedure Partial-EOS-2 is clear O(m).
(4) Both Procedure Find-Path-2 and Procedure Adjust-2 can be done in

O(m)-time. h

The following theorem holds by the same reasoning of Theorem 12.

Theorem 14. The Vertex-Weighted EOP on general graphs with bounded

degrees can be solved in O(mn)-time.
5. NP-hardness of the EOP on bipartite graphs and chordal graphs

This section will present very different algorithmic results with respect to
previous sections–the EOP is NP-hard on bipartite graphs and chordal graphs.
A graph G(V,E) is called a bipartite graph [20] if V consists of two disjoint sets
X and Y such that (u,v) 2 E implies that either (u 2 X andv 2 Y) or (u 2 Y and
v 2 X).

Another special version of the EOP and a corresponding decision problem
are proposed.

The edge-weighted only edge-orientation problem (the Edge-Weighted Only
EOP): Let G(V,E,W) be a graph in which each edge e = (u,v) is associated with
two positive weights, W(u! v) and W(v! u). Denote r(A) as maxx2V

P
x!zW

�
ðx! zÞg, for each edge-orientation scheme A. The problem is to identify an
edge-orientation scheme A* such that r(A*) is minimized. Let r(G) = min
{r(A) jA is an edge-orientation scheme of G} hereafter.

The edge-weighted bounded edge-orientation problem (the Edge-Weighted
Bounded EOP): Given a positive-edge-weighted graph G(V,E,W) and a posi-
tive constant k, determine whether there exists an edge-orientation scheme
A* such that rðA�Þ ¼ maxx2V

P
x!zW ðx! zÞ

� �
6 k.
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The following NP-complete problem is used for reduction [18].
The monotone three satisfiability problem (the M3SAT problem): Given a set

C of Boolean clauses in the conjunctive normal form in which each clause con-
tains either only positive literals, say ui�s, or only negative literals, say ui�s, and
each clause contains exactly three literals, the task is to determine whether the
given Boolean formula is satisfiable or not.

Lemma 10. The Edge-Weighted Bounded EOP is NP-complete on bipartite

graphs.
Proof. It is clear that the Edge-Weighted Bounded EOP belongs to the class of
NP problems. Suppose that there is an instance of the M3SAT problem with
the variable-set U = {u1, . . . ,uh} and the clause-set C = {c1, . . . ,ca,ca+1, . . . ,cb},
where {c1, . . . ,ca} is the set of clauses containing only positive literals and
{ca+1, . . . ,cb} is the set of clauses containing only negative literals. Let
U ¼ fu1; . . . ; uhg. A positive-edge-weighted graph G(X [ Y,E,W) can be con-
structed as follows, for any constant k > 0.

X = U [ {ca+1, . . . ,cb} and Y ¼ U [ fc1; . . . ; cag;
E ¼ fðci; ujÞjci contains uj; 1 6 i 6 a and 1 6 j 6 hg [ fðui; uiÞj1 6 i 6 hg[
fðci; ujÞjci contains uj; aþ 1 6 i 6 b and 1 6 j 6 hg;
W ðui ! uiÞ ¼ W ðui ! uiÞ ¼ k, for each edge ðui; uiÞ, 1 6 i 6 h;
W(ci! uj) = k/2 and W(uj! ci) = k/deg(uj), for each edge (ci,uj), 1 6 i 6 a
and 1 6 j 6 h;
W ðci ! ujÞ ¼ k=2 and W ðuj ! ciÞ ¼ k= degðujÞ, for each edges ðci; ujÞ,
a + 1 6 i 6 b and 1 6 j 6 h.

Each edge in G connects a vertex in X and another vertex in Y. Therefore, G

is a bipartite graph. Meanwhile, deg(ci) = 3, for all 1 6 i 6 b. The remaining
task is to show that there exists an edge-orientation scheme H such that
maxv2V

P
x!zW ðx! zÞ

� �
6 k in G iff the Boolean formula

c1 • � � � • ca • ca+1 • � � � • cb is satisfiable.
Assume that there is an assignment satisfying the input Boolean formula.

Let uz1
¼ � � � ¼ uzp ¼ TRUE and uw1

¼ � � � ¼ uwq ¼ FALSE, where p + q = h.
Then, zi 5 wj, for all i and j. An edge-orientation scheme H can be obtained via
executing the following code segment.

UT ¼ fuz1
; . . . ; uzpg; UF ¼ fuw1

; . . . ; uwqg;
for each e ¼ ðuzi ; uziÞ, 1 6 i 6 p
assign the orientation of e from uzi to uzi ;
endfor

for each e ¼ ðuwj ; uwjÞ, 1 6 j 6 q
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assign the orientation of e from uwj to uwj ;
endfor

for each e = (cj,ui), 1 6 j 6 a and ui 2 U

if ui 2 UT
assign the orientation of e from ui to cj;
else

assign the orientation of e from cj to ui;
endif

endfor

for each e ¼ ðcj; uiÞ, a + 1 6 j 6 b and ui 2 U
if ui 2 UF
assign the orientation of e from ui to cj;
else

assign the orientation of e from cj to ui;
endif

endfor

Verifying that maxx2V
P

x!zW ðx! zÞ
� �

6 k can be achieved based upon the
following reasoning:

1. Each clause cj, 1 6 j 6 b, must contain at least one true literal in this assign-
ment. This implies that indeg(cj) P 1 within H. We can further claim thatP

cj!u;u2U[U W ðcj ! uÞ 6 outdegðcjÞ � ðk=2Þ 6 2 � ðk=2Þ ¼ k since deg(cj) =
3.

2. The above codes guarantee that outdeg(v) = 0, for all v 2 ðU [ UÞ�
ðUT [ UFÞ.

3.
P

v!cj
W ðv! cjÞ 6 outdegðvÞ � ðk= degðvÞÞ 6 degðvÞ � ðk= degðvÞÞ ¼ k, for

each v 2 (UT [ UF).

Next, if there exists an edge-orientation scheme H such that
maxx2V

P
x!zW ðx! zÞ

� �
6 k, then either outdeg(ui) = 0 or outdegðuiÞ ¼ 0

since W ðui ! uiÞ ¼ W ðui ! uiÞ ¼ k, for each edge ðui; uiÞ. In addition, for each
clause c containing any literal v, W ðc; vÞ ¼ k

2 implies that outdeg(c) 6 2, i.e.,
there must exist a literal y in c such that the orientation of the edge (c,y) is from
y to c. Let S denote the set fv 2 ðU [ UÞjoutdegðvÞ > 0g. The assignment in
which the literals corresponding to S are assigned to be TRUE certainly
satisfies the input Boolean formula. h
Theorem 15. The EOP is NP-hard on bipartite graphs.

The class of chordal graphs is the second class of graphs considered in this
section. An edge is a chord of any cycle in any graph G if it connects two non-
consecutive vertices of this cycle. A graph is called a chordal graph [19] if each
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Fig. 3. A chordal graph G(V,E).
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cycle with a length greater than three has a chord. The graph depicted in Fig. 3
is an example of a chordal graph.

Lemma 11. The Edge-Weighted Bounded EOP is NP-complete on chordal

graphs.
Proof. Suppose that there is an instance of the M3SAT problem with the var-
iable-set U = {u1, . . . ,uh} and the clause-set C = {c1, . . . ,ca,ca+1, . . . ,cb}, where
{c1, . . . ,ca} is the set of clauses containing only positive literals and
{ca+1, . . . ,cb} is the set of clauses containing only negative literals. Let
U ¼ fu1; . . . ; uhg. A positive-edge-weighted graph G(V,E,W) can be con-
structed as follows for any positive constant k.

V ¼ U [ U [ C;
E ¼ fðcj; uiÞ; ðcj; uiÞjcj contains ui; 1 6 j 6 a and 1 6 i 6 hg [ fðcj; uiÞ; ðcj;
uiÞjcj contains ui;aþ 16 j6 b and 16 i 6 hg [ fðui;uiÞj16 i6 hg [ fðcs; ctÞj
16 s 6¼ t 6 bg;
W ðui ! uiÞ ¼ W ðui ! uiÞ ¼ k, for each edge ðui; uiÞ, 1 6 i 6 h;
W(cj! ui) = k/(b � j + 5) and W(ui! cj) = k/deg(ui), for each edge (cj,ui),
1 6 j 6 b and 1 6 i 6 h;
W ðcj ! uiÞ ¼ k=ðb� jþ 5Þ and W ðui ! cjÞ ¼ k= degðuiÞ, for each edge
ðcj; uiÞ, 1 6 j 6 b and 1 6 i 6 h;
W(cj! cs) = k/(b � j + 5), for all 1 6 j 6 b and j < s;
W(cj! cs) =1, for all 1 6 j 6 b and j > s;

It is clear that jNeighborsðcjÞ \ ðU [ UÞj ¼ 6, for all 1 6 j 6 b. To show that
G is chordal, assume that a cycle U with a length greater than three exists and
the cycle is v1 —v2 — � � �—vp —v1, p P 4, i.e., its vertex-set is {v1,v2, . . . ,vp}.
The following cases should be handled based upon the construction rules of G.

Case 1. ui 62 U and ui 62 U, for some 1 6 i 6 h.
All vertices of U must be clause vertices in this case and a chord must
exist since they form a clique of G.



2810 W.C.-K. Yen / Information Sciences 176 (2006) 2791–2816
Case 2. ui 2 U and ui 62 U, for some 1 6 i 6 h.
U must be in the form � � �—cs—ui—ct— � � � in this situation and the
edge ðcs; ctÞ is a chord of U.

Case 3. ui 62 U and ui 2 U, for some 1 6 i 6 h.
This case is just a symmetrical case to Case 2.

Case 4. ui 2 U and ui 2 U, for some 1 6 i 6 h.
U must be in the form � � �—cs—ui—ui—ct— � � � in this case and the
edge ðcs; uiÞ is a chord of U.

The remaining task is to show that there exists an edge-orientation scheme
H such that maxx2V

P
x!zW ðx! zÞ

� �
6 k in G iff the Boolean formula

c1 • � � � • ca • ca+1 • � � � • cb is satisfiable.
Assume that there is an assignment satisfying the input Boolean formula.

Let uz1
¼ � � � ¼ uzp ¼ TRUE and uw1

¼ � � � ¼ uwq ¼ FALSE, where p + q = h.
Then, zi 5 wj, for all i and j. An edge-orientation scheme H can be obtained via
executing the following code segment:

UT ¼ fuz1
; . . . ; uzpg; U F ¼ fuw1

; . . . ; uwqg;
for each e ¼ ðuzi ; uziÞ, 1 6 i 6 p
assign the orientation of e from uzi to uzi ;
endfor

for each e ¼ ðuwj ; uwjÞ, 1 6 j 6 q
assign the orientation of e from uwj to uwj ;

endfor

for each e = (cj,ui), 1 6 j 6 a and ui 2 U

if ui 2 UT
assign the orientation of e from ui to cj;
else

assign the orientation of e from cj to ui;
endif

endfor

for each e ¼ ðcj; uiÞ, a + 1 6 j 6 b and ui 2 U
if ui 2 UF
assign the orientation of e from ui to cj;
else

assign the orientation of e from cj to ui;
endif

endfor
for each cj, 1 6 j 6 b

for each undetermined edge (cj,v)

if v 2 ðU [ UÞ

assign the orientation of e from cj to v;
else /* v 2 C and assume that v = ct. */
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if j < t

assign the orientation of e from cj to ct;
endif

endif

endfor

endfor

Verifying that maxx2V
P

x!zW ðx! zÞ
� �

6 k can be achieved based upon the
following reasoning:

1. Each clause cj, 1 6 j 6 b, must contain at least one true literal in this assign-
ment. This implies that indeg(cj) P 1 within H. We can further claim
that

P
cj!v;v2ðC[U[UÞW ðcj ! vÞ 6 outdegðcjÞ � k=ðb� jþ 5Þ 6 ðb� jþ 5Þ�

ðk=ðb� jþ 5ÞÞ ¼ k based upon the rules of assigning weights of all edges
since jNeighborsðcjÞ \ ðU [ UÞj ¼ 6.

2. The above codes guarantee that outdeg(v) = 0, for each v 2 ðU [ UÞ�
ðUT [ UFÞ.

3.
P

v!cj
W ðv! cjÞ 6 outdegðvÞ � ðk= degðvÞÞ 6 degðvÞ � ðk= degðvÞÞ ¼ k, for

each v 2 (UT [ UF).

Next, if there exists an edge-orientation scheme H such that
maxx2V

P
x!zW ðx! zÞ

� �
6 k, then either outdeg(ui) = 0 or outdegðuiÞ ¼ 0,

for each edge ðui; uiÞ, since W ðui ! uiÞ ¼ W ðui ! uiÞ ¼ k. Meanwhile, for each
clause cj, 1 6 j 6 b, our rules of assigning weights of edges imply that
outdeg(cj) 6 (b � j + 5), i.e., there must exist a literal y in cj such that the
orientation of the edge (cj,y) is from y to cj. Let S denote the set
fv 2 ðU [ UÞjoutdegðvÞ > 0g. Set all literals corresponding to S as TRUE.
This assignment consequently satisfies the Boolean formula. h
Theorem 16. The EOP is NP-hard on chordal graphs.
6. An O(n logn)-time algorithm for the EOP on trees

This section will propose an O(n logn)-time algorithm to solve the EOP on
trees. Given a tree T and any vertex r, the tree will be denoted by T(r) hereafter.
A general tree T(r) and its subtrees are shown in Fig. 4.

Considering each subtree T(xj), the orientation of the edge (r,xj) can be
either from r to xj or from xj to r. If the orientation is from r to xj, then
W(r! xj) will be added to the total cost of r and an optimal edge-orientation
scheme of T(xj) can be solved recursively and independently. We denote that
l(T(xj, r! xj)) = min{l(A) jA is an edge-orientation scheme of T(xj) in which
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Fig. 4. The subtrees of T(r).
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the orientation of the edge (r,xj) is from r to xj}. Otherwise, the orientation is
from xj to r. W(xj! r) will be added to the total cost of xj by the definition of
the EOP. Replace C(xj) by C(xj) + W(xj! r) and then recursively find an
optimal edge-orientation scheme of T(xj). We denote that l(T(xj,
xj! r)) = min{l(A) jA is an edge-orientation scheme of T(xj) in which the ori-
entation of the edge (r,xj) is from xj to r}.

If the subtree T(xj) only consists of xj, then l(T(xj, r! xj)) = C(xj) and
l(T(xj,xj! r)) = C(xj) + W(xj! r). Otherwise, a feasible edge-orientation
scheme H of T(r) can be obtained via assigning orientations of all edges
(r,xj) from xj to r and the following formula can be derived.

lðT ðrÞÞ 6 lðHÞ ¼ max CðrÞ;max
16j6p

lðT ðxj; xj ! rÞÞ
� �� 

. ð6:1Þ

The task required here is to determine a subset Q ¼ fðr; xq1
Þ; . . . ; ðr; xqa

Þg
(may be empty) of {(r,x1), . . . , (r,xp)} such that reversing the orientations of
all edges in Q can obtain l(T(r)). The following code segment is designed for
identifying such a set:

Q = ;; K = {T(x1), . . . ,T(xp)};
currentl = max{C(r), max16j6p{l(T(xj,xj! r))}};
sort T(xj) into non-decreasing order using l(T(xj,xj! r)) as keys, 1 6 j 6 p;
while (Q 5 K)
maxl = max{l(T(xz,xz! r)) jT(xz) 2 K � Q};
H = {T(xs) 2 K � Q jl(T(xs,xs! r)) is equal to maxl};

new l ¼ max CðrÞ þ
P

T ðxsÞ2H W ðr ! xsÞ;
n

max lðT ðxz; xz ! rÞÞf jT ðxzÞ 2 K � ðH [ QÞg
o

;

newC r ¼ CðrÞ þ
P

T ðxsÞ2H W ðr! xsÞ;
do case

case newl < currentl
{

C(r) = newC_r;
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Q = Q [ H; currentl = newl;
}

case newl = currentl
if newC_r 6 C(r)
{

C(r) = newC_r;
Q = Q [ H; currentl = newl;

}
case newl > currentl

exit(); /* Terminate the while . . .endwhile loop. */
endcase

endwhile
Lemma 12. Let Qs denote the set derived after the sth iteration of the while loop

in the above code segment. Then, max CðrÞ þ
P

T ðxzÞ2Qs
W ðr! xzÞ;

n
max lðT ðxz;f

xz ! rÞÞjT ðxzÞ 2 K � Qsgg 6 max CðrÞ þ
P

T ðxzÞ2Qs�1
W ðr ! xzÞ;max lðT ðxz;f

n
xz ! rÞÞjT ðxzÞ 2 K � Qs�1gg.
Lemma 13. Let Q be the set obtained after terminating the above code segment.

Then, max CðrÞ þ
P

T ðxzÞ2QW ðr! xzÞ;maxflðT ðxz; xz ! rÞÞjT ðxzÞ 2
n

K � Qgg
6 max CðrÞ þ

P
T ðxzÞ2H W ðr ! xzÞ;max lðT ðxz; xz ! rÞÞjT ðxzÞ 2 K � Hf g

n o
, for

each subset H of {T(x1), . . . ,T(xp)}.
Proof. Suppose that H is any optimal edge-orientation scheme of T. Let Qs

denote the set derived after the sth iteration of the while loop in the above code
segment. We give the following reasoning step by step:

(1) If Q1 is not empty, then H 2 {R is an edge-orientation scheme of
T j r! xz, for all T(xz) 2 Q1.}

(2) If Q2 is not empty, then H 2 {R is an edge-orientation scheme of
T j r! xz, for all T(xz) 2 Q2.}

(3) . . .

The above reasoning just implies that H 2 {R is an edge-orientation scheme

of T j r! xz, for each T(xz) 2 Q} and max CðrÞ þ
P

T ðxzÞ2QW ðr! xzÞ; max
n

flðT ðxz; xz ! rÞÞjT ðxzÞ 2 K �Qgg 6 max CðrÞ þ
P

T ðxzÞ2H W ðr! xzÞ;maxfl�
n

ðT ðxz; xz ! rÞÞjT ðxzÞ 2 K �Hgg, for each subset H of {T(x1), . . . ,T(xp)}. h
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Theorem 17. The EOP on trees can be solved in O(n logn)-time.
Proof. Lemmas 12 and 13 imply that an optimal edge-orientation scheme of
T(r) can be obtained by recursively deriving l(T(xj, r! xj)) and l(T(xj,xj! r))
for each subtree T(xj) and then examining each child of r constant times after
sorting all subtrees T(xj). Let Time(n) be the time-complexity of the EOP on
T(r). The following equations can be established, where V(T(xj)) is the ver-
tex-set of each subtree T(xj):

TimeðnÞ ¼
Xp

½TimeðjV ðT ðxjÞÞjÞ� þOðp log pÞ ¼ Oðn log nÞ. �
j¼1
7. Conclusions

Graph orientation is a fundamental and important topic with rich research
results. Most of the previous research dealt with unweighted graphs. This paper
has proposed a new research issue, the edge-orientation problem (the EOP),
which transforms undirected graphs with costs on vertices and weights on
edges to digraphs in order to minimize some practical cost measurements.
Two important variants of the EOP, the Out-Degree-EOP and the Vertex-
Weighted EOP, have been proposed and studied. Table 1 summarizes the
results achieved and makes a comparison of our results to previous works.

In the future, some research directions deserve detailed attention. First, the
techniques used and the algorithmic results will greatly help the implementa-
tion of the WFQ on real networks to enhance utilization of links. Studying
how to really apply the EOP to the WFQ and network flow control is an inter-
esting and meaningful issue. Solving the EOP on other classes of graphs, such
Table 1
Comparison of our results to previous works

Problem Our result Previous results

The Out-
Degree-EOP

(1) O(mnd logv)-time on general graphs,
where d = maxv2V{deg(v)}, in which deg(v)
denotes the degree of any vertex v and
v ¼ max 1; d� m

n

� �� �
O(m2)-time on general
graphs [36]

(2) O(mn)-time on graphs with bounded degrees

The Vertex-
Weighted EOP

(1) O(mnd logd)-time on general graphs None
(2) O(mn)-time on graphs with bounded degrees

The EOP (1) NP-hard on bipartite graphs and chordal graphs None
(2) O(n logn)-time on trees
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as cactus graphs, block graphs, interval graphs, is another important future
research topic. Finally, examining the EOP and its other practical variants will
be very meaningful in identifying the properties which will help solve funda-
mental problems such as shortest paths and domination.
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[14] A. Frank, Z. Király, Graph orientations with edge-connection and parity constraints,
Combinatorica 22 (2002) 47–70.
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