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Why Approximation?

• Image Processing

• Image given by a function f(x),
x ∈ Ω := [0, 1]2

• Digitized Image: Pixel values:
pI := 1

|I|

∫

I f(x) dx
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The Following are Forms of
Approximation

• Compression: Approximate f by a simpler
function A(f) which can be encoded with
relatively few bits

• Denoising: Given noise corrupted pixels p̄I ,
approximate f

• Deblurring: Given a blurred image P (f)
approximate f
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Goals of This Talk

• What are the advantages/disadvantages of
using wavelets in Approximation

• Types of wavelet approximation: linear and
nonlinear

• Compare wavelets with other methods of
approximation

• Future Directions
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Univariate Approximation

• f(x), x ∈ [0, 1]

• Approximate f by piecewise constants
• Types of approximation: Linear, Nonlinear
• Select a metric/norm ‖ · ‖ to measure

distortion

‖f‖Lp(Ω) := (

∫

Ω

|f(x)|p dx)1/p, 0 < p <∞

• ‖f‖L∞ := supx∈Ω |f(x)|, p =∞
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Linear approximation

• Divide [0, 1] into n equal length intervals

• Πn := {[k
n ,

k+1
n ), k = 0, . . . , n− 1}

• Sn := {S : S is constant on each I ∈ Πn}

• Sn is a linear space

Wavelets X – p.6/55



Linear approximation

• Divide [0, 1] into n equal length intervals

• Πn := {[k
n ,

k+1
n ), k = 0, . . . , n− 1}

• Sn := {S : S is constant on each I ∈ Πn}

• Sn is a linear space

Wavelets X – p.6/55



Linear approximation

• Divide [0, 1] into n equal length intervals

• Πn := {[k
n ,

k+1
n ), k = 0, . . . , n− 1}

• Sn := {S : S is constant on each I ∈ Πn}

• Sn is a linear space

Wavelets X – p.6/55



Linear approximation

• Divide [0, 1] into n equal length intervals

• Πn := {[k
n ,

k+1
n ), k = 0, . . . , n− 1}

• Sn := {S : S is constant on each I ∈ Πn}

• Sn is a linear space

Wavelets X – p.6/55



Typical function in Sn

…

…0 1
N

2
N

N−1
N 1
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Linear approximation

• Divide [0, 1] into n equal length intervals

• Πn := {[k
n ,

k+1
n ), k = 0, . . . , n− 1}

• Sn := {S : S is constant on each I ∈ Πn}

• Sn is a linear space
• Given f ∈ Lp[0, 1], define error

En(f)p := inf
S∈Sn

‖f − S‖Lp
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Nonlinear approximation: Free
Knot Splines

• Divide [0, 1] into n intervals Ii = [ξi, ξi+1],
0 = ξ0 < ξ1 < · · · < ξn = 1

• Σn := {S : S is constant on each Ii, i =
1, . . . , n}

• Σn is not a linear space: S1, S2 ∈ Σn but
S1 + S2 ∈ Σ2n

• Given f ∈ Lp[0, 1], define error

σn(f)p := inf
S∈Σn

‖f − S‖Lp
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Nonlinear Approximation:
Adaptive

• For each interval I, E(I) the local Lp error in
approximating f by constants

• Given error tolerance ε > 0 generate partition
Pε such that E(I) ≤ ε for all I ∈ Pε

• I is good if E(I) ≤ ε

• I is bad if E(I) > ε
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Nonlinear Approximation:
Adaptive

• Initially if E([0, 1]) ≤ ε then algorithm
terminates and Pε := {[0, 1]}

• if E([0, 1]) > ε then set Bε := {[0, 1]} and
Gε := ∅

• Recursion: For each I ∈ Bε put child J of I in
Gε if it is good, put it in Bε if it is bad. Remove
I from Bε

• Stop when Bε = ∅, Pε := Gε, Nε := #(Pε)
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Nonlinear Approximation:
Adaptive (continued)

• ANε
(f) best approximation to f by piecewise

constants on Pε

• an(f)p := inf{ε : Nε ≤ n}
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Adaptively generated partition

0 1
4

3
8

1
2 1
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Tree associated to adaptive
partition

[0,1]

[0,1/2] [1/2,1]
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Wavelets: Haar Wavelet

H(x) :=

{

−1, x ∈ [0, 1/2)

+1, x ∈ [1/2, 1] ,
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Wavelets: Haar Basis

• HI(x) := 2j/2H(2jx− k), I = [k2−j , (k + 1)2−j]

• D+ := {I ∈ D : |I| ≤ 1}

• {χ[0,1]} ∪ {HI}I∈D+
is a complete orthonormal

system in L2[0, 1]
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Haar Basis

0 1ϕ

0 1

ψ

0 1

ψ
[0,1/2)

ψ
[1/2,1)
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Wavelet tree
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Linear Approximation with Haar
Basis

• Natural ordering of dyadic intervals

• Xn span of first n Haar functions
• Xn is a linear space
• Ew

n (f)p := infg∈Xn
‖f − g‖Lp[0,1]

• This is linear approximation because Xn is a
linear space
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Nonlinear Approximation with
Haar Basis

• n-term approximation

• Σn := {S =
∑

I∈Λ cIHI : #(Λ) ≤ n}

• Σn is not a linear space
• σw

n (f)p := infS∈Σn
‖f − S‖Lp[0,1]

• This is nonlinear approximation because
decisions are made dependent on f
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n-term approximation
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Tree Approximation with Haar
Basis

• Require that the wavelet positions chosen in
the approximation lie on a tree with n-nodes

• Σt
n := {S =

∑

I∈Λ cIHI : Λ a tree #(Λ) ≤ n}

• σt
n(f)p := infS∈Σt

n
‖f − S‖Lp[0,1]
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Comparison of these different
types of approximation

• Approximation classes: α > 0
defineAα(Lp, linear splines) as the set of all
f ∈ Lp[0, 1] such that

En(f)p ≤ Cn−α, n ≥ 1

• Similarly define Aα(Lp) for the other forms of
approximation

• As
q(Lp) finer scaling: same approximation

order s
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Approximation Classes for Linear
Approximation

• Fix the Lp space to measure error

• As(Lp, linear) = Bs
∞(Lp)

• Proved by Scherer +
• good and bad news
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Linear Approximation: As
∞(Lp)

Besov space of smoothness s
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Approximation Classes for free
knot splines and n-term

Approximation

• Fix the Lp space to measure error

• As
τ(Lp, nonlinear) = Bs

τ (Lτ ), 1
τ = s+ 1

p

• Petrushev, DeVore-Popov (splines);
DeVore-Jawerth-Popov (wavelets)
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Approximation class for n-term
approximation
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Adaptive approximation
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Example: Approximation in L∞

• p =∞ approximation order O(n−1)

• Linear approximation f ′ ∈ L∞
• Nonlinear approximation (free knot splines

and n-term wavelet) f ′ ∈ L1

• Adaptive approximation f ′ ∈ LlogL: for
example f ′ ∈ Lp for some p > 1

• Tree approximation f ′ ∈ Lp for some p > 1
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Example: f (x) = xα, α > −1/p

x

y

En(f)p ≈ Cn−(α+1/p) σn(f)p ≤ Cn−1

Break points/ wavelets concentrate near singular-

ity at 0
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Example: piecewise smooth

En(f)p ≥ Cn−1/p σn(f)p ≤ Cn−1

Breakpoints/wavelets concentrate near singulari-

ties
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Multidimensional results

• Linear approximation as before except for
curse of dimensionality

• Aα/d(Lp) = Bα
∞(Lp)

• Nonlinear Approximation?
• No analogue of free knot splines: general

triangulation
• n-term approximation using multivariate

wavelets the same

• A
α/d
τ (wavelets, Lp) = Bα

τ (Lp), 1
τ = α

d + 1
p
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Multivariate Nonlinear
Approximation Classes

Now 1
τ = α

d + 1
p
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Wavelet advantages

• Fix Lp to measure error 1 < p <∞

• Given wavelet decomposition f =
∑

λ aλ(f)ψλ

• Choose Λn set of indices of the n largest

{λ : ‖aλ(f)ψλ‖Lp
}

• ‖f −
∑

λ∈Λn
aλ(f)ψλ‖Lp

≤ Cpσn(f)p

• Wavelet basis is greedy
• Simple thresholding is a near best strategy
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Further Wavelet advantages

• Function spaces are characterized by wavelet
coefficients in a simple way

• n-term approximations of images align
themselves on trees

• Other correlations in positions of big wavelet
coefficients

• Cheaper to encode

• If f ∈ Bα
τ (Lτ ), 1

τ <
α
2 + 1

p then f can be

approximated to accuracy C‖f‖Bα
τ (Lτ )n

−α/2

and the approximant can be encoded with n
bits
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Remarks on Encoding

• Tree with n nodes can be encoded with n bits

• Cohen-Dahmen-Daubechies-DeVore
(Cohen-Daubechies-Gulleryuz-Orchard) If
f ∈ Bα

τ (Lτ ), 1
τ <

α
2 + 1

p then f can be

approximated to accuracy C‖f‖Bα
τ (Lτ )n

−α/2

and the approximant can be encoded with n
bits

• Correlations in postions in tree improve C not
α
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Remarks on Wavelet encoders

• EZW, Said-Pearlman, HMM, etc.

• Bits to quantize coefficients
• Bits to encode positions of wavelets
• number of quantization bits determined by

decay of rearranged wavelet coefficients: the
α in Besov regularity

• If n coefficients are taken then need at least
(and at most) n bits to achieve distortion n−α
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Remarks on Wavelet encoders

• n-bits to encode a tree with n nodes

• Better information on correlations may
improve on this n

• Statistical correlations improve on C in
estimate Cn=α but not on α

• Besov smoothness is exact predictor of
asymptotic performance of wavelet encoders

• Models vs. Encoders
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Drawbacks to wavelets in
multidimensions

• Wavelets isotropic and oriented to coordinate
axis

• Wavelets handle point singularities well
• Wavelets do not handle singularities along

curves
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Horizon approximation
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Possible remedies

• New systems: ridgelets, wedgelets, curvelets,
...

• Candes and Donoho
• Frames and redundant systems
• Dictionaries; best basis selection
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Example: Wedgelets

• To each dyadic square I with |I| = 2−j

associate a family of wedgelets

• A wedgelet is a piecewise constant function
taking the values 0, 1

• Demarcation is given by a line connecting grid
points on boundary of I with spacing 2−2j
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Picture of a wedgelet

0

1
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Horizon functions: piecewise
constants

• Any horizon function with C2 boundary can be
approximated in L2 to error n−1 using n
wedgelets

• By comparison wavelets give error n−1/2:
f ∈ BV ⊂ A1(nonlinear,L2) . Fourier gives

error n−1/4: f ∈ B1/2
∞ (L2) = A1/2(Fourier, L2)
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General orthonormal systems

• Let B := {bν} be any orthonormal basis

• f =
∑

ν cν(f)bν

• Simple characterization of As(L2)

f ∈ As(L2,B)←→ (cν(f)) ∈ w`τ ,
1

τ
= s+

1

2

• w`τ consists of all sequences (cν) such that
decreasing rearrangement (c∗n) satisfies

c∗n ≤ Cn−1/τ
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Cannot compare systems

• B1,B2 two orthonormal systems

• Generally speaking As(Lp,B1) and As(Lp,B2)
cant be compared

• Fourier basis A1(Fourier, L2) characterized
by

f̂ ∗(n) ≤ Cn−3/2

• Wavelets characterized by same condition for
wavelet coefficients.

• Always some functions which prefer one
basis over another
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Dictionary approximation

• Can we put together different systems?

• A dictionary is a collection D of functions with
norm 1.

• Example: D is a union of several orthonormal
bases

• σn(f,D)p is error in n-term approximation
using elements of dictionary
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Greedy Algorithms

• How can we generate good approximations
from a dictionary?

• Greedy Algorithm : Given f ∈ L2:
1. Choose g1 ∈ D such that |〈f, g1〉| maximum
over g ∈ D
2. A1 := 〈f, g1〉g1, f1 = f − A1 residual
3. Repeat with f replaced by f1.....

• Greedy Algorithm converges (L. Jones)
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Convergence Rates for Greedy
Algorithms

• Fτ := { f =
∑

g∈D cgg :
∑

g∈D |cg|
τ <∞}

• (DeVore-Temlyakov) f ∈ F1 then
‖fn‖ ≤ Cn−1/6

• Modifications of Greedy Algorithm have better
convergence

• Example f ∈ F1 then decay is O(n−1/2) for
modified algorithm (Maurey +)

• Greedy Algorithms expensive to implement
• Incomplete theory
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Example: Spline-Fourier

• Given n, σn piecewise Fourier

• Partition [0, 1] into m intervals Ik, k = 1, . . . ,m

• On each interval use nk complex exponentials
eijx

• Total investment n =
∑m

k=1 nk

• σn(f)p error in best approximation by
elements from Σn

• Characterize approximation classes for this
type of approximation?

Wavelets X – p.50/55
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Another Idea for merging systems

• Baraniuk-Romberg-Wakin idea for merging
wedgelets and wavelets

• Ornate wavelet tree with label on how wavelet
coefficients to be computed

• interior nodes compute wavelet coefficients in
standard way
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BRW Continued

• If leave (final node) of tree is ornated with a
wavelet then wavelet coefficients for all nodes
below leave are given value zero

• If leave is ornated with wedgelet, all
coefficients below this node are computed as
wavelet coefficients of that wedgelet
(wedgeprint)
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(wedgeprint)
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Wedgelet-wavelet tree

red = Wedgelets blue = Wavelets
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Encoding Tree

• Given a terminal node I we have a fixed
number of options to encode the tree TI with
root I

• To each terminal node associate error e(n, I)
for best encoding of the tree TI using n bits

• Similarly have an error e(n, I) for enconding
the wavelet coefficient for interior nodes using
n nodes
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Encoding Tree

• Given a terminal node I we have a fixed
number of options to encode the tree TI with
root I

• To each terminal node associate error e(n, I)
for best encoding of the tree TI using n bits

• Similarly have an error e(n, I) for enconding
the wavelet coefficient for interior nodes using
n nodes
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Encoding Tree: continued

• Given bit budget N there is a best tree and bit
allocation nI

• Can we dynamically find best tree and best
bit allocation
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Encoding Tree: continued

• Given bit budget N there is a best tree and bit
allocation nI

• Can we dynamically find best tree and best
bit allocation
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