Wavelets and Approximation Ronald DeVore

University of South Carolina

Why Approximation?

Image Processing

Why Approximation?

Wavelets X - p.2/55

- Image Processing
- Image given by a function f(x), $x\in \Omega:=[0,1]^2$

Why Approximation?

Wavelets X – p.2/55

- Image Processing
- Image given by a function f(x), $x \in \Omega := [0, 1]^2$
- Digitized Image: Pixel values: $p_I := \frac{1}{|I|} \int_I f(x) dx$

The Following are Forms of Approximation

- Compression: Approximate f by a simpler function A(f) which can be encoded with relatively few bits

Wavelets X – p.3/5

The Following are Forms of Approximation

- Compression: Approximate f by a simpler function ${\cal A}(f)$ which can be encoded with relatively few bits
- Denoising: Given noise corrupted pixels \bar{p}_I , approximate f

The Following are Forms of Approximation

- Compression: Approximate f by a simpler function ${\cal A}(f)$ which can be encoded with relatively few bits
- Denoising: Given noise corrupted pixels \bar{p}_I , approximate f
- Deblurring: Given a blurred image ${\cal P}(f)$ approximate f

• What are the advantages/disadvantages of using wavelets in Approximation

- What are the advantages/disadvantages of using wavelets in Approximation
- Types of wavelet approximation: linear and nonlinear

Wavelets X - p.4/5

- What are the advantages/disadvantages of using wavelets in Approximation
- Types of wavelet approximation: linear and nonlinear
- Compare wavelets with other methods of approximation

- What are the advantages/disadvantages of using wavelets in Approximation
- Types of wavelet approximation: linear and nonlinear
- Compare wavelets with other methods of approximation
- Future Directions

• f(x), $x \in [0,1]$

- f(x), $x \in [0, 1]$
- Approximate f by piecewise constants

- f(x), $x \in [0, 1]$
- Approximate *f* by piecewise constants
- Types of approximation: Linear, Nonlinear

Wavelets X-

- $f(x), x \in [0, 1]$
- Approximate *f* by piecewise constants
- Types of approximation: Linear, Nonlinear
- Select a metric/norm || || to measure distortion

 $\|f\|_{L_p(\Omega)} := (\int_{\Omega} |f(x)|^p dx)^{1/p}, \quad 0$

- f(x), $x \in [0, 1]$
- Approximate *f* by piecewise constants
- Types of approximation: Linear, Nonlinear
- Select a metric/norm || || to measure distortion

 $||f||_{L_p(\Omega)} := (\int_{\Omega} |f(x)|^p \, dx)^{1/p}, \quad 0$

• $||f||_{L_{\infty}} := \sup_{x \in \Omega} |f(x)|, \quad p = \infty$

Wavelets X - p.5/55

• Divide [0,1] into n equal length intervals

• Divide [0, 1] into n equal length intervals

• $\Pi_n := \{ [\frac{k}{n}, \frac{k+1}{n}), k = 0, \dots, n-1 \}$

- Divide [0,1] into n equal length intervals
- $\Pi_n := \{ [\frac{k}{n}, \frac{k+1}{n}), k = 0, \dots, n-1 \}$
- $\mathcal{S}_n := \{S : S \text{ is constant on each } I \in \Pi_n\}$

Wavelets X - p.6/55

- Divide [0,1] into n equal length intervals
- $\Pi_n := \{ [\frac{k}{n}, \frac{k+1}{n}), k = 0, \dots, n-1 \}$
- $\mathcal{S}_n := \{S : S \text{ is constant on each } I \in \Pi_n\}$

Wavelets X - p.6/55

• \mathcal{S}_n is a linear space

Typical function in S_n

- Divide [0,1] into n equal length intervals
- $\Pi_n := \{ [\frac{k}{n}, \frac{k+1}{n}), k = 0, \dots, n-1 \}$
- $\mathcal{S}_n := \{S : S \text{ is constant on each } I \in \Pi_n\}$
- \mathcal{S}_n is a linear space
- Given $f \in L_p[0,1]$, define error

 $E_n(f)_p := \inf_{S \in \mathcal{S}_n} \|f - S\|_{L_p}$

Wavelets X - p.8/55

Wavelets X-

– p.9/55

• Divide [0, 1] into n intervals $I_i = [\xi_i, \xi_{i+1}]$, $0 = \xi_0 < \xi_1 < \cdots < \xi_n = 1$

- Divide [0, 1] into n intervals $I_i = [\xi_i, \xi_{i+1}]$, $0 = \xi_0 < \xi_1 < \cdots < \xi_n = 1$
- $\Sigma_n := \{S : S \text{ is constant on each } I_i, i = 1, \dots, n\}$

Wavelets X

p.9/55

- Divide [0, 1] into n intervals $I_i = [\xi_i, \xi_{i+1}]$, $0 = \xi_0 < \xi_1 < \cdots < \xi_n = 1$
- $\Sigma_n := \{S : S \text{ is constant on each } I_i, i = 1, \dots, n\}$
- Σ_n is not a linear space: $S_1, S_2 \in \Sigma_n$ but $S_1 + S_2 \in \Sigma_{2n}$

- Divide [0, 1] into n intervals $I_i = [\xi_i, \xi_{i+1}]$, $0 = \xi_0 < \xi_1 < \cdots < \xi_n = 1$
- $\Sigma_n := \{S : S \text{ is constant on each } I_i, i = 1, \dots, n\}$
- Σ_n is not a linear space: $S_1, S_2 \in \Sigma_n$ but $S_1 + S_2 \in \Sigma_{2n}$
- Given $f \in L_p[0,1]$, define error

 $\sigma_n(f)_p := \inf_{S \in \Sigma_n} \|f - S\|_{L_p}$

• For each interval I, E(I) the local L_p error in approximating f by constants

Wavelets X - p.10/55

- For each interval I, E(I) the local L_p error in approximating f by constants
- Given error tolerance ε > 0 generate partition
 *P*_ε such that *E*(*I*) ≤ ε for all *I* ∈ *P*_ε

Wavelets X – p.10/55

- For each interval I, E(I) the local L_p error in approximating f by constants
- Given error tolerance ε > 0 generate partition
 *P*_ε such that *E*(*I*) ≤ ε for all *I* ∈ *P*_ε

Wavelets X - p.10/55

 $\bullet \ I \text{ is good if } E(I) \leq \epsilon$

- For each interval I, E(I) the local L_p error in approximating f by constants
- Given error tolerance $\epsilon > 0$ generate partition \mathcal{P}_{ϵ} such that $E(I) \leq \epsilon$ for all $I \in \mathcal{P}_{\epsilon}$

Wavelets X - p.10/55

- I is good if $E(I) \leq \epsilon$
- I is bad if $E(I) > \epsilon$

Initially if *E*([0, 1]) ≤ ε then algorithm terminates and *P*_ε := {[0, 1]}

- Initially if $E([0,1]) \leq \epsilon$ then algorithm terminates and $\mathcal{P}_{\epsilon} := \{[0,1]\}$
- if $E([0,1]) > \epsilon$ then set $\mathcal{B}_{\epsilon} := \{[0,1]\}$ and $\mathcal{G}_{\epsilon} := \emptyset$

- Initially if $E([0,1]) \leq \epsilon$ then algorithm terminates and $\mathcal{P}_{\epsilon} := \{[0,1]\}$
- if $E([0,1]) > \epsilon$ then set $\mathcal{B}_{\epsilon} := \{[0,1]\}$ and $\mathcal{G}_{\epsilon} := \emptyset$
- Recursion: For each *I* ∈ β_ε put child *J* of *I* in *G_ε* if it is good, put it in β_ε if it is bad. Remove *I* from β_ε

Wavelets X - p.11/55

- Initially if $E([0,1]) \leq \epsilon$ then algorithm terminates and $\mathcal{P}_{\epsilon} := \{[0,1]\}$
- if $E([0,1]) > \epsilon$ then set $\mathcal{B}_{\epsilon} := \{[0,1]\}$ and $\mathcal{G}_{\epsilon} := \emptyset$
- Recursion: For each *I* ∈ B_ε put child *J* of *I* in G_ε if it is good, put it in B_ε if it is bad. Remove *I* from B_ε

Wavelets X - p.11/55

• Stop when $\mathcal{B}_{\epsilon} = \emptyset$, $\mathcal{P}_{\epsilon} := \mathcal{G}_{\epsilon}$, $N_{\epsilon} := \#(\mathcal{P}_{\epsilon})$

Nonlinear Approximation: Adaptive (continued)

• $A_{N_{\epsilon}}(f)$ best approximation to f by piecewise constants on \mathcal{P}_{ϵ}

Wavelets X - p.12/55

Nonlinear Approximation: Adaptive (continued)

• $A_{N_{\epsilon}}(f)$ best approximation to f by piecewise constants on \mathcal{P}_{ϵ}

Wavelets X - p.12/55

• $a_n(f)_p := \inf\{\epsilon : N_\epsilon \le n\}$
Adaptively generated partition

Tree associated to adaptive partition

Wavelets: Haar Wavelet

$$H(x) := \begin{cases} -1, & x \in [0, 1/2) \\ +1, & x \in [1/2, 1] \end{cases},$$

Wavelets: Haar Basis

• $H_I(x) := 2^{j/2} H(2^j x - k), I = [k2^{-j}, (k+1)2^{-j}]$

Wavelets: Haar Basis

- $H_I(x) := 2^{j/2} H(2^j x k), I = [k2^{-j}, (k+1)2^{-j}]$
- $\mathcal{D}_+ := \{I \in \mathcal{D} : |I| \le 1\}$

Wavelets: Haar Basis

- $H_I(x) := 2^{j/2} H(2^j x k), I = [k2^{-j}, (k+1)2^{-j}]$
- $\mathcal{D}_+ := \{I \in \mathcal{D} : |I| \le 1\}$
- $\{\chi_{[0,1]}\} \cup \{H_I\}_{I \in \mathcal{D}_+}$ is a complete orthonormal system in $L_2[0,1]$

Wavelets X - p.16/55

Haar Basis

Wavelets X - p.17/55

Wavelet tree

Wavelets X - p.18/55

Natural ordering of dyadic intervals

- Natural ordering of dyadic intervals
- X_n span of first n Haar functions

- Natural ordering of dyadic intervals
- X_n span of first n Haar functions
- X_n is a linear space

Wavelets X – p.19/55

- Natural ordering of dyadic intervals
- X_n span of first n Haar functions
- X_n is a linear space
- $E_n^w(f)_p := \inf_{g \in X_n} \|f g\|_{L_p[0,1]}$

- Natural ordering of dyadic intervals
- X_n span of first n Haar functions
- X_n is a linear space
- $E_n^w(f)_p := \inf_{g \in X_n} \|f g\|_{L_p[0,1]}$
- This is linear approximation because X_n is a linear space

Wavelets X -

.19/55

• *n*-term approximation

- *n*-term approximation
- $\Sigma_n := \{ S = \sum_{I \in \Lambda} c_I H_I : \#(\Lambda) \le n \}$

- *n*-term approximation
- $\Sigma_n := \{ S = \sum_{I \in \Lambda} c_I H_I : \#(\Lambda) \le n \}$
- \sum_{n} is not a linear space

Wavelets X - p.20/55

- *n*-term approximation
- $\Sigma_n := \{ S = \sum_{I \in \Lambda} c_I H_I : \#(\Lambda) \le n \}$
- \sum_{n} is not a linear space
- $\sigma_n^w(f)_p := \inf_{S \in \Sigma_n} \|f S\|_{L_p[0,1]}$

- *n*-term approximation
- $\Sigma_n := \{ S = \sum_{I \in \Lambda} c_I H_I : \#(\Lambda) \le n \}$
- \sum_n is not a linear space
- $\sigma_n^w(f)_p := \inf_{S \in \Sigma_n} \|f S\|_{L_p[0,1]}$
- This is nonlinear approximation because decisions are made dependent on f

Wavelets X -

p.20/55

n-term approximation

Wavelets X - p.21/55

Tree Approximation with Haar Basis

• Require that the wavelet positions chosen in the approximation lie on a tree with *n*-nodes

Wavelets X – p.22/55

Tree Approximation with Haar Basis

- Require that the wavelet positions chosen in the approximation lie on a tree with *n*-nodes
- $\Sigma_n^t := \{ S = \sum_{I \in \Lambda} c_I H_I : \Lambda \text{ a tree } \#(\Lambda) \le n \}$

Wavelets X - p.22/55

Tree Approximation with Haar Basis

- Require that the wavelet positions chosen in the approximation lie on a tree with *n*-nodes
- $\Sigma_n^t := \{ S = \sum_{I \in \Lambda} c_I H_I : \Lambda \text{ a tree } \#(\Lambda) \le n \}$

Wavelets X - p.22/55

• $\sigma_n^t(f)_p := \inf_{S \in \Sigma_n^t} \|f - S\|_{L_p[0,1]}$

Comparison of these different types of approximation

 Approximation classes: α > 0 define A^α(L_p, linear splines) as the set of all f ∈ L_p[0, 1] such that

 $E_n(f)_p \le Cn^{-\alpha}, \quad n \ge 1$

Comparison of these different types of approximation

 Approximation classes: α > 0 define A^α(L_p, linear splines) as the set of all f ∈ L_p[0, 1] such that

 $E_n(f)_p \le C n^{-\alpha}, \quad n \ge 1$

• Similarly define $\mathcal{A}^{\alpha}(L_p)$ for the other forms of approximation

Wavelets X - p.23/55

Comparison of these different types of approximation

• Approximation classes: $\alpha > 0$ define $\mathcal{A}^{\alpha}(L_p, linear splines)$ as the set of all $f \in L_p[0, 1]$ such that

 $E_n(f)_p \le Cn^{-\alpha}, \quad n \ge 1$

• Similarly define $\mathcal{A}^{\alpha}(L_p)$ for the other forms of approximation

Wavelets X - p.23/55

\$\mathcal{A}_q^s(L_p)\$ finer scaling: same approximation order \$s\$

Approximation Classes for Linear Approximation

• Fix the L_p space to measure error

Approximation Classes for Linear Approximation

- Fix the L_p space to measure error
- $A^{s}(L_{p}, \ linear) = B^{s}_{\infty}(L_{p})$

Approximation Classes for Linear Approximation

Wavelets X – p.24/55

- Fix the L_p space to measure error
- $A^{s}(L_{p}, \ linear) = B^{s}_{\infty}(L_{p})$
- Proved by Scherer +

Linear Approximation: $\mathcal{A}^s_{\infty}(L_p)$ Besov space of smoothness s

Wavelets X - p.25/5

knot splines and *n*-term Approximation

• Fix the L_p space to measure error

knot splines and *n*-term Approximation

- Fix the L_p space to measure error
- $A^s_{\tau}(L_p, nonlinear) = B^s_{\tau}(L_{\tau}), \frac{1}{\tau} = s + \frac{1}{p}$

knot splines and *n*-term Approximation

- Fix the L_p space to measure error
- $A^s_{\tau}(L_p, nonlinear) = B^s_{\tau}(L_{\tau}), \frac{1}{\tau} = s + \frac{1}{p}$

Wavelets X - p.26/55

Petrushev, DeVore-Popov (splines);
DeVore-Jawerth-Popov (wavelets)

Approximation class for *n*-term approximation

Wavelets X – p

Adaptive approximation

Wavelets X - p.28/55

Example: Approximation in L_{∞}

• $p = \infty$ approximation order $O(n^{-1})$

Example: Approximation in L_{∞}

Wavelets X – p.29/55

- $p = \infty$ approximation order $O(n^{-1})$
- Linear approximation $f' \in L_{\infty}$
Example: Approximation in L_{∞}

- $p = \infty$ approximation order $O(n^{-1})$
- Linear approximation $f' \in L_{\infty}$
- Nonlinear approximation (free knot splines and *n*-term wavelet) $f' \in L_1$

Wavelets X – p.29/55

Example: Approximation in L_{∞}

- $p = \infty$ approximation order $O(n^{-1})$
- Linear approximation $f' \in L_{\infty}$
- Nonlinear approximation (free knot splines and *n*-term wavelet) *f*' ∈ *L*₁
- Adaptive approximation $f' \in LlogL$: for example $f' \in L_p$ for some p > 1

Example: Approximation in L_{∞}

- $p = \infty$ approximation order $O(n^{-1})$
- Linear approximation $f' \in L_{\infty}$
- Nonlinear approximation (free knot splines and *n*-term wavelet) $f' \in L_1$
- Adaptive approximation $f' \in LlogL$: for example $f' \in L_p$ for some p > 1
- Tree approximation $f' \in L_p$ for some p > 1

Example: $f(x) = x^{\alpha}$, $\alpha > -1/p$

$E_n(f)_p \approx C n^{-(\alpha+1/p)} \quad \sigma_n(f)_p \leq C n^{-1}$

Break points/ wavelets concentrate near singularity at 0

Wavelets X - p.30/55

Example: piecewise smooth

$$E_n(f)_p \ge C n^{-1/p} \quad \sigma_n(f)_p \le C n^{-1}$$

Breakpoints/wavelets concentrate near singularities

Wavelets X - p.31/55

 Linear approximation as before except for curse of dimensionality

 Linear approximation as before except for curse of dimensionality

• $\mathcal{A}^{\alpha/d}(L_p) = B^{lpha}_{\infty}(L_p)$

 Linear approximation as before except for curse of dimensionality

Wavelets X - p.32/55

•
$$\mathcal{A}^{\alpha/d}(L_p) = B^{\alpha}_{\infty}(L_p)$$

• Nonlinear Approximation?

- Linear approximation as before except for curse of dimensionality
- $\mathcal{A}^{\alpha/d}(L_p) = B^{\alpha}_{\infty}(L_p)$
- Nonlinear Approximation?
- No analogue of free knot splines: general triangulation

Wavelets X – p.32/5

- Linear approximation as before except for curse of dimensionality
- $\mathcal{A}^{\alpha/d}(L_p) = B^{\alpha}_{\infty}(L_p)$
- Nonlinear Approximation?
- No analogue of free knot splines: general triangulation
- *n*-term approximation using multivariate wavelets the same

Wavelets X – p.32/5

- Linear approximation as before except for curse of dimensionality
- $\mathcal{A}^{\alpha/d}(L_p) = B^{\alpha}_{\infty}(L_p)$
- Nonlinear Approximation?
- No analogue of free knot splines: general triangulation
- *n*-term approximation using multivariate wavelets the same
- $\mathcal{A}^{\alpha/d}_{\tau}(wavelets, L_p) = B^{\alpha}_{\tau}(L_p), \frac{1}{\tau} = \frac{\alpha}{d} + \frac{1}{p}$

Wavelets X - p.32/55

Multivariate Nonlinear Approximation Classes

Now $\frac{1}{\tau} = \frac{\alpha}{d} + \frac{1}{p}$

• Fix L_p to measure error 1

- Fix L_p to measure error 1
- Given wavelet decomposition $f = \sum_{\lambda} a_{\lambda}(f) \psi_{\lambda}$

Wavelets X - p.34/55

- Fix L_p to measure error 1
- Given wavelet decomposition $f = \sum_{\lambda} a_{\lambda}(f) \psi_{\lambda}$
- Choose Λ_n set of indices of the *n* largest

 $\{\lambda: \|a_{\lambda}(f)\psi_{\lambda}\|_{L_p}\}$

- Fix L_p to measure error 1
- Given wavelet decomposition $f = \sum_{\lambda} a_{\lambda}(f) \psi_{\lambda}$
- Choose Λ_n set of indices of the *n* largest

 $\{\lambda: \|a_{\lambda}(f)\psi_{\lambda}\|_{L_p}\}$

Wavelets X - p.34/55

• $\|f - \sum_{\lambda \in \Lambda_n} a_\lambda(f)\psi_\lambda\|_{L_p} \le C_p \sigma_n(f)_p$

- Fix L_p to measure error 1
- Given wavelet decomposition $f = \sum_{\lambda} a_{\lambda}(f) \psi_{\lambda}$
- Choose Λ_n set of indices of the *n* largest

 $\{\lambda: \|a_{\lambda}(f)\psi_{\lambda}\|_{L_p}\}$

Wavelets X - p.34/55

- $||f \sum_{\lambda \in \Lambda_n} a_\lambda(f)\psi_\lambda||_{L_p} \le C_p \sigma_n(f)_p$
- Wavelet basis is greedy

- Fix L_p to measure error 1
- Given wavelet decomposition $f = \sum_{\lambda} a_{\lambda}(f) \psi_{\lambda}$
- Choose Λ_n set of indices of the *n* largest

 $\{\lambda: \|a_{\lambda}(f)\psi_{\lambda}\|_{L_p}\}$

- $||f \sum_{\lambda \in \Lambda_n} a_\lambda(f)\psi_\lambda||_{L_p} \le C_p \sigma_n(f)_p$
- Wavelet basis is greedy
- Simple thresholding is a near best strategy

Wavelets X - p.34/55

Further Wavelet advantages

 Function spaces are characterized by wavelet coefficients in a simple way

Wavelets X – p.35/55

Further Wavelet advantages

- Function spaces are characterized by wavelet coefficients in a simple way
- *n*-term approximations of images align themselves on trees

Further Wavelet advantages

- Function spaces are characterized by wavelet coefficients in a simple way
- *n*-term approximations of images align themselves on trees
- Other correlations in positions of big wavelet coefficients

Remarks on Encoding

• Tree with n nodes can be encoded with n bits

Remarks on Encoding

• Tree with n nodes can be encoded with n bits

• Cohen-Dahmen-Daubechies-DeVore (Cohen-Daubechies-Gulleryuz-Orchard) If $f \in B^{\alpha}_{\tau}(L_{\tau}), \frac{1}{\tau} < \frac{\alpha}{2} + \frac{1}{p}$ then f can be approximated to accuracy $C \|f\|_{B^{\alpha}_{\tau}(L_{\tau})} n^{-\alpha/2}$ and the approximant can be encoded with nbits

Wavelets X – p.36/55

• EZW, Said-Pearlman, HMM, etc.

- EZW, Said-Pearlman, HMM, etc.
- Bits to quantize coefficients

Wavelets X - p.37/55

- EZW, Said-Pearlman, HMM, etc.
- Bits to quantize coefficients
- Bits to encode positions of wavelets

- EZW, Said-Pearlman, HMM, etc.
- Bits to quantize coefficients
- Bits to encode positions of wavelets
- number of quantization bits determined by decay of rearranged wavelet coefficients: the α in Besov regularity

- EZW, Said-Pearlman, HMM, etc.
- Bits to quantize coefficients
- Bits to encode positions of wavelets
- number of quantization bits determined by decay of rearranged wavelet coefficients: the α in Besov regularity
- If n coefficients are taken then need at least (and at most) n bits to achieve distortion $n^{-\alpha}$

• n-bits to encode a tree with n nodes

- n-bits to encode a tree with n nodes
- Better information on correlations may improve on this n

- n-bits to encode a tree with n nodes
- Better information on correlations may improve on this n
- Statistical correlations improve on C in estimate $Cn^{=\alpha}$ but not on α

- *n*-bits to encode a tree with *n* nodes
- Better information on correlations may improve on this n
- Statistical correlations improve on C in estimate $Cn^{=\alpha}$ but not on α
- Besov smoothness is exact predictor of asymptotic performance of wavelet encoders

- n-bits to encode a tree with n nodes
- Better information on correlations may improve on this n
- Statistical correlations improve on C in estimate $Cn^{=\alpha}$ but not on α
- Besov smoothness is exact predictor of asymptotic performance of wavelet encoders
- Models vs. Encoders

- n-bits to encode a tree with n nodes
- Better information on correlations may improve on this n
- Statistical correlations improve on C in estimate $Cn^{=\alpha}$ but not on α
- Besov smoothness is exact predictor of asymptotic performance of wavelet encoders
- Models vs. Encoders

- n-bits to encode a tree with n nodes
- Better information on correlations may improve on this n
- Statistical correlations improve on C in estimate $Cn^{=\alpha}$ but not on α
- Besov smoothness is exact predictor of asymptotic performance of wavelet encoders
- Models vs. Encoders

- n-bits to encode a tree with n nodes
- Better information on correlations may improve on this n
- Statistical correlations improve on C in estimate $Cn^{=\alpha}$ but not on α
- Besov smoothness is exact predictor of asymptotic performance of wavelet encoders
- Models vs. Encoders
Drawbacks to wavelets in multidimensions

 Wavelets isotropic and oriented to coordinate axis

Wavelets X - p.39/55

Drawbacks to wavelets in multidimensions

 Wavelets isotropic and oriented to coordinate axis

Wavelets X - p.39/55

Wavelets handle point singularities well

Drawbacks to wavelets in multidimensions

- Wavelets isotropic and oriented to coordinate axis
- Wavelets handle point singularities well
- Wavelets do not handle singularities along curves

Wavelets X – p.39/55

Horizon approximation

Possible remedies

• New systems: ridgelets, wedgelets, curvelets,

Possible remedies

- New systems: ridgelets, wedgelets, curvelets,
- Candes and Donoho

Possible remedies

New systems: ridgelets, wedgelets, curvelets,

Wavelets X - p.41/55

- Candes and Donoho
- Frames and redundant systems

Example: Wedgelets

Wavelets X - p.42/55

• To each dyadic square I with $|I| = 2^{-j}$ associate a family of wedgelets

Example: Wedgelets

- To each dyadic square I with $|I| = 2^{-j}$ associate a family of wedgelets
- A wedgelet is a piecewise constant function taking the values 0, 1

Wavelets X – p.42/55

Example: Wedgelets

- To each dyadic square I with $|I| = 2^{-j}$ associate a family of wedgelets
- A wedgelet is a piecewise constant function taking the values 0, 1
- Demarcation is given by a line connecting grid points on boundary of I with spacing 2^{-2j}

Wavelets X – p

Picture of a wedgelet

Wavelets X - p.43/5

Horizon functions: piecewise constants

• Any horizon function with C^2 boundary can be approximated in L_2 to error n^{-1} using n wedgelets

Wavelets X - p.44/55

Horizon functions: piecewise constants

- Any horizon function with C^2 boundary can be approximated in L_2 to error n^{-1} using n wedgelets
- By comparison wavelets give error $n^{-1/2}$: $f \in BV \subset \mathcal{A}^1(\text{nonlinear}, L_2)$. Fourier gives error $n^{-1/4}$: $f \in B^{1/2}_{\infty}(L_2) = \mathcal{A}^{1/2}(Fourier, L_2)$

Wavelets X - p.44/5

• Let $\mathcal{B} := \{b_{\nu}\}$ be any orthonormal basis

- Let $\mathcal{B} := \{b_{\nu}\}$ be any orthonormal basis
- $f = \sum_{\nu} c_{\nu}(f) b_{\nu}$

- Let $\mathcal{B} := \{b_{\nu}\}$ be any orthonormal basis
- $f = \sum_{\nu} c_{\nu}(f) b_{\nu}$
- Simple characterization of $\mathcal{A}^{s}(L_{2})$

 $f \in \mathcal{A}^s(L_2, \mathcal{B}) \longleftrightarrow (c_\nu(f)) \in w\ell_\tau, \quad \frac{1}{\tau} = s + \frac{1}{2}$

- Let $\mathcal{B} := \{b_{\nu}\}$ be any orthonormal basis
- $f = \sum_{\nu} c_{\nu}(f) b_{\nu}$
- Simple characterization of $\mathcal{A}^{s}(L_{2})$

 $f \in \mathcal{A}^s(L_2, \mathcal{B}) \longleftrightarrow (c_{\nu}(f)) \in w\ell_{\tau}, \quad \frac{1}{\tau} = s + \frac{1}{2}$

• $w\ell_{\tau}$ consists of all sequences (c_{ν}) such that decreasing rearrangement (c_n^*) satisfies

$$c_n^* \le C n^{-1/\tau}$$

Wavelets X - p.45/55

• $\mathcal{B}_1, \mathcal{B}_2$ two orthonormal systems

- $\mathcal{B}_1, \mathcal{B}_2$ two orthonormal systems
- Generally speaking $\mathcal{A}^s(L_p, \mathcal{B}_1)$ and $\mathcal{A}^s(L_p, \mathcal{B}_2)$ cant be compared

Wavelets X - p.46/55

- $\mathcal{B}_1, \mathcal{B}_2$ two orthonormal systems
- Generally speaking $\mathcal{A}^s(L_p, \mathcal{B}_1)$ and $\mathcal{A}^s(L_p, \mathcal{B}_2)$ cant be compared
- Fourier basis $\mathcal{A}^1(Fourier, L_2)$ characterized by

 $\hat{f}^*(n) \le C n^{-3/2}$

- $\mathcal{B}_1, \mathcal{B}_2$ two orthonormal systems
- Generally speaking $\mathcal{A}^s(L_p, \mathcal{B}_1)$ and $\mathcal{A}^s(L_p, \mathcal{B}_2)$ cant be compared
- Fourier basis $\mathcal{A}^1(Fourier, L_2)$ characterized by

 $\hat{f}^*(n) \le C n^{-3/2}$

 Wavelets characterized by same condition for wavelet coefficients.

Wavelets X - p.46/55

- $\mathcal{B}_1, \mathcal{B}_2$ two orthonormal systems
- Generally speaking $\mathcal{A}^s(L_p, \mathcal{B}_1)$ and $\mathcal{A}^s(L_p, \mathcal{B}_2)$ cant be compared
- Fourier basis $\mathcal{A}^1(Fourier, L_2)$ characterized by

 $\hat{f}^*(n) \le C n^{-3/2}$

 Wavelets characterized by same condition for wavelet coefficients.

-p.46/55

 Always some functions which prefer one Wavelet

• Can we put together different systems?

- Can we put together different systems?
- A dictionary is a collection *D* of functions with norm 1.

Wavelets X – p.47/55

- Can we put together different systems?
- A dictionary is a collection *D* of functions with norm 1.
- Example: D is a union of several orthonormal bases

- Can we put together different systems?
- A dictionary is a collection *D* of functions with norm 1.
- Example: D is a union of several orthonormal bases

Wavelets X

• $\sigma_n(f, D)_p$ is error in *n*-term approximation using elements of dictionary

Greedy Algorithms

 How can we generate good approximations from a dictionary?

Wavelets X - p.48/55

Greedy Algorithms

- How can we generate good approximations from a dictionary?
- Greedy Algorithm : Given f ∈ L₂:
 1. Choose g₁ ∈ D such that |⟨f, g₁⟩| maximum over g ∈ D
 2. A₁ := ⟨f, g₁⟩g₁, f₁ = f − A₁ residual
 3. Repeat with f replaced by f₁.....

Greedy Algorithms

- How can we generate good approximations from a dictionary?
- Greedy Algorithm : Given f ∈ L₂:
 1. Choose g₁ ∈ D such that |⟨f, g₁⟩| maximum over g ∈ D
 2. A₁ := ⟨f, g₁⟩g₁, f₁ = f − A₁ residual
 3. Repeat with f replaced by f₁.....

Wavelets X

Greedy Algorithm converges (L. Jones)

Wavelets X - p.49/55

• $\mathcal{F}_{\tau} := \{ f = \sum_{g \in \mathcal{D}} c_g g : \sum_{g \in \mathcal{D}} |c_g|^{\tau} < \infty \}$

- $\mathcal{F}_{\tau} := \{ f = \sum_{g \in \mathcal{D}} c_g g : \sum_{g \in \mathcal{D}} |c_g|^{\tau} < \infty \}$
- (DeVore-Temlyakov) $f \in \mathcal{F}_1$ then $\|f_n\| \leq C n^{-1/6}$

- $\mathcal{F}_{\tau} := \{ f = \sum_{g \in \mathcal{D}} c_g g : \sum_{g \in \mathcal{D}} |c_g|^{\tau} < \infty \}$
- (DeVore-Temlyakov) $f \in \mathcal{F}_1$ then $\|f_n\| \leq C n^{-1/6}$
- Modifications of Greedy Algorithm have better convergence

Wavelets X - p.49/55

- $\mathcal{F}_{\tau} := \{ f = \sum_{g \in \mathcal{D}} c_g g : \sum_{g \in \mathcal{D}} |c_g|^{\tau} < \infty \}$
- (DeVore-Temlyakov) $f \in \mathcal{F}_1$ then $\|f_n\| \leq C n^{-1/6}$
- Modifications of Greedy Algorithm have better convergence

Wavelets X - p.49/55

• Example $f \in \mathcal{F}_1$ then decay is $O(n^{-1/2})$ for modified algorithm (Maurey +)

- $\mathcal{F}_{\tau} := \{ f = \sum_{g \in \mathcal{D}} c_g g : \sum_{g \in \mathcal{D}} |c_g|^{\tau} < \infty \}$
- (DeVore-Temlyakov) $f \in \mathcal{F}_1$ then $\|f_n\| \leq C n^{-1/6}$
- Modifications of Greedy Algorithm have better convergence
- Example $f \in \mathcal{F}_1$ then decay is $O(n^{-1/2})$ for modified algorithm (Maurey +)
- Greedy Algorithms expensive to implement

Wavelets X - p.49/55

Example: Spline-Fourier

• Given n, σ_n piecewise Fourier

Example: Spline-Fourier

- Given n, σ_n piecewise Fourier
- Partition [0,1] into m intervals I_k , $k = 1, \ldots, m$

Wavelets X - p.50/55
- Given n, σ_n piecewise Fourier
- Partition [0, 1] into m intervals I_k , $k = 1, \ldots, m$
- On each interval use n_k complex exponentials e^{ijx}

Wavelets X – p.50/55

- Given n, σ_n piecewise Fourier
- Partition [0,1] into m intervals I_k , $k = 1, \ldots, m$
- On each interval use n_k complex exponentials e^{ijx}

Wavelets X – p.50/55

• Total investment $n = \sum_{k=1}^{m} n_k$

- Given n, σ_n piecewise Fourier
- Partition [0,1] into m intervals I_k , $k = 1, \ldots, m$
- On each interval use n_k complex exponentials e^{ijx}

Wavelets X – p.50/55

- Total investment $n = \sum_{k=1}^{m} n_k$
- $\sigma_n(f)_p$ error in best approximation by elements from Σ_n

- Given n, σ_n piecewise Fourier
- Partition [0,1] into m intervals I_k , $k = 1, \ldots, m$
- On each interval use n_k complex exponentials e^{ijx}
- Total investment $n = \sum_{k=1}^{m} n_k$
- $\sigma_n(f)_p$ error in best approximation by elements from Σ_n
- Characterize approximation classes for this type of approximation?

Wavelets X - p.50/55

Another Idea for merging systems

 Baraniuk-Romberg-Wakin idea for merging wedgelets and wavelets

Wavelets X – p.51/55

Another Idea for merging systems

- Baraniuk-Romberg-Wakin idea for merging wedgelets and wavelets
- Ornate wavelet tree with label on how wavelet coefficients to be computed

Wavelets X – p.51/55

Another Idea for merging systems

- Baraniuk-Romberg-Wakin idea for merging wedgelets and wavelets
- Ornate wavelet tree with label on how wavelet coefficients to be computed
- interior nodes compute wavelet coefficients in standard way

BRW Continued

 If leave (final node) of tree is ornated with a wavelet then wavelet coefficients for all nodes below leave are given value zero

Wavelets X – p<u>.52/5</u>

BRW Continued

- If leave (final node) of tree is ornated with a wavelet then wavelet coefficients for all nodes below leave are given value zero
- If leave is ornated with wedgelet, all coefficients below this node are computed as wavelet coefficients of that wedgelet (wedgeprint)

Wavelets X –

Wedgelet-wavelet tree

red = Wedgelets blue = Wavelets

Encoding Tree

• Given a terminal node *I* we have a fixed number of options to encode the tree *T_I* with root *I*

Wavelets X - p.54/5

Encoding Tree

- Given a terminal node I we have a fixed number of options to encode the tree T_I with root I
- To each terminal node associate error e(n, I) for best encoding of the tree T_I using n bits

Encoding Tree

- Given a terminal node I we have a fixed number of options to encode the tree T_I with root I
- To each terminal node associate error e(n, I)for best encoding of the tree T_I using n bits
- Similarly have an error e(n, I) for enconding the wavelet coefficient for interior nodes using n nodes

Encoding Tree: continued

- Given bit budget N there is a best tree and bit allocation n_{I}

Wavelets X - p.55/55

Encoding Tree: continued

- Given bit budget N there is a best tree and bit allocation n_{I}
- Can we dynamically find best tree and best bit allocation

