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THE LAPLACIAN SPECTRUM OF A GRAPH*
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Abstract. Let G be a graph. The Laplacian matrix L(G) D(G) A(G) is the difference of the diagonal
matrix ofvertex degrees and the 0-1 adjacency matrix. Various aspects ofthe spectrum ofL(G) are investigated.
Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various
modifications of G.
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1. Introduction. Let G (V, E) be a graph with vertex set V { Vl, v2, vn
and edge set E {el, e2, em). For each edge ej vi, vk), choose one of vi, vk to
be the positive end of ej and the other to be the negative end. We refer to this procedure
by saying G has been given an orientation. The vertex-edge incidence matrix afforded
by an orientation of G is the n-by-m matrix Q Q(G) (qo), where

+ 1, if v is the positive end of ej-,

q.9 -1, if it is the negative end,

0, otherwise.

It turns out that L(G) QQt is independent of the orientation. In fact, L(G)
D(G) A(G), where D(G) is the diagonal matrix of vertex degrees and A(G) is the
(symmetric) 0-1 adjacency matrix. Forsman 9 and Gutman have shown how the
connection between L(G) and K(G) QtQ simultaneously explain the statistical and
the dynamic properties of flexible branched polymer molecules. Indeed, since L(G) and
K(G) share the same nonzero eigenvalues, it follows that for bipartite graphs the smallest
eigenvalue ofA (G*) >= -2, where G* is the line graph of G. This observation, first made
by Hoffman, has led to a connection with the theory of root systems [2], [3]. Eichinger
5 has shown how the spectrum ofL(G) may be used to calculate the radius ofgyration
of a Gaussian molecule. Mohar [13] argues that, because of its importance in various
physical and chemical theories, the spectrum of L(G) is more natural and important
than the more widely studied adjacency spectrum. In ], Bien uses the smallest positive
eigenvalue of L(G) to estimate the "magnifying coefficient" of G.

It seems that L(G) first occurred in the celebrated Matrix-Tree Theorem: IfL is
the submatrix of L(G) obtained by deleting its ith row and jth column, then
(-1 )i+J det (Lo) is the number of different spanning trees in G. Since this result is at-
tributed to G. Kirchhoff, L(G) is sometimes called a Kirchhoffmatrix. It is also known
as a matrix ofadmittance (admittance conductivity). Following [7], we will refer to
L(G) as a Laplacian matrix because it is a discrete analogue of the Laplace differential
operator.
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We have suppressed the dependence of L(G) on the ordering of V because our
primary interest is with the characteristic polynomial CG(X) det (xI- L(G)).

Example 1.1. Let G C6, the simple circuit on six vertices. Then

cG(x) x(x- )2(x- 3)2(x- 4)

X6 12x + 36x.

Of course, 12 is the sum of the vertex degrees and 36 is the sum of the six principal
minors of L(G) of order five. We can state each of these facts in another way. The sum
of the vertex degrees is twice the number of edges. The sum of the minors is (n six
times the number of spanning trees. Similar statements are available for the other coef-
ficients [4, p. 38].

Example 1.2. Let G *n, the "star," i.e., G Kl,n-1, the complete bipartite graph
with n pendant (degree vertices and one vertex of degree n 1. Then cG(x)
x(x n)(x )n- 2. If the central vertex is listed last, then (-1, -1, n is an
eigenvector of L(G) corresponding to n, while

{(1,-1,0,... ,0),(0, 1,-1,0,... ,0),... ,(0,0, ,0, 1,-1,0)}

is a set of n 2 linearly independent eigenvectors corresponding to one.
Denote the eigenvalues of L(G) by X >= >- Xn-1 >= 0 hn. From the Matrix-

Tree Theorem (for example) we may deduce that hn- > 0 if and only if G is connected.
(In particular, K(G) is nonsingular if and only if G is a tree.) Fiedler has called hn- the
algebraic connectivity of G [7], denoting it by a(G).

2. Preliminary results. A vertex of degree one is called a pendant vertex. Denote
by p(G) the number of pendant vertices of G. A vertex is quasipendant if it is adjacent
to a pendant vertex. Denote by q(G) the number of quasipendant vertices of G. If T is
a tree, it is known [4, p. 258] that

(I) p(T) q(T) =< rt =< p(T) 1,

where rt is the multiplicity of zero as an eigenvalue ofA(T).
Denote by mG() the multiplicity of X as an eigenvalue of L(G). Incidental to her

work on permanental polynomials, Faria observed that

(2) p( G)- q( G) <- mG( ),

for any graph G 6 ].
THEOREM 2.1. Suppose T is a tree on n vertices. If, > is an integer eigenvalue

ofL(T) with corresponding eigenvector u, then
n (i.e., exactly divides n

(ii) roT(X)= 1,
(iii) no coordinate ofu is zero.
Theorem 2.1 can fail totally for graphs that are not trees. (See Example 1.1.)
Proof. The characteristic polynomial of L(T) is xf(x), where f(x) is an integer

polynomial. Since T is a tree, f(0) n (as in Example 1.1 ). This proves (i). If L(T)
had two linearly independent eigenvectors corresponding to ,, we could produce a third
eigenvector with zero in any prescribed coordinate. Hence, (iii) implies (ii).
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Suppose u is an eigenvector ofL(T) afforded by ,. If some coordinate of u is zero,
we may assume it is the last one, corresponding to vertex vn. With d do, the degree of
vn, L(T) takes the form

(3) L(T)=

B O" "0 *

0,
B2" "0 *

0"" Ba *..., d

where Bl, B2, Bd are the principal submatrices ofL(T) corresponding, respectively,
to the branches TI, T2,’", Td of T at v. If u is partitioned conformally as u
(ul, u2, Ud, 0), then uL(T) hu implies uiBi hui, <= <- d. Since at least one
of these ui’s must be nonzero, h is an eigenvalue of some Bi. We may assume it is
Note that BI is not quite L( TI ). One of its main diagonal entries is too large, the one
corresponding to the vertex of TI that is adjacent (in T) to Vn. If we assume this vertex
is Vl, then BI L( Tl + Ell, where Ell is the matrix whose only nonzero entry is a one
in position 1, ). But then det BI det L(TI) + det L11, where Lll is the submatrix
of L( TI obtained by eliminating its first row and column. Now, det L( T1 0 while,
by the Matrix-Tree Theorem, det Lll 1. Thus, h is an eigenvalue of the unimodular
matrix BI, a contradiction. I--1

It seems surprising that for trees, mr( can be arbitrarily large while mr(2) can be
at most one. It turns out that, integer or not, the largest eigenvalue ofany bipartite graph
is simple. This is a consequence of the following elementary observation.

PROPOSITION 2.2. Let G be a bipartite graph. Then B( G) D( G) + A(G) and
D( G) A G) L( G) are unitarily similar; in particular, the maximum eigenvalue of
L( G) is simple provided G is connected.

If G Kn, the complete graph, then ,1 n and m(,l) n 1, i.e., the result can
fail if G is not bipartite.

Proof. Since G is bipartite, the vertex set can be partitioned into two subsets VI and
V2 so that no two vertices in Vi are adjacent, for 1, 2.

Let U (uij) be the diagonal matrix with

I 1, if l)iE

-1, ifv;EV2.

It is simple to verify that UA (G) U-1 -A(G) and that U commutes with D(G). In
case G is connected, the matrix D(G) + A(G) is a nonnegative irreducible matrix and
the second assertion is a consequence of the Perron-Frobenius theory. []

We now show that the upper-bound in is a uniform upper bound on the mul-
tiplicity of any eigenvalue of L(T).

THEOREM 2.3. Let be an eigenvalue ofL(T) for some tree T on n >= 2 vertices.
Then mr(h) <- p(T) 1.

As we saw in Example 1.2, equality can occur. On the other hand, if G is not a tree,
it may have no pendant vertices.

Proof. Suppose v is a pendant vertex of T. We may assume v_ is the quasipendant
of T adjacent to vn. Let u (ul, u) be an eigenvector of L(T) corresponding to
X. Then ),)u un-1. Consider the possibility that u 0. In this case, u n-1 0
and, moreover, u’ (ul, un_ 1) is an eigenvector of L(T’) corresponding to
where T’ is the tree obtained from T by deleting v from V and { v_ 1, Vn }’ from E. It
follows by induction that u cannot be zero in all coordinates corresponding to pendant
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vertices, or even in all but one of them! On the other hand, if the eigenspace WofL(T)
corresponding to X were to have dimension greater than p(T) 1, it would be possible
to find a nonzero vector w e W that is zero on all but (at most) one of its coordinates
corresponding to pendant vertices.

In order to discuss the next result, the following notation will be convenient. Let
G (V, E) and G2 (V2, E2) be graphs with Vl fq V2 . A connected sum of G
and G2 is any graph G (V, E) where V V to V2, and E differs from E tO E2 by the
addition of a single edge joining some (arbitrary) vertex of V to some vertex of V2. It
will be useful to write G G # G2. Note that "#" is not a binary operation on graphs
because it is not well defined. If n o(V ), the cardinality of V, and n2 o(V2), then
G # G2 may represent any of nn2 different graphs. In general, of course, some of these
graphs will be isomorphic as the following example shows.

Example 2.4. Denote by Pn the path on n vertices (of length n ). If G P2
and G3 P3, then G # G2 is isomorphic either to P5 or the graph in Fig. 1.

THEOREM 2.5. Let G be a nonempty) graph on n vertices. Let H G # *k be a
connected sum ofG with the star on k > vertices. Then m(k) mt( k).

Proof. Assume the vertices have been numbered so that G # ,k is obtained by
joining the last vertex of G to the first vertex of ,. If L L(G), L, L(,), and L#
L(H), then, with respect to the obvious ordering of vertices,

(4) L#=(L4-L,)+A,

where A (ao) is the (n + k)-by-(n + k) matrix with

if(i,j){(n,n),(n+ 1,n+ 1)},

ao= -1 if(i,j){(n,n+ l),(n+ l,n)},
0 otherwise.

From Example 1.2, we may choose an eigenvector w for L,, corresponding to k, whose
first component is w 1. We will use w to produce a linear bijection u-- u# from
ker (L kin) onto ker (L# kin + ). For x n and y , denote their juxtaposition
by x (R) y e n + k. Then for any u n, define u# u (R) un w. Clearly, u u# is linear
and one-to-one. Since the nth and (n + )st coordinates of u# are equal, Au# 0 and,
hence, L#u# Lu (R) unL, w. But, then u# is an eigenvector of L# corresponding to k
whenever u is an eigenvector of L corresponding to k. It remains to prove that every
eigenvector ofL# corresponding to kis ofthe form u# for some u ker (L kin). Suppose
x n, y and x (R) y is an eigenvector for L# corresponding to k. We first assert that
y is a multiple of w. This is seen by considering two cases.

Case i. The first vertex of , (the one being connected to G by the new edge) is a
pendant vertex. In this case, we may assume the vertices of , so ordered that the kth

FIG.
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vertex has degree k 1. Hence, w 1, 1, 1, k). (See Example 1.2.) We proceed
to show that y yw. For < < k (when k > 2), we may conclude from the (n + i)th
row ofL#(x) y) k(x(R) y) that Yk k)yi. Then, from the (n + k)th row, namely,

-y y2 yk_ + (k- )y ky,

it follows that k)yl is also equal to y. In other words (since k > ), y ylw.

Case ii. The first vertex of . has degree k- 1. In this case, w while w2
wk 1/( k). (When k 2, the two cases coincide.) We use a similar argument

to deduce that k)yi y for 2, k. Thus, y y2w.

We have shown that the typical vector in ker (L# kin /) is of the form x (R) cw.
It remains only to show that xn c and that x 6 ker (L- kin). Now, by comparing
(n + )st rows of

k(x@ cw) L#(x cw)

(Lx(R)kcw)+(O, ,O, xn-C)(R)(-Xn+C,O, ,0),

we see that kc kc Xn + C. Finally, compare the first n rows to deduce that Lx
kx.

Theorem 2.5 is useful as a reduction device. Suppose for example that T is a tree
and we want to know whether or not two is an eigenvalue. Then we may prune offPs
without changing the answer to our question.

Example 2.6. Let G be the graph in Fig. 2. Then we may write G G’# in
a variety of ways. For any of these, m(2)= m,(2). But then G’ can be written as
(7"# also in several ways. Indeed, we may eventually prune off six copies of 2.
(See Fig. 3.) The result is that m(2) mc(2). The characteristic polynomial for the
square is x(x 2) 2 (x 4) so mo(2) 2.

;Example 2.7. As nice as the pruning process ofExample 2.6 is we eventually come
to a "core graph from which no Pa’s may be pruned and for which it still may not be
clear, even for trees, whether or not two is an eigenvalue. For the tree T in Fig. 4,
CT(X) X(X- 1)3(X- 2)(x- 5)(x2 4x + 1) z.

FIG. 2
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FIG. 3

COROLLARY 2.8. Let T Pn, the path on n vertices. Then

if 2In,
mr(2)

0 otherwise.

if 3In,
(ii) mr(3)

0 otherwise.

Proof. We know from Theorem 2.1 that roT(k) is at most one when k > is an
integer and T is a tree. Since P2 *2 and P3 *3, the result follows from Theorem 2.5
and the pruning process of Example 2.6.

Example 2.9. The graph in Fig. 4 is just one of a class of examples. If k >= 2 is an
integer, we define a tree Zg on (2k )(k + + vertices as follows. Start with k +

FIG. 4
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copies of *2k- and an additional vertex v. Then join the "center" of each star to v by
an edge. It turns out that mzk(k) 1: that the multiplicity cannot be greater than one
is assured by Theorem 2.1 (ii). To see that the multiplicity is greater than zero, we may
simply describe an eigenvector. The components of this eigenvector will be one in each
of the (2k 2)(k + coordinates corresponding to pendant vertices, k in each of
the k + coordinates corresponding to star centers, and k2 in the coordinate cor-
responding to v. This explains the numbers in Fig. 4.

3. The multiplicity of k 1. We begin this section with an analogue of Theorem
2.5. We will be concerned with a slightly restricted version of the connected sum idea.
By G V P3 we mean (any) one of the graphs obtained from G and P3 by joining some
(arbitrary) vertex of G to a pendant vertex of P3. (Of course, P3 *3. We are using "V"
here rather than "#" to indicate that it is now forbidden to join a vertex of G to
the middle vertex of P3. We will deal separately with this latter case in Proposition
3.14 below.)

THEOREM 3.1. Let G be a nonempty) graph on n vertices and suppose H G V
P3. Then ma(1) mn( ).

Proof. Let the second vertex of P3 be the one of degree two. Then w 1, 0, -1
is an eigenvector of L(P3) corresponding to one. Number the vertices of G so that it is
the last vertex that is joined to vertex one of P3. Let L, L’, and/_7, denote the Laplacian
matrices of G, P3, and H, respectively. Then, as in the proof of Theorem 2.5,
(L 4- L’) + A, where

A =On-1 4-( 1-1 --1) 4-02.

Argue exactly as in Theorem 2.5 to show the map u -- u (R) unw is a linear injec-
tion of ker (L In) into ker
corresponding to one, deduce that y2 0 and that Y3 =-Yl. Proceed as in the
proof of Theorem 2.5 to conclude that y Xn w, so that x
ker L In), as desired.

Example 3.2. Let T be the tree in Fig. 5, with k >= 2. Then we may express T as
T’ V P3 in a variety of ways; for any of these, mr( mar,( ). But, then T’ T" V
P3, etc. Eventually, we see that mar( ms( k- 1, where S *k /1. It is instructive
to compare this value with the Faria lower bound in (2), namely, p(T) q(T) 0. At
the other extreme, the upper bound of Theorem 2.3 is p(T) k 1.

COROLLARY 3.3. Let T Pn. Then

if 3In,
mar( )=

0 otherwise.

Proof. By Theorem 3.1, it suffices to consider n 1, 2, or 3. The characteristic
polynomials for P, P2, and P3 are, respectively, x, x(x 2 ), and x(x (x 3 ). [2]

Example 3.4. Since P3 .3, pruning of a path oflength three affects neither m(3)
(Theorem 2.5 nor m6( (Theorem 3.1 ). If G is the graph in Fig. 6, we may prune off
5 Pa’s and obtain the hexagon of Example 1.1. Thus, m(3) m( 2.

Example 3.5. As in Example 2.7, one may prune off only so many Pa’s, even for
trees. If T is the tree in Fig. 7, then

car(x) x(x- )(x2- 3x + )2(x2- 7x + 11 )(x3- 6x2 + 8x- ).
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FIG. 5

We proceed now with a closer scrutiny of ma( ). Suppose G is a fixed but arbitrary
graph on n vertices. Note that u ul, Un) is an eigenvector ofL(G) corresponding
to k 1, if and only if

(5) , ui=(di 1)ui, <=i<=n.
vi,vj E

(In particular, if uL(G) u, then ut 0 for all quasipendant vertices l)t.
In terms ofeigenvectors, it is easy to explain why ma( >= p(G) q(G), a difference

that Faria refers to as the "Star Degree" of G. Suppose vl, , vt are the pendant vertices
adjacent to the quasipendant vt +1. Then it is easily seen that

u=(1,O, ,0,-1,0, ,0),

FIG. 6
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-2

FIG. 7

with in the ith coordinate, 2 -< =< t, is a set of linearly independent eigenvectors
for L(G) corresponding to X 1. We will call eigenvectors of this type Faria vectors. If
the Faria vectors arising at each of the q(G) quasipendant vertices are collected, the
resulting p(G) q(G) set is a basis of what we call the Faria space. Thus, the Faria
space accounts for the lower bound in (2). Our attention is naturally drawn to the excess
or "spurious" multiplicity of one given by

(6) s(G) m( )-p(G) + q(G),

i.e., the dimension of the space spanned by eigenvectors of L(G) corresponding to one
that are orthogonal to all the Faria vectors.

Let p p(G), q q(G), and r r(G), where r(G) n p q is the number of
vertices ofG that remain after the pendants and quasipendants have been accounted for.
We will refer to these remaining vertices as inner vertices.

Assume the vertex set of G is ordered as V Vl, vn }, where Vl, Vr are
the inner vertices, Vr / 1, ", Vr / q are the quasipendants, and Vn-p + l, ", Vn are the
pendant vertices. Assume further that { 1) + i, l)n-p+i } C7. E, <= <= q. It follows that
L(G) has the form

A X 0)L( G) X Q C
0 C I;

where A is r-by-r and Q is q-by-q. Moreover, the submatrix of C occupying its first q
columns is -Iq. Using this Iq submatrix (and its transpose in Ct) in elementary row and
column operations, we may transform L(G) In to

(7)
Lg(G) 0 0 )0 0 B

0 B 0

where B (-Iq0), and LR(G) A L is the leading r-by-r principal submatrix of
L(G) In. Hence, from (7),

m( nullity [L(G)-I,,]

(8a) n 2q- rank LR(G)

p- q + nullity LR(G).
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(Note that the "p q" in (8a) is the same "p q" that arises as the dimension of the
Faria space. The nullity of LR(G) corresponds to the eigenvectors for one that are or-
thogonal to the Faria vectors.) If we let mA( denote the multiplicity of one as an
eigenvalue ofA, then we may rewrite (8a) as

(8b) s(G) nullity LR(G) mA( ).

We now proceed to estimate the nullity of LR(G) in two different ways, giving rise
to two upper bounds for s(G). Our first estimate involves the "point independence
number" (PINmalso known as the "interior stability number" 2 of a graph. A subset
of vertices is independent if no two of them are adjacent. The PIN of G, c(G), is the
maximum size of any independent set of vertices. Thus, e.g., (Kn) and c(Ks,t)
max {s,t}. If G has (exactly) k connected components C1, "", Ck, then c(G), c(Ci). If R is the subgraph of G induced on the inner vertices, we will write
e(G) a(R).

THEOREM 3.6. Suppose G V, E) is a graph on n vertices. Then

(9) s(G)<=r(G)-e(G).

(The quantity r(G) e(G) is the covering number of R.)
Example 3.7. Let G be the graph in Fig. 8. Then p q 2, and the inner vertex

graph R is the graph on r 4 vertices having two components each consisting of a single
edge. The matrix "A" is the direct sum of two copies of 312 J2, where J2 is the 2-by-
2 matrix each of whose entries is equal to one. Alternatively, LR(G) is the direct sum of
212 J2 with itself. In any case, ma( s(G) mA( nullity LR(G) 2. On the
other hand, e(G) 2 and the upper bound in (9) is sharp. In fact,

c(x)=x(x 1)2(x-2)(x-3)(x-4)(xZ-5x+2).

Proofof Theorem 3.6. Returning to (7)-(8), it suffices to show that

rankL(G) >_- e e(G).

By definition of e, Le(G) has a principal e-by-e diagonal submatrix. Since the degree (in
G) of every vertex in R is at least two, this diagonal submatrix has full rank.

The upper bound r(G) e(G) >_- s(G) tends to be best when vertex degrees in the
induced subgraph R are small. Our next result is a bound that tends to be best when
vertex degrees are relatively large. We will say that a graph G (V, E) on n vertices is
rich if G Kn or if di + dj >= n whenever { Vi, Vj E. (In particular, the "closure" of a
rich graph is Kn.)

FIG. 8
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THEOREM 3.8. Suppose G (V, E) is a graph. Denote by R the subgraph of G
induced on its inner vertices. If each of the k components ofR is a rich graph, then
s(G) <=k.

In Example 3.7, R has two components, each of which is isomorphic to K2. Since
K2 is rich, s(G) =< 2, and the upper bounds ofTheorems 3.6 and 3.8 coincide. If, however,
G were to be Kn, then r(G) e(G) n 1, while the new upper bound is one. (In fact,
of course, m/,( 0.)

Proof. Observe that L(G) + L(G) L(Kn) nln Jn, where G is the complement
of G and Jn is the n-by-n matrix each of whose entries is one. It follows that ,,_ n
,i, -< < n, where >= >- , 0 are the eigenvalues of L((7) and (as usual) X1 >=

>= , 0 are the eigenvalues of L(G). We next observe that

,_-< max (di+dj).
vi,vj E

This follows immediately from the Ger,gorin Circle Theorem applied to the edge version
K(G). (The circles are all centered at two and their radii are di + 2, vi, vj E.)

Now, the matrix LR(G) is a direct sum, over the components C of R, of matrices
M(C) L(C) I + F(C), where F(C) is a diagonal matrix with nonnegative integer
entries, and I is an appropriately sized identity matrix. Let # >= >= /.t 0 be the
eigenvalues ofL(C), and >- >= t 0 the Laplacian eigenvalues ofits complement.
Denote by i the degree, in C, of the ith vertex of C. Then, because C is rich,- + -j 2 --1) W j

<=t-2,

for each pair (i, j) corresponding to an edge of C. Consequently, by what we have just
seen, _-< 2 so tt- >-- 2. We deduce that one eigenvalue of L(C) I is -1 and the
rest are not less than + 1. Since M(C) >= L(G) I, in the positive semidefinite sense,
the contribution ofM(C) to the rank of LR(G) is at least 1. V1

It should be remarked that Theorems 3.6 and 3.8 are most effective after paths of
length three have been pruned off (see, e.g., Example 3.4). Moreover, it is possible to
mix the techniques among the components of R.

In the subsequent discussion, it will be useful to describe eigenvectors of L(G) by
labeling the vertices ofG with the corresponding components ofthe eigenvectors. If, e.g.,
G is the tree in Example 3.5, then p(G) q(G) 0 and s(G) 1. An eigenvector
affording X is exhibited in Fig. 7. It is clear that this vector is something new. It
differs from the Faria vectors, e.g., in being constant on the orbits of the automorphism
group I’(G). Evidently, 1, 2, is a null vector of Lg(G).

We define the symmetric part of the spectrum of L(G) to be those eigenvalues,
including appropriate multiplicities, that can be accounted for by eigenvectors that are
constant on the orbits of I’(G). If, for example, I’(G) is trivial, then every eigenvalue is
"symmetric." If, on the other hand, I’(G) acts transitively on the vertices, then X 0 is
the only symmetric eigenvalue. In general, the number ofsymmetric eigenvalues ofL(G),
multiplicities included, is equal to the number of orbits of I’(G).

We will say an eigenvalue is "alternating" or that it belongs to the alternating part
ofthe spectrum if it is afforded by an eigenvector that (such as each of the Faria vectors)
is orthogonal to the characteristic functions of the orbits. If T is the tree in Example 2.7,
then X 2 is in the symmetric part and , is in the alternating part. (Every eigenvector
afforded by X is in the Faria space.)
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2 3 4

9 10

FIG. 9

Example 3.9. Let T be the tree in Fig. 9 with the vertices numbered as shown.
Then, using (5), we may easily confirm that

u (1)= 1, 1, 1, 1,0,0,-2,-2,-2,-2,0,4),

u (2)= 1, 1,-1,-1,0,0,-2,2,-2,2,0,0),

u 3)= 1, 1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
and

//(4)= (0,0, 1,-1,0,0,0,0,0,0,0,0),
are orthogonal eigenvectors corresponding to , 1. On the other hand (in the notation
of Theorems 3.6 and 3.8), R consists ofthe subgraph induced on { vi" 7 _-< _-< 10 }, both
components of which are rich. (Alternatively, a(R) 2.) Thus,

mr( P(T) q(T) + s(T)

=4-2+s(T)

_-<2+2=4.

Observe that u1) is symmetric, u(3) and u(4) are Faria vectors, whereas u2) is a yet to be
explained eigenvector that is alternating but not in the Faria space. (Note that both u)

and u2) arise from the null space of the matrix LR(G).)
It is a straightforward procedure to determine the symmetric part of the spectrum

[10 ]. Any symmetric eigenvector must be in the space spanned by the characteristic
functions of the orbits. The graph T in Fig. 9, for example, has six orbits. Hence,
cr(x) f(x)g(x), wheref(x) has degree six accounting for the symmetric part of the
spectrum) and g(x) has degree 12 6 6, accounting for the alternating part. Note
that f(x) xf(x) since the eigenvector corresponding to X 0 is constant on all
vertices. To obtain f(x), we perform a similarity transformation of the following type.
Suppose the m orbits of I’(G) have sizes k, k2, km and characteristic functions
w, Wm. Then the vectors uj kf/2wj, <= j <= m, are orthonormal. Let U be any
orthogonal matrix having u in column j, =< j =< m. Then UtL(G) U is the direct sum
of an m-by-m matrix A (affording the symmetric part of the spectrum) and an (n m)-
by-(n m) matrix B. We note that A can easily be obtained as follows. Order the vertices
ofG by orbits and partition L(G) into m e blocks ofsizes ki-by-k. Then the (i, j)-element
ofA is obtained by summing the elements in the (i, j)-block of L(G) and dividing by
(kikj) 1/2.
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Example 3.10. Let T be the tree in Fig. 9. Then

Hence,

L(T)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

-1 ’i 0 0
0 0 -1 -1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3
0

-1
0
0
0
0

0
3
0

-1
0
0
0

-1
0
2
0

-1
0
0

0
-1
0
2
0

-1
0

0
0

-1
0
2
0

-1

0
0
0

-1 0
0 -1
2 -1

-1 3

-V 0 0 0 0
-/- 3 -1 0 0 0

A 0 -1 2 -1 0 o
0 0 -1 2 -V 0
0 0 0 -v5 3
0 0 0 0 -1

0 0
0 0
0 0

0
0
0

-1

andf(x) det (x/- A) x(x- 1)(x 4)(x 7x2 + 12x 3). It turns out that
g(x) CT(X)/f(x)= (X-- 1)3(X3- 7X2+ 12x- 1).

Returning to (6), we observe (since r(G) >= s(G)) that n ma(1) >-_ 2q(G). We
claim, in fact, that ma[0, >_- q(G) and ma( 1, >= q(G), where ma(I) denotes the
number of eigenvalues of L(G), multiplicities included, belonging to the interval I.

THEOREM 3.1 1. Let G be a graph. Then ma[ O, >-_ q(G) and ma( 1, >-_ q(G).
It follows from (2) and Theorem 3.11 that ma[0, 1] >_- p(G) _-< ma[ 1, ). (This

fact may also be proved by observing that Ip, p p(G), is a principal submatrix ofL(G),
and using the Cauchy interlacing inequalities.) A result similar to Theorem 3.11 for
ma(O, 2) and ma(2, c ), when G is a tree, can be found in Corollary 4.3 below.

Before attempting a proofofTheorem 3.11 we require some background concerning
the relationship of the sequence of leading principal subdeterminants of a symmetric
matrix to the number of positive and negative eigenvalues of the matrix. Suppose that
A is n-by-n, symmetric and nonsingular. Let a0 and let ak det (Ak) where Ak is
the leading principal k-by-k submatrix ofA. It is well known (or easily proven by induction
on n) that the number ofnegative eigenvalues ofA is equal to the number ofsign changes
in the sequence (ao, a, an). We note that this sequence may contain intermediate
zeros, in which case we can shorten the sequence by deleting the zeros and the theorem
will still hold. As an immediate consequence we have the following lemma.

LEMMA 3.12. Suppose that A A is 2q-by-2q and that det (A2k) (--1)k, k
l, q. Then A has q positive and q negative eigenvalues.

Another well-known fact we require relates the spectrum of a principal submatrix
of symmetric A to the spectrum ofA.

LEMMA 3.13. Suppose that B is a principal submatrix ofthe symmetric matrix A
and that a is real. Then the number ofeigenvalues orb that are greater than (respectively,
greater than or equal to, less than, less than or equal to) a is a lower bound for the
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number ofeigenvalues ofA that are greater than (respectively, greater than or equal to,
less than, less than or equal to) .

Proofof Theorem 3.11. We may assume without loss of generality that the quasi-
pendant vertices of G are numbered 1, 3, ..., 2q 1, and that vertex 2k is a pendant
vertex adjacent to vertex 2k 1, for each k 1, ..., q. Let B be the leading principal
2q-by-2q submatrix of L(G). In view of Lemma 3.12, it will suffice to show that B has
q eigenvalues greater than one and q eigenvalues less than one. To do this it will suffice
to show that A B I2q satisfies the hypotheses of Lemma 3.12. Note that A has
the form

(d-l) -1 0 0
-1 0 0 0 0 0

0 (d3-1) -1 0
0 0 -1 0 0 0

0 * 0 (dzq-
0 0 0 0 0

and that the even numbered rows (corresponding to pendants) ofA have a single nonzero
entry. We assume an inductive hypothesis on q, and hence it will suffice to prove that
det (A) (-1 )q. If we use elementary row and column operations corresponding to
adding multiples of even numbered rows and columns to other rows and columns, then
A can be transformed into a direct sum of m copies of-P, where P is the 2-by-2 per-
mutation matrix corresponding to a transposition. Hence det (A) [det (-P)]q (-1 )q
and the proof is finished. V1

In Theorem 3.1, we modified the connected sum idea from Theorem 2.5 and showed
that m( m/( when H G V P3, some graph obtained from G and P3 by joining
any vertex of G to a pendant vertex of P3. Denote by G P3 some graph obtained from
G and P3 by joining any vertex of G to the middle (quasipendant) vertex of P3.

PROPOSITION 3.14. Let G be a graph on n vertices and supposeH G P3. Then
m( <= mi( <= mG( + 2, and each ofthe three possibilities for m14( can occur.

Proof. Write m( m. Assume the numbering of vertices to be such that the
last vertex of G and the first vertex of P3 have been joined to form H. Let M be an
(m )-dimensional subspace ofker (L(G) In) such that vn 0 for all v e M. Then
{ v (R) (0, a, -a) v e M, a e R } is an m-dimensional subspace of ker (L(H) In + 3).
Hence, m =< m/( ).

As in the proofs of Theorems 2.5 and 3.1, let L L(G), L’= L(P3), and
L(H). Then L (L 4- L’) + A, where A is the rank one matrix whose only nonzero
entries amount to

in rows and columns n and n + 1. Then

rank (L-In+3)=rank ([(L-In)4(L’-I3)]+A)

>-rank [(L-In)4(L’-I3)]-

rank (L In) + 1,
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SO

m/( nullity (L In +
-< n + 2 rank L In)

The last assertion is demonstrated by the following examples: (1) Let G P3. Form
G P3 by joining a pendant vertex of G to the "middle" vertex of P3. Then P3
G can be pruned off as in Example 3.2 and mn(1)= me(l). (2) Let G P2. Then
me( )= 0 while the characteristic polynomial of G--- P3 (pictured in Fig. is
x(x- )(x 7xz + 13x- 5). (3) Let Gbe the tree in Fig. 10. Form G----’P3 byjoining
the open vertex to the middle of P3. Then G P3 is the tree in Fig. 9 (Example 3.9).
In this case, me( 2 and mn( 4.

We now return to the "spurious multiplicity" s(G) in (6). We know that the mul-
tiplicity of , in the symmetric part of the spectrum of L(G) accounts for part but
not (in general)all ofs(G). (See Example 3.9). In Theorems 3.6 and 3.8 we found upper
bounds for s(G). We conclude this section with a discussion of possible lower bounds
when G is a tree. We begin by defining an equivalence relation on the set Q of quasi-
pendants of a tree T. If Vl, I)2 E Q, we say v 1)2 if the distance d(v, 1)2) from 1)1 to 1)2
is an (integer) multiple of three, and if the degree dt of vertex vt is two whenever vt is on
the unique path from v to v2 and d(Vl, vt) =- 0 (mod 3).

PROPOSITION 3.15. Let Q be the set ofquasipendants ofa tree T. Suppose C, ...,
Ct are the equivalence classes ofQ and that their respective cardinalities are q, qt.
Then s(T) >= , qi) t.

The somewhat laborious proof of this result involves finding a principal submatrix
of L(G) (see (7)) of sufficiently large nullity. This submatrix turns out to be a direct
sum of 2 I2 J2 with itself several times. We omit the computational details.

Example 3.16. Let Tbe the tree in Fig. 9. Then Q consists ofthe vertices numbered
5, 6, and 11. In this case, Q consists of a single equivalence class of size q q(G) 3,
and Proposition 3.15 asserts that s(T)>-2. Since p(T)- q(T)= 5- 3 2, and
mr(l) 4 (Example 3.9), we know that s(T) 2. In other words, Proposition 3.15 is
strong enough to capture the existence (but not the nature) of eigenvectors u) and u2)

in Example 3.9.
Example 3.17. The tree T in Fig. 11 is exhibited with an eigenvector affording

1. Indeed, for this tree, mr(l) s(T), p(T) q(T), the lower bound given by
Proposition 3.15 is zero (no two quasipendants are equivalent), the upper bound given
in (9) is two, and Theorem 3.8 does not apply. It is an abundance of such examples

FIG. 10
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-1
-1

-1

-I

FIG.

that leads the authors to believe there can be no simple graph theoretic interpretation
for mr(1).

4. Surgery on graphs. Techniques that allow one graph to be transformed into
another with predictable effects on the eigenvalues have already proved useful. (See, e.g.,
Examples 2.6 and 3.2.) The main purpose of this section is to examine the influence of
"moving an edge" in the geometric senses of(i) removing it without affecting its endpoints,
(ii) removing it and identifying its endpoints, (iii) disconnecting one pair of vertices and
joining some other pair. (Note that we have already addressed, to some small extent, the
removal of a pendant edge and both of its endpoints. See Example 2.6.) Our first result
is part of the "Laplacian Folklore."

THEOREM 4.1. Let G be a graph on n vertices. Suppose G is a (spanning) edge
subgraph of obtained by removing just one of its edges. Then the n 1) largest
eigenvalues ofL G) interlace the eigenvalues ofL ).

Proof. It suffices to prove that the nonzero eigenvalues interlace and for this we
may consider the edge version K(G). The result follows from the Cauchy interlacing
inequalities because K(G) is a principal submatrix of K((). []

Note that if a pendant edge of G is removed in Theorem 4.1, then L(G) is a direct
sum of L(G’) and (0), where G’ is obtained from ( by removing both the pendant edge
and vertex. Thus, the nonzero eigenvalues of L(G) and L(G’) are the same. We have
proved the following corollary.

COROLLARY 4.2. Suppose v is a pendant vertex ofthe graph . Let G be the graph
obtainedfrom by removing v (and its edge). Then the eigenvalues ofL( G) interlace
the eigenvalues ofL(G).



234 R. GRONE, R. MERRIS, AND V. S. SUNDER

We can use Corollary 4.2 to obtain a result similar to Theorem 3.11. Reviving the
notation there, recall that ma(I) denotes the number ofeigenvalues ofL(G), multiplicities
included, belonging to the interval I.

COROLLARY 4.3. IfT is a tree with diameter d, then

mr(0, 2) >- [d/2] <=mr(2, ),

where square brackets indicate the greatest integerfunction.
Proof. First consider the case that T Pa +1. We can easily show that K(T)

2Ia + A (T*), where T* Pa is the line graph of T. Since the spectrum of A (T*) is
symmetric about the origin, the spectrum of K(T) is symmetric about two, i.e., the
nonzero spectrum of L(T) is symmetric about two. (Together with Theorem 2.1 (ii),
this gives another proof of Corollary 2.8(i).) Since mr(2) =< 1, the result is established
in this case. Now, any tree T with diameter d contains Pa +1 as a subtree. Thus, T can
be reduced to Pa+l by a sequential removal of pendant vertices. The result follows from
the interlacing established in Corollary 4.2. (See Lemma 3.13.)

This seems an appropriate place to recall a striking result of Fiedler [8, p. 612 ]"
Suppose two is an eigenvalue ofL(T) for some tree T (V, E). Let u be an eigenvector
of L(T) corresponding to two. Then the number of eigenvalues of L(T) greater than
two is equal to the number of edges vi, vj E such that uiuj > 0, whereas the number
of eigenvalues of L(T) less than two is equal to the number of edges such that uiu < O.
(Note that Theorem 2.1 (iii) guarantees ui 4 0 for all i.) If, for example, Tis the tree in
Fig. 4 (with u exhibited), the six pendant edges are all of the type uiuj < 0, while the
remaining three edges all yield uiu > 0. Thus, exactly six eigenvalues of L(T) are less
than two, whereas exactly three are greater than two. In this case, d 4 and d/2 2.

In another pioneering paper [7], Fiedler introduced the algebraic connectivity
a(G) kn- of G. He proved that the algebraic connectivity of a path,

a(P,) 2( -cos (r/n)),

is a lower bound for a(G) for any connected graph G on n vertices. As another application
of Corollary 4.2, we recover a related upper bound stated in the context of A (G*) by
Doob [4, p. 187].

COROLLARY 4.4. Let T be a tree on n vertices with diameter d. Then

a( T) <-_2(1-cos (r/(d+ 1))).

Proof. Observe that T can be built up from Pa+l by attaching pendant vertices. It
is seen from Corollary 4.2 that this building process does not increase the algebraic
connectivity.

COROLLARY 4.5. Let T be a tree on n >= 6 vertices. If T 4 *n, then a(T) < 0.49.
Proof. As in the proof of Corollary 4.4, we may build T on the foundation of P4.

After attaching two pendant vertices, we arrive at a (possibly intermediate) stage of a
tree T2 with six vertices. Moreover, T2 4: *6. There are only five possibilities for T2. The
one with maximum algebraic connectivity is the "near star" in Fig. 12 (b) with algebraic
connectivity 0.485.... Repeated applications ofCorollary 4.2, as more pendant vertices
are attached, proves that a(T) _-< a (T2). [--]

Our next result is reminiscent of popular newspaper accounts of the recombinant
techniques of molecular genetics.

THEOREM 4.6. Let G (V, El) be a graph and G2 (V, E2) a graph obtained
from G by removing an edge and adding a new edge that was not there before. Suppose
a >= >= an are the eigenvalues ofL(G) and >= >= n are the eigenvalues of
L( G2 ). Then Ol - i+ and {Ji - ai+ l, =< < n.
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FG. 12(a) FIG. 12(b)

Proof. From the perspective of the edge version, K(GI) and K(G2) share an
(m- 1)-by-(m- l) principal submatrix, where rn o(El)= o(E2) is the common
cardinality of the two edge sets. Once again, the result is immediate from Cauchy inter-
lacing.

We now come to a less trivial situation in which the vertices at the ends of an edge
are identified, in the process of which the edge is "collapsed" (or "contracted") and
disappears (without producing a loop). In fact, Corollary 4.2 can be redrafted as a special
case of this procedure, the case in which a pendant edge is collapsed. Our next result is
a consequence of the Monotonicity Theorem 12 ].

LEMMA 4.7. Let A, B, and C be n-by-n Hermitian matrices satisfying A B + C.
Denote the eigenvalues ofA and B by a >= >- Oln and 31 >= >= 3,,, respectively. If
C has exactly positive eigenvalues, then k >- ak + t, <= k <= n t.

COROLLARY 4.8. Let A, B, and C be n-by-n Hermitian matrices satisfying A
B + C. Denote the eigenvalues ofA and B by a >= >= an and >- >= ,
respectively. IfC has exactly one positive eigenvalue and exactly one negative eigenvalue
(so that rank C 2), then ak >= k+l and >= Ck+, <= k < n.

THEOREM 4.9. Let I?, ff) be a graph with { 1, 2 } .. Suppose does
not lie on a circuit of length three. Let G (V, E) be the graph obtained from by
deleting (i.e., "collapsing") and identifying vertices 1 and 2. If 1 >- >= ,n+
0 are the eigenvalues of L() and 1 >= >- , 0 are the eigenvalues ofL
L( G), then

(i) i >= i+1, <= <- n, and
(ii) i>--Xi+l, l_i<n.
Example 4.10. Let t be the graph in Fig. 12 (a) with spectrum (approximately)

4.63 > 3.23 > 2.14 > 1.00 > 0.68 > 0.32 > 0.00.

If the 1-2 edge is collapsed, the result is the graph G in Figure 12 (b) with spectrum

5.09 > 2.43 > 1.00 1.00 > 0.49 > 0.00.

Proofof Theorem 4.9. Let Lo (0) -i- L. Then L L0 + A, where A (Aj) is a
3-by-3 block partitioned matrix:

All
-1 -k

where k + is the degree (in () of 1; AI2 is the 2-by-k matrix whose first row consists
entirely of- ’s and whose second row is all + l’s," A2 A2, and the other blocks are
appropriately sized zero matrices. (In particular, A22 and A33 are square blocks, whereas
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A23 is k-by-(n k ).) Suppose first that k > 0. Then it suffices to prove that the
inertia ofA is 1, 1, n ), and invoke Corollary 4.8. Let Xbe the (n + )-square matrix

-k- 0
-k

k 0 0 0
0 k 0 0
0 0 k 0

0 0 0 k

Then we may confirm that each column ofX is an eigenvector for A. More particularly,
X l, the first column, corresponds to the eigenvalue , k + 2; X2 corresponds to ,
-k; and X Xn+ all correspond to X 0

The degenerate case k 0 has already been established in Corollary 4.2. In fact, we
can recover that stronger result here too since, in this case, A >= 0 (in the positive semi-
definite sense) and rank A 1. In this case, (i) is proved by appealing to Lemma 4.7,
and i ki, =< -< n, because >= L0.

It is clear from Example 4.10 that the strong inequalities ; >= hi, -< =< n, may
not hold for a general edge collapse, even for trees. Indeed, as the next result shows,
Example 4.10 is not an isolated example.

THEOREM 4.1 1. Let " be a tree. Suppose is an edge of each ofwhose endpoints
has degree at least three. If T is obtainedfrom by collapsing , then > 1.

Proof. It is somewhat more convenient to deal with the matrix B(T) D(T) +
A(T) that, in view of Proposition 2.2 affords the same spectrum as L(T). Let t be the
positive Perron eigenvector of B(7), normalized so that Ilall 1. The theorem will be
proved by producing a unit vector u of size n such that (B(T) u, u) >

Assume Y n, n + } and write a =/n and b bn + 1. Then and its immediate
neighbors are pictured in Fig. 13, where the labels represent corresponding coordinates
of ft. Define unby Ui’- i, <= <nand un a, where a (a 2 + b2)/2. Note that
u is a unit vector. Observe also that

(B( T)u,u) , (ui+ uj) 2,

where the sum extends over those pairs (i, j) such that {/)i, l)j } is an edge of T. Note
that many of the terms in , (B( 7)t, ti) and (B( T)u, u) are the same. Denote the
sum of these common terms by c. Then

l (B()b, b)
j k

c+ ., (pi+a)+(a+b)+ , (bWxi) :z

i=1 i=1

FIG. 13
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while

j k

(B(T)u,u)=c+ , (pi+c02+ ] (O/q"Xi) 2.
i=1 i=1

To show (B(T) u, u) > 1, we take their difference

j k

2 , pi(a-a)+2 , xi(a-b)+(a-b)Z+(k-2)a+(j-2)b2

i=1 i=1

and observe that j + tin, the degree of n, while k + =dn +1 >= 3. Hence, every
term is nonnegative, and the first j + k terms are all positive.

It should be noted that the same reasoning will prove a slightly more general assertion:
Let 7 be a tree. Suppose 1 and 2 are vertices each of degree at least three. Suppose the
unique path from 1 to 2 is homeomorphic to an edge (i.e., apart from the endpoints,
each vertex on the path has degree two). Let T be the tree obtained by collapsing the
entire path. Then kl > ,1. (Ofcourse, ifl were a pendant vertex, we could have deduced

Conjecture 4.12. Let 7 be a tree with (Laplacian) spectrum 1 >--"" >= ’n >,
+1 0. Let T be a tree obtained from 7 by collapsing an edge. Then ,,_ ->- ),-1

a(T), the algebraic connectivity of T.
Example 4.13. Let ( C4 with spectrum (4, 2, 2, 0). If an edge of t is collapsed,

the result is G C3 with spectrum (3, 3, 0). In this case, n 3 and , 2 < ),2 3.
Thus, Conjecture 4.12 fails, even for a bipartite with a circuit.

For general edge collapsing in trees, empirical evidence suggests that departure from
interlacing occurs "near the top." We conclude by showing that

PROPOSITION 4.14. Let T be the tree obtainedfrom by collapsing an edge
{ 1, 2}. Let d be the minimum ofthe degrees dl and d2. Then IX1 <= d + <=
kl. Consequently, 1 <= 2.

Proof. We revive the notation used in the proof of Theorem 4.9, with d k +
1. Then

IX, x, IILI[ t0111
=< IlL-Loll

Now, ,1 is bounded below by the largest main diagonal entry of L(7). This is at
least d + unless d is the largest degree of any vertex of 7. If it is, then dl d2 k +
1, and

-1 k+l

is a principal submatrix of L(7). But, the eigenvalues of B are k and k + 2. Thus, by
Cauchy interlacing, >= k + 2 d + 1. 1--]
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