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THE LAPLACIAN SPECTRUM OF A GRAPH II*

ROBERT GRONE AND RUSSELL MERRIS

Abstract. Let G be a graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its
adjacency matrix. Then L(G) D(G) A(G) is the Laplacian matrix of G. The first section of this paper is
devoted to properties of Laplacian integral graphs, those for which the Laplacian spectrum consists entirely of
integers. The second section relates the degree sequence and the Laplacian spectrum through majorization. The
third section introduces the notion of a d-cluster, using it to bound the multiplicity of d in the spectrum
of L(G).
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1. Laplacian integral graphs. Let G (V, E) be a graph with vertex set V
V(G) {Vl, v_,..., vn and edge set E E(G). Denote the degree of vertex vi by d(vi).
Let D(G) diag (d(v), d(v_),..., d(vn)) be the diagonal matrix of vertex degrees. The
Laplacian matrix is L(G) D(G) A(G), where A(G) is the (0, 1)-adjacency matrix. It
follows from the Gergorin disc theorem that L(G) is positive semidefinite and from the
matrix-tree theorem (or from [3]) that its rank is n w(G), where w(G) is the number
of connected components of G. (More on the Laplacian may be found in [10] or [17].)
Denote the spectrum of L(G) by

S(G) (,,, k2 kn)

where > ,2 > > ,n 0 are the eigenvalues of L(G). If more than one graph is
involved, we may write hi(G) in place of ,i. The multiplicity of X as an eigenvalue of
L(G) will be denoted rna(X).

The central theme ofthis article is the occurrence ofintegers in S(G). Ifthe spectrum
consists entirely of integers, we say G is Laplacian integral. The study of graphs whee
adjacency spectra consist entirely of integers was begun in ]. Cvetkovi4 [4] proved
that the set of connected, r-regular, adjacency integral graphs is finite. When r 2, there
are three such graphs, namely, C3, C4, and C6. (When r 3, there are 13 such graphs
[2], t21].) If G is r-regular, then , is an eigenvalue of L(G) if and only if r , is an
eigenvalue of A(G). Thus, the theory of Laplacian integral graphs coincides with its ad-
jacency counterpart on regular graphs. Elsewhere, there can be remarkable differences.
Consider, for example, the 112 connected graphs on six vertices. Six ofthem are adjacency
integral. Of these six, five are regular: C6 and its complement, K6, K3.3, and the cocktail
party graph. The sixth is the tree obtained by joining the centers oftwo copies ofP3 with
a new edge. As we have observed, the first five of these are also Laplacian integral; the
sixth is not. On the other hand, there are a total of 37 connected Laplacian integral
graphs on six vertices [18].

One general difference between the two theories concerns complements. Let Jn be
the n-by-n matrix, each of whose entries is 1. Then, for any graph G on n vertices,

Received by the editors November 20, 1991; accepted for publication (in revised form) March 23, 1993.
Department of Mathematical Sciences, San Diego State University, San Diego, California 92182. The

work of this author was supported by National Science Foundation grant DMS9007048.
Department of Mathematics and Computer Science, California State University, Hayward, California

94542. The work of this author was supported by a California State University Research, Scholarship and
Creative Activity award and by National Security Agency grant MDA904-90-H-4024.

221



222 ROBERT GRONE AND RUSSELL MERRIS

L(G) + L(GO nI J,,. It follows that the eigenvalues of L(Gc) are

(1) ,i(Gc) n ),,_ i(G), <_ < n, and 0.

In particular, G is Laplacian integral if and only if G is Laplacian integral, and 1 (G)
n, with m(n) w(Gc) 1. Another difference involves trees. While some interesting
work has been done on adjacency integral trees [11 ], [22], a complete description seems
unlikely in the near future. On the other hand, T is Laplacian integral if and only if
T Kl,n-1 [7], [15, Cor. 2].

Let G (V, E) be a graph with n vertices and m edges. If e { u, v} E and w
V, then e is said to be subdivided when it is replaced by { u, w} and { w, v}. Of course,
replacing the edge replaces the graph; the new graph has n + vertices and m + edges.

Example 1. Denote by Gn the graph obtained from Kn_ , n > 2, by subdividing
one edge; then G, is Laplacian integral. This is because the complement of G, is a graph
with two connected components, one isomorphic to K2 and the other to Kl,n-3. The
same result does not hold for the adjacency matrix; A(Gs) has three irrational eigenvalues.
Iftwo edges ofK3 are subdivided, the result is C5, which is neither adjacency nor Laplacian
integral.

If every edge of G is subdivided, the resulting graph s(G) has n + m vertices and
2m edges. It is called the subdivision of G. (Note. S(G) is an n-tuple; s(G) is a graph.)

THEOREM 1. Let G be a connected, r-regular, Laplacian integral graph on n vertices.
Then s(G) is Laplacian integral ifand only ifG K,.

Proof The result is trivial for r < 2. If r 2, then (as we have seen .bove) G C3,
C4, or C6, Of these, s(C3) C6 is Laplacian integral, whereas s(C4) C8 and s(C.,)
Cl2 are not. Thus, we may assume that r > 3 (so n > 4). Let m denote the number of
edges in G. It was shown in [13] (see [17]) that

det (xlm+n L(s(G))) (-1)"(x- 2)m-n det (x(r + 2 X)In L(G)).

Therefore, c is an eigenvalue of L(s(G)) if and only if c 2 or c(r -- 2 c0 is an
eigenvalue of L(G). If G Kn, then r n 1, and the eigenvalues of L(s(G)) satisfy
m)(0) 1, ms)(1) n 1, ms)(2) n(n 3)/2, m)(n) n 1, and m)(n +
)=.

Conversely, the eigenvalues of L(G) are all of the form ) c(r + 2 c). Since r +
is the minimum value taken by this product when both factors are constrained to be

positive integers, we deduce that 3,_ (G) >_ r + 1. Thus, the trace of L(G) is at least
(n 1)(r + 1). However, trace L(G) rn. Combining these, we conclude that r >
n-1. [2]

It is proved in [11, Cor. 6] that the line graph of a regular adjacency integral graph
is adjacency integral. Since the line graph of a regular graph is regular, this result carries
over to the Laplacian case. So, for example, the Petersen graph is Laplacian integral since
it is the complement of the line graph of Ks. Recall that a graph is (r, s)-semiregular if
it is bipartite with a bipartition (V, V2) in which each vertex of V has degree r and each
vertex of V2 has degree s. The next result was proved by Mohar [17, Thm. 3.9].

PROPOSITION 1. Let G be a connected, (r, s)-semiregular, Laplacian integral graph.
Then its line graph is Laplacian integral.

COROLLARY 1. The line graph ofthe subdivision ofK is Laplacian integral.
Ultimately, we would like to "explain" all the integral graphs (whether Laplacian

or adjacency). Harary and Schwenk [11] identified various families of adjacency integral
graphs. Inevitably, they found graphs that belong to none of them. One such graph is
the line graph of the subdivision of K4. It is clear from Corollary that this graph does,
in fact, belong to a natural family. However, because the characteristic polynomial of
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A(s(K4)) is X2(X2 2)3(X2 6), this fact is not immediately evident from the adjacency
perspective.

Let G and H be graphs on disjoint sets of vertices. Their union G + H is the graph
with vertex set V(G + H) V(G) U V(H) and edge set E(G + H) E(G) tO E(H). The
join of G and H may be defined by G V H (Gc + HC) c. It is the graph obtained from
G + H by adding new edges from each vertex of G to every vertex of H. Clearly, the
union and join of Laplacian integral graphs are Laplacian integral.

The product ofgraphs G and H is the graph G H, whose vertex set is the Cartesian
product V(G) V(H). Suppose that v, v2 V(G) and u, U2 V(H). Then (v, u) and
@2, u2) are adjacent in G H if and only if one of the following conditions is satisfied:
(i) v v2 and {u, u2} E(H) or (ii) {v, v2} E(G) and u u2. For example, the line
graph ofKp,q is Kp Kq. IfG andHare Laplacian integral graphs, then G His Laplacian
integral [17, Thm. 3.5]. Let G2 G G. The subgraph ofG2 induced on W {(vi, vj):
< j} C V(G) is called G [2] [8]. Since both (x2 7x + 8)2 and (x2 10x + 20) are

factors of the characteristic polynomial of L(Ct621), G [21 does not generally propagate
Laplacian integrality. Still, this construction is the source ofnumerous Laplacian integral
graphs.

2. Majorization and the degree sequence. Recall that a nonincreasing sequence
(d) (d, d2, dn) of positive integers is said to be graphic if there exists a (simple)
graph having degree sequence (d). The theory of graphic sequences has a rich tradition
nicely summarized in [19]. Another perspective on the discussion of 1 would be to
approach nonincreasing sequences ()‘) (),l,),2, )‘n) of nonnegative real numbers
in a similar way; i.e., what are necessary and/or sufficient conditions for ()‘) to be the
spectrum of the Laplacian matrix of a (simple) graph, and what special conditions arise
if we require ()‘) to be an integer sequence? One condition follows immediately from a
theorem of Schur. It involves the property of majorization. Suppose that (a) and (b) are
finite nonincreasing sequences of real numbers. Then (a) is said to majorize (b) if

al >-- bl,

a + a2 >-- bl + b2,

a + a2 + a3 >-bl + b2 + b3,

and so on, with equality at the end; that is, the sum of all the a’s is equal to the sum of
all the b’s.

In the introductory paragraph, we defined D(G) to be the diagonal matrix of vertex
degrees. We abuse that language now by letting D(G) also denote the sequence of vertex
degrees in nonincreasing order, i.e., D(G) (dl, d2, d). (We do not assume that

di d(vi).) Since the spectrum of any symmetric, positive semidefinite matrix majorizes
its main diagonal [20], [14, p. 218], the following is immediate from the definitions.

PROPOSITION 2. Let G be a graph. Then S(G) majorizes D(G).
The most immediate consequence of Proposition 2 is the inequality )‘l >- d. In fact,

this inequality is subject to some improvement, as we now show.
THEOREM 2. Suppose that G V, E) is a connected a graph with n > 2 vertices.

IfS { u, u2, uk} C V, let G[S] (S, E[S]) be the subgraph ofG induced on S.
Suppose that E[S] consists ofr pairwise disjoint edges. Then

)‘1 "]- - )‘k >- d(Ul) -{- -[- d(Uk) -J1- k- r.

(Recall that d(ui) need not equal di.)

Unfortunately, 19] contains several annoying misprints.
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The inequality in Theorem 2 suggests it might be useful to define

Zk (G) max d(ui): {u,..., Uk} independent in G

Curiously enough, the analogous quantity

ak(G) min ( d(u): {ul’ uk} independent in

is useful in the study of Hamiltonian cycles [9].
COROLLARY 2. IfG has an edge, then

(2) X>d+ 1.

Proof If d 1, then every connected component of G is either an isolated vertex
or a copy of K2. In this case, X 2 and d 1. Ifd > 1, let w be a vertex of G of degree
d. Let C be a connected component of G containing w. Then we may apply Theorem
2 to the subgraph C with k and u w. Since L(C) is a direct summand of L(G),
X(G) > X(C).

Corollary 2 improves the earlier result [7, Thm. 3.7] X > d + d/(n 1). (It can
be shown that inequality in (2) is strict whenever d < n 1.)

COROLLARY 3. Let G be a connected graph on n > 2 vertices. Then X + X2 >
d + d2 + 1. If there are two nonadjacent vertices in G having degrees d and d2,
then X + X2 > d + d2 + 2.

Proof The proof is immediate from Theorem 2. Either r or r 0.
Example 2. Let G be the graph shown in Fig. 1. Then S(G) (5.1, 3.8, 1.5, 1, 0.6,

0) andX+2<d +d_+2.
CONJECTURE 1. Let G be a graph with m > edges. Then S(G) majorizes the

sequence (d + 1, d2, d3 dn-, dn- 1).
Proofof Theorem 2. Order the m edges in E arbitrarily. For each edge e { v, w},

designate one of v, w to be the "positive end" of e and the other to be the "negative
end." Thus, G is given a fixed but arbitrary orientation. If e E and v 6 V, define
s(v, e) + if v is the positive end of e, -1 if it is the negative end, and 0 otherwise.
The vertex-edge incidence matrix afforded by the orientation is the n-by-m matrix Q
Q(G) whose (v, e)-entry is s(v, e). It turns out that L(G) QQt, independently of the
orientation. The matrix K(G) QtQ depends on the orientation for the signs of its off-
diagonal entries. In any event, K(G) and L(G) share the same nonzero eigenvalues.

Suppose that x is some real m-tuple. It is convenient to think of its components as
indexed by E, so the "vth" component" of Qx is, s(v, e)Xe.

eEE

Therefore,

(3) xtK(G)x vv s(19, e)Xe

Suppose that E[S] {e, e. er}. Without loss of generality, we may assume
ei {ui, Uk-i+ } and d(ui) < d(u-i+ 1), < _< r. Choose an orientation of E(G) so
that ui is the positive end of each of the d(ui) edges incident with it, _< < k r. In
addition, we may prescribe that ui is the positive end of each of the d(ui) > 0 edges,
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0 0 0

FIG.

other than ek-i+ 1, incident with it, k r < < k. For each u e S, define a real m-tuple
x(u) as follows: x(u)e, the coordinate of x(u) corresponding to the edge e E, is if u is
the positive end of e, and 0 otherwise. Then {x(u): u e S} is an orthogonal set of vectors.
Moreover, IIx(u)ll 2 d(u) if < k r and d(ui) if > k r. Let y(u) x(u)/llx(u)ll,
ueS. Then, forl <i<k-r,

and, for > k- r,

So, from (3),

d(ui) /2 if I)

eES(1),e)y(bli)e--I--d(bli)-’/2 if{v, ui}E,

(0 otherwise,

d(ui) 1)/2 if v ui,

Z S(V, e)y(Ui)e 1-(d(ui) 1)-1/2 if {v, ui} E\E[S],
eE

l0 otherwise.

d(ui) "+" 1, < k- r,
y(ui)tg(a)y(bli)--"

ld(ui), i> k- r.

Since {y(ui): < <_ k} is an orthonormal set of vectors,

k k

Xi > y(ui)tg(G)y(bli)
i=1 i=1

k

E d(ui)-]- k- r.
i=1

Nonincreasing integer sequences are frequently pictured by means of so-called Fer-
rers-Sylvester diagrams. The diagram for (d) (5, 5, 5, 4, 4, 4, 3) is pictured on the left
in Fig. 2. Its transpose is the diagram pictured on the fight corresponding to the conjugate
partition (d) (7, 7, 7, 6, 3). In general, the conjugate ofa nonincreasing integer sequence

(a) (a, a2,..., ap)

(a)t= (a], at2,..., aq),

where q a and a is the number of elements in the set {j" aj _> i}.
PROPOSITION 3. Let (d) be a graphic sequence. Then (d) majorizes (d).
Proof Suppose that di > i, <_ < k, and dk +1 < k + 1. (In Fig. 2, k 4.) Define

ri di + 1, < < k and ri di, k < < n. Ryser’s necessary and sufficient condition
for (d) to be graphic is that (r) majorize (r) (see [1, 11.5]). Note that ri di, <_ < k
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FIG. 2. Ferrers-Sylvester diagrams.

and r d + ci, > k, where the i are nonnegative integers that add up to k. So, for
<j<k,

d r>_ ri (di+ 1)=j+ di> di.
i=1 i=1 i=1 i=1 i=1 i=1

For j > k, let xj. c + c2 + + cj._ k. Then
J J J J

i=1 i=1 i=1 i=1

So, since xj < k,
J J J
d}>_(k-xj)+

_
di >_ di.

i=1 i=1 i=1

Propositions 2 and 3 raise the natural question of whether S(G) and D(G) are
majorization comparable. (An infinite family of "maximal" graphs for which D(G)
S(G) is discussed in 16].)

CONJECTURE 2. Let G be a connected graph. Then D(G) majorizes S(G).
If Conjecture 2 is true, then

(4) kn- > d_;

i.e., the number of vertices ofG ofdegree n is bounded above by Xn_ , the "algebraic
connectivity" of G [7]. To verify (4), suppose that G is a graph with k vertices of degree
n 1. If k n, then G Kn and Xn_ n. Otherwise, G has at least k + components,
the largest of which has at most n k vertices. So, X(Gc) < n k. Thus, ,_ (G)
n (GC) > k.

If D(G) majorizes S(G) for connected graphs, then D(G) majorizes S(G) for all
graphs as can easily be seen, e.g., by the condition of Hardy, Littlewood, and Polya [14,
p. 22]. So, we may as well restrict our attention to connected graphs, where the number
of vertices of G having degree at least is d] n. The inequality n > is clear from
(1). Indeed, if G is a connected r-regular graph, then D(G) (r, r, r) and D(G)
(n, n, n) majorizes S(G).

A second step toward proving Conjecture 2 would be to show

(5) d] + d >_ )k - k2

We are not able to establish (5) in all cases. However, some partial results along these
lines will emerge from the following result.

THEOREM 3. Let G be a connected graph and suppose that w is a cut vertex of G.
Ifthe largest component ofG w contains r vertices, then r + > X2(G).

Proof Denote by L(w) the (n 1)-by-(n 1) principal submatrix ofL(G) obtained
by striking out the row and column corresponding to w. Let a be the largest eigenvalue
of L(w). By the Cauchy interlacing inequalities, > c > X2.
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If C1, C2, Ck are the connected components of G w, let Si be the union of
{ w} and the vertices of Ci, < < k. Let Gi G[Si] be the subgraph of G induced by
Si and write Li L(Gi), < < k. Then L(w) is the direct sum ofLi(w), <_ < k, where
Zi(w) is the principal submatrix of Li obtained by striking out the row and column
corresponding to w. It follows that a is the largest eigenvalue of Li(w) for some i. By
another application of the Cauchy inequalities, we conclude that a < XI(Gi) for some i.
By (1) and the hypotheses, r + > kl(Gi) for all i.

A pendant neighbor is a vertex adjacent to a vertex of degree 1.
COROLLARY 4. Let G be a connected graph with n > 2 vertices. Suppose that w is

a pendant neighbor ofG adjacent to k pendant vertices. Then n k > 2.
Proof If G Kl.n-1, then n k ,2. Otherwise, the largest component of

G w contains at most n k vertices, so the result is immediate from Theo-
rem 3.

We now return to (5). Since n d > 1, it would suffice to show that d > X2.
Now d is the number of vertices of G having degree at least 2. That is, d n p,
where p is the number of pendant vertices. However, as we now see, it is not generally
true, even for trees, that n p > 2.

Example 3. Let T be the tree on six vertices obtained by joining the centers of two
copies of P3 by a new edge. Then D(T) (3, 3, 1, 1, 1, 1) and D(T) (6, 2, 2). To one
decimal place, S(T) (4.6, 3, 1, 1, 0.4, 0). (Recall that T is the only adjacency integral
graph on six vertices that is not Laplacian integral.) Here n 6, p 4, and n p
2<3= 2(T).

COROLLARY 5. Let G be a connected, Laplacian integral graph with n vertices, p
ofwhich are pendants. Then n p > 2.

Proof. Suppose that G has a total of q pendant neighbors altogether. It is proved in
10, Thm. 3.11 that the number of eigenvalues ofL(G), multiplicities included, lying in

the open interval [0, 1) is at least q. Since we are assuming that G is connected,
me(0) 1. Thus, q > contradicts the hypothesis that G is Laplacian integral. We con-
clude that all p pendants of G share the same neighbor, so the result follows from Corol-
lary 4.

3. Eigenvalues and graph structure. In a natural way, the majorization questions
of 2 have led to the relationship between the Laplacian spectrum and graph structure.
We proceed to develop more results along these lines, beginning with a relative of Corol-
lary 5.

PROPOSITION 4. Let G be a graph with n > 2 vertices, p of which are pendants. If
1 n, then all p ofthe pendants are adjacent to the same neighbor w, d(w) n 1, and
k2 n p. (In particular, if T is a tree, then XI(T) n ifand only if T KI,n-1.)

Proof From (1), 1 (G) n if and only if G is disconnected. If G had two distinct
pendant neighbors, then G would be connected. So, there is a unique pendant neighbor
w. We conclude from Corollary 4 that k2 n p. If d(w) were less than n then,
again, G would be connected. U]

PROPOSITION 5. Let G be a connected graph. Let P {Vl, v2, vk} be a set of
pendant vertices of G, all of which are adjacent to the same neighbor w. Suppose that

4: 1. If (the multiplicity) me(k) > 1, then ma-e(k) > O. (In particular, k < n k.)
Moreover, ifma_e(k) > 1, then ma() > O.

Proof Let w vk / 1. If is a multiple eigenvalue of L(G), it has an eigenvector x
whose (k + 1)st component is 0. Then L(G)x L,c forces xl x2 Xk 0. It
follows that y (0, Xk / 2 Xn) is an eigenvector of L(G P), affording ,. Because
G P has n k vertices, , < n k. To obtain the final assertion, let w be the first vertex
of G P. If is a multiple eigenvalue ofL(G P), then it is afforded by an eigenvector
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y whose first component is O. Let x be the vector obtained from y be inserting k zeros at
the beginning. Then x is an eigenvector of L(G), affording

PROPOSITION 6. Let G be a graph with n vertices and k > spanning trees. If is
a positive integer eigenvalue ofL(G), then kink. IfG is Laplacian integral, then t]nk,
where ma(k), the multiplicity of as an eigenvalue ofL(G).

Proof Let p(x) be the characteristic polynomial ofL(G). Since G is connected, L(G)
has rank n 1, so we may factor p(x) as xf(x). (The polynomialf(x) has been called the
"T-polynomial" of G [5], [12].) Asf(0) is the coefficient ofx in p(x), it is the sum of the
determinants of the (n 1)-by-(n 1) principal submatrices ofL(G). By the matrix-tree
theorem, each of these n determinants has the value k. Thus, f(0) nk. Since f(x) is a
monic polynomial with integer coefficients, f(k) 0 if and only if f(0). On the other
hand, f(0) is the (n 1)th elementary symmetric function of the eigenvalues of L(G),
i.e., f(0) is the product of the nonzero eigenvalues of L(G). So, if G is Laplacian inte-
gral, , f(0).

DEFINITION. Let G be a graph. A cluster ofG is an independent set oftwo or more
vertices ofG, each ofwhich has the same set ofneighbors. (The set ofneighbors ofvertex
v is { u V: { u, v} E}.) The degree of a cluster is the cardinality of its shared set of
neighbors, i.e., the common degree ofeach vertex in the cluster. A d-cluster is a cluster
ofdegree d. The number ofvertices in a d-cluster is its order. A collection oftwo or more
d-clusters is independent if the sets of vertices comprising the d-clusters are pairwise
disjoint. (The neighbor sets ofindependent d-clusters need not be disjoint.)

The next result extends the work of Faria on the "star degree" of a graph [6].
THEOREM 4. Let G be a graph with k independent d-clusters oforders r, r

r. Then ma(d) > r + r2 + + r- k.
Example 4. The graphs G and G2 in Fig. 3 are the smallest pair of nonisomorphic,

connected, Laplacian integral, Laplacian cospectral graphs. They share the spectrum
S(G) S(G2) (7, 6, 6, 4, 4, 3, 0). Both pictures are drawn so that the top row of
vertices is a 4-cluster: G contains a 4-cluster of order 2, while G2 contains one of order
3. With d 4 and k 1, Theorem 4 asserts that ma(4) > for G G and ma(4) > 2
for G G2; the bound is sharp for G2 but not for G. On the other hand, an examination
of the spectrum shows there is no point in looking for a 5-cluster in either graph.

Proof of Theorem 4. The independent d-clusters correspond to k nonoverlapping
principal submatrices of L(G). Each submatrix is d-times an rrby-r identity matrix,
1, 2,..., k. Suppose that one of these principal submatrices includes rows and columns
numbered s and in L(G), s < t. (That is, suppose that Vs and vt belong to the same d-
cluster in G.) Let x be the column vector with x if s, if t, and 0, otherwise.
Because v and vt belong to the same d-cluster, they have the same neighbors. Hence,
L(G)x dx. A d-cluster of order r affords r; linearly independent eigenvectors of
this type, and eigenvectors of this type arising from independent clusters are linearly
independent.

G1 G2

FIG. 3
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COROLLARY 6. Let G be a graph with an r-clique, r > 2. Suppose that every vertex
ofthe clique has the same set ofneighbors outside the clique. Let the degree ofeach vertex

ofthe clique be d, so d- r + is the number of vertices not belonging to the clique but
adjacent to every member ofthe clique. Then m6(d + 1) > (r- 1).

Proof The clique becomes an (n d- 1)-cluster of G of order r. [

Example 5. Let G be the graph G2 of Fig. 3. The three vertices of G of degree 5 are
a 3-clique satisfying the hypotheses of Corollary 6. Hence m6(6) > 2, and, again, we find
that G2 affords a sharp bound.

Note added in proof. Theorem 4 was first proved by Isabel Faria, who communicated
it to Merris long before the present paper was contemplated. Unfortunately, Merris filed
it away and forgot about it. Fortunately, the result will appear under Faria’s name in the
article, "Multiplicity of Integer Roots of Polynomials of Graphs," to be published by
Linear Algebra Appl.
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