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NONLINEAR APPROXIMATION OF RANDOM FUNCTIONS*

ALBERT COHENT AND JEAN-PIERRE D’ALES?

Abstract. Given an orthonormal basis and a certain class X of vectors in a Hilbert space H,
consider the following nonlinear approximation process: approach a vector x € X by keeping only
its N largest coordinates, and let N go to infinity. In this paper, we study the accuracy of this
process in the case where H = L2(I), and we use either the trigonometric system or a wavelet basis
to expand this space. The class of function that we are interested in is described by a stochastic
process. We focus on the case of “piecewise stationary processes” that describe functions which are
smooth except at isolated points. We show that the nonlinear wavelet approximation is optimal in
terms of mean square error and that this optimality is lost either by using the trigonometric system
or by using any type of linear approximation method, i.e., keeping the N first coordinates. The main
motivation of this work is the search for a suitable mathematical model to study the compression of
images and of certain types of signals.
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1. Introduction. Let x be a vector in a finite- or infinite-dimensional space H.
An approximation of x is usually defined by the action of a certain operator Ay on x
such that Axrz is close to z in some sense (for example, in the sense of a norm defined
on H) and can be characterized by N parameters.

The approximation is said to be nonlinear if A s is not a linear operator. Example
of nonlinear approximation techniques such as “free knot splines” or best approxima-
tion with rational functions have been studied for several decades. It is well known
that these methods outperform linear approximation in several situations, in particu-
lar when x belongs to the unit ball X of certain Besov spaces, the error being measured
with a norm for which X is a compact set (see DeVore, Howard, and Micchelli (1989),
Oswald (1990)).

More recently, nonlinear approximation methods based on wavelet and wavelet
packet decompositions have been studied in the context of statistics (Donoho (1995)),
compression (DeVore, Jawerth, and Popov (1992)), and signal processing algorithms
such as best basis selection (Coifman, Meyer, and Wickerhauser (1992)) and adaptive
time-frequency decomposition (Mallat and Zhang (1993)).

In this paper, we shall be interested in the following nonlinear approximation
technique.

Suppose that H is a Hilbert space and {eg }x>o is an orthonormal basis of H. We
define for all x € H and N > 0

(1.1) Anz = Z (z, ex)ex,
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where Ey = En(z) represents the set of indices corresponding to the N largest
coordinates of z, i.e., Card(Ex) = N and

(1.2) ke Enx,l¢ En = |(z,e))| < |[{z,er)]-

Note the difference from the standard linear approximation defined by

(13) »CNZ' - Z <x,€k>€k = Proj{el,.‘.,eN}x'
k<N

The results of nonlinear approximation that we shall prove in this paper are
related to the problem of data compression and, in particular, image compression.

Over the past twenty years, the problem of data compression has become a central
issue both in information theory and in signal processing. Signals such as still or
animated images, speech, and music, in their digital form, represent a considerable
amount of bits to be stored, transmitted, or processed. The goal of data compression
is to reduce this amount significantly while keeping the essential information on the
signal that will be necessary for a given application. Note that for a continuous
(or analog) signal, this original amount is infinite. In the case of digitized signals,
one can define the “compression ratio” as ¢ = Ny/N;j, where Ny and Nj represent,
respectively, the number of bits in the signal before and after compression. In the
case of digitized signals, one classically distinguishes two types of compression:

e Lossless compression is performed by algorithms such as Huffman or Lempel—
Ziv coding: a sequence of bits is transformed into a smaller one by an in-
versible operation. The signal can thus be recovered without any error.

e Lossy compression is performed by any algorithm that reduces the amount
of bits and allows one to recover an approximation of the original signal.
In that case, there is no theoretical limit to the compression ratio which is
chosen accordingly to the approximation error that is acceptable for the given
application.

A general technique consists in applying some lossless compression after a lossy
compression algorithm. Here, we shall only be concerned with lossy compression
techniques which have important connections with nonlinear approximation. These
connections have been studied by DeVore, Jawerth, and Lucier (1992) for wavelet
based image compression algorithms, using Besov spaces norms to characterize the
properties of real images.

In this paper, we follow a different track: the signals are described as random
functions f(¢,w), and their properties are expressed in a probabilistic sense. The
precision of the approximation will be measured by the mean square error

(1.4) en = E(|f = AnfIIR)-

The introduction of randomness to describe images and the use of the mean square
error reflect the situation that is mostly encountered in image compression: one ex-
pects the compression algorithm to give a good result on most of the images and
allows that it may be less efficient on some pathological images that may appear.
In practice, one cannot obtain a full description of the probability distribution of f,
because of its complexity: for example, in the case of a digital image of size 256 x 256
it is a distribution in R2"’. However, one can easily access some partial information
expressed by statistical properties. We shall use this information to study ey for two
different choices of basis: the trigonometric system and wavelet bases.
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Note that choice of an Lo error criterion is quite arbitrary. In the case of images
it does not seem to fit with the measurement of the error that is done by the visual
system. Although other norms have been proposed, we shall keep the Lo norm,
remarking that in the case of wavelet decompositions all the error computations that
we shall present can be generalized to other norms, using the property that wavelet
bases are unconditional bases for most function spaces. A more general remark is
that it is not clear that the eye, at a low-level vision stage, uses a norm to measure
the error. A norm that fits ideally with the eye’s measurement of the error should
both take into account the regularity of the image in the regions representing smooth
objects and the existence of discontinuities representing the edges of these objects. We
show in section 4 that the query for such a norm is faced with a completion problem.

Over the past decade, multiscale methods (and in particular wavelet bases) have
become popular in image processing, because they yield sparse decompositions of the
function I(z,y) representing the light intensity of the image. Here “sparse” means
that a small number of coefficients carry most of the significant information. As we
shall see, this property can be described more precisely in terms of nonlinear approxi-
mation. However, compressing an image is a more complex process than approximat-
ing it with a small number of coefficients, since it also involves the quantization of
these coeflicients, i.e., their encoding on a finite number of bits. We shall devote the
next section to a qualitative analysis of the relations between data compression and
nonlinear approximation.

The rest of our paper is organized as follows: in section 3, we review linear
approximation results that were obtained by Cohen, Froment, and Istas (1991), in
the case where the only information available is the first- and second-order moments
of the distribution. These results are based on a nonperiodic stationary statistical
model for the signal. In that case the performance of Fourier series and wavelet bases
on images are comparable. A more sophisticated model is proposed in section 4 to
describe images. This model leads to nonlinear approximation results that are detailed
in section 5. In that case, we show that a well-chosen wavelet basis outperforms Fourier
series and any type of linear approximation.

For sake of simplicity, we shall consider unidimensional signals, described by a
stochastic process f(t,w), to establish our results, and we shall discuss how these
results can be generalized to multidimensional signals and applied to images.

2. Nonlinear approximation and data compression. The goal of this sec-
tion is to investigate, mostly in a qualitative way, the relations between data com-
pression and nonlinear approximation.

The problem of data compression can be stated in the following general terms:
a set C of vectors in a space V is given. This set may be finite or infinite as well as
the dimension of V. For a fixed N, one tries to approximate C by a finite set Cy of
cardinal N, in the sense that a “representative” p(x) € Cy can be associated with
every = € C. Each vector of C is thus “quantized” on N levels, and if N = 2°, it can
be encoded with b bits.

As we pointed out, in many practical situations, the set C is unknown and de-
scribed by a probability distribution p(z). The quality of the compression can be
measured by the mean square error

(2.1) e(Cv) = E([lz = p()|?).

In many applications where the compression rate is preassigned, one looks for a set
Cy that minimizes the above quantity for a given N. The complexity of this research
essentially depends on the dimension of V.
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FiGc. 1. Optimal quantization in the 1D case.

When dimV = 1, the situation is quite simple: z is a scalar random variable with
probability law p(z) (we assume here E(|z|?) < 4+00), and one looks for a collection
{zk}r=1,. ~ and a covering of R by disjoint intervals I, x) € Ij, that minimize the
quantity

(2.2) €= Z/ |z — yi|*p(2)dx

over all such covering {J;} and collections {yx} of points. Examples of optimal
solutions are represented in Figure 1.

When z is a vector random variable of finite dimension d, the optimal solution is
given by a collection {zy}r=1, . ~ and a covering of R? by disjoint connected sets I,
that minimize a quantity similar to (2.2).

In practice, if d is small (less than 10), these optimal solutions can be ap-
proached very efficiently by “vector quantizer design” algorithms (Linde, Buzo, and
Gray (1980)), provided that p(z) is regular enough that it can be estimated from a
reasonable number of independent realizations of x.

Unfortunately, as d increases, this task becomes unrealistic for several reasons:

e The number of independent realizations of x that is necessary to estimate
p(z) grows exponentially with d.

e The shape of the optimal sets I, may become complicated, as may the dis-
tribution of the x; € Cy.

e Because of the complexity of the covering, the quantization x — p(x) may be
difficult to execute numerically.

For vectors of very large dimension (such as images), of course it is possible to
divide the vector into smaller blocks of coordinates and apply vector quantization
independently on each of these blocks. This technique, however, generates “blocking
effects” in images. Moreover, it is far from optimal in many situations.

Consider, for example, the simple case of a random bidimensional vector z = (z,y)
and suppose that one quantizes independently its coordinates x and y. The resulting
two-dimensional (2D) quantizer is given by the tensor product of the optimal one-
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F1G. 2. Optimal (a) and near optimal (b) quantization in the uniform 2D case.
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F1a. 3. Scalar quantization of a separable (a) and a nonseparable (b) distribution.

dimensional (1D) solutions associated with the marginal laws p(z) and p(y), i.e.,
a separable grid zx; = (zk,y1), k = 1,...,N,, I = 1,...,N,, and the associated
rectangular regions Ry ; = I x I;. The efficiency of this strategy highly depends on
the property of the joint probability distribution p(z) = p(x,y).

Figure 2 displays the optimal solution in the case of a uniform distribution: it is
given by the hexagonal mesh that outperforms the square grid. The potential gain
of using a mesh that differs from the square grid is small in this particular case, and
more generally, it reaches a limit value as the dimension of V' grows to +oo.

More generally, when the distribution p(z,y) is separable, i.e.,  and y are in-
dependent variables, the tensor product strategy (or scalar quantization) leads to a
good approximation of the optimal solution (Figure 3(a)). In contrast, when x and y
are not independent, it is generally a bad solution, as shown in Figure 3(b).
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F1G. 4. Scalar quantization in the Karhunen—Loéve basis (Gaussian (a) and lacunary (b)
distribution).

In the case where x and y are not independent, one can try to recover a distribution
that is “closer” to a separable function by a change of basis that decorrelates the
coordinates. Such a transformation always exists and corresponds to the expansion
in the Karhunen-Lo¢ve basis, i.e., the eigenvectors of the matrix r; ; = E(v;v;),
i=1,2, v1 = x, va = y. As shown in Figure 4, the efficiency of this strategy again
depends on the properties of p(z,y). In particular, when p(z,y) is Gaussian (4(a)),
the Karhunen—Loéve transform results in a separable distribution that is appropriate
for scalar quantization. A typical example of such a situation is the decorrelation of
the red, green, and blue pixels in a color image. In contrast, Figure 4(b) displays the
example of a distribution that is essentially concentrated around its Karhunen—Loeéve
directions. In that case, it is clear that a separable coding, even in the Karhunen—
Loeve expansion, is not adapted.

How should one quantize the lacunary distribution that is displayed in Figure
4(b)? A natural idea is to proceed in the following way.

e Describe z in the basis {u,v} by its two coordinates z, = (z,u) and z, =
(z,v).

e Encode on one bit the direction around which z is concentrated: 0if |z, | > |2,|
(v dominates) and 1 if |z,| > |z,| (v dominates).

e Apply a separable quantization in an adaptive way: if u (resp., v) dominates,
encode z,, (resp., z,) on by bits and z, (resp. z,) on by bits, where by << by.
The total number of bits is b = by + by + 1.

This technique results in a better adapted collection of quantization points, which
is displayed in Figure 5(a). Note that the directions around which the distribution
is concentrated need not be the Karhunen—Loeve directions, as shown in Figure 5(b).
In that case, it is clear that in the first step one should replace the Karhunen—Loeve
basis with {@, 9}, which correspond to the directions around which the distribution is
concentrated.

The idea of quantizing in an adaptive way is already present in Shapiro’s EZW
algorithm (Shapiro (1993)). It can be generalized to vector quantization: vectors with
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F1G. 5. Adapted quantization of a lacunary distribution.

a more important norm will be encoded on a higher amount of bits (Averbuch, Israeli,
and Lazaar (1993)).

The bases (u,v) and (@, ?) have different approximation properties. The Karhu-
nen—Loeve basis is optimal for linear approximation: it minimizes the error ¢ =
E(||z— (2, e0)eo||?) among all choices of (eg, e1). In contrast, the basis (i, ?) is optimal
for nonlinear approximation: it minimizes the error £ = E(||z — (z, es)es||?) among
all choices of (eg, e1), where s = s(z) € {0,1} is such that |(z,es)| > |{z,e1—5)|. Note
that in the Gaussian case, both bases always coincide.

From these examples, we can formulate two “qualitative statements”:

e In the case of a Gaussian distribution, the Karhunen—Loeve basis is optimal
for both linear and nonlinear approximation. The expansion in this basis can
be quantized efficiently in a separable fashion.

e In the case of a lacunary distribution, the optimal basis for nonlinear approx-
imation may differ from the Karhunen—Loéve basis. There may be a sub-
stantial gain in using nonlinear approximation in this optimal basis rather
than any linear approximation technique and quantizing the expansion in an
adaptive rather than separable fashion.

Note that in both cases, the basis that is adapted to perform compression is the
one that is optimal in terms of nonlinear approximation.

We claim that many important classes of signals—in particular, real images—have
a lacunary structure and thus need to be quantized in an adaptive way. This struc-
ture cannot be directly identified on the probability law of these large-dimensional
signals, since it is too complex and, as we pointed out, cannot be evaluated with a
high precision in reasonable time. However, this structure will be revealed from the
fact that nonlinear approximation with certain systems (in particular, wavelet bases)
performs highly better than any linear approximation method. This fact will be ana-
lyzed quantitatively in the following sections, using a statistical modelization of these
signals that does not require the full knowledge of their probability distribution.

3. Linear approximation. Let s(t) be a stochastic process of the second order
defined on [0, 1]. In this section, we shall assume that the sole information that we
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have on the process s(t) is its autocorrelation function, i.e.,

(31) R(tl,tg) = E(S(tl)s(tg))

How can we use this information to compare the effect of the decomposition of the sig-
nal in different bases? Given an orthonormal basis {e;, },,>0, it is possible to compute
the mean square value of the coordinates of s(t) since we have

E (|<5,6n>|2) _E ( /01 s(t)en(@)dt 2)
=F (//[0 . s(t)s(u)en(t)en(u)dtdu>

= / R(t,u)en (t)e, (u)dtdu
[0,1]>

= <Ra en,n>7

with e, m(2,y) = en(z)em(y). Thus, the autocorrelation function allows one to esti-
mate the mean square error between s(t) and its linear approximation by its N first
coordinates,

(3.2) sn(t) =Y (s.en)en(d),

since we have

(3-3) e(N)=E(ls —snl*) = Y Ell{s,en)).

n>N

The basis that minimizes this quantity for every N is the Karhunen—Loeéve basis.
It is obtained by taking a complete orthonormal set of eigenfunctions {e, },>0 of the
integral operator

(3.4) Rf(H) = /O R(t, u) f (u)du

and by rearranging them in such a way that the corresponding eigenvalues A,, > 0 are
nonincreasing with n.

In most cases, these eigenfunctions have no explicit form and the computation
of the coeflicients of a discretized function f in the Karhunen—Loéve basis requires a
large number of operations. Fortunately, it is often possible to obtain a near optimal
approximation with a simpler system that is better adapted for numerical computa-
tions.

Let us first consider the case of a wavelet basis. We recall that these bases, usually
constructed on the whole real line (see Daubechies (1992) for a general introduction),
can be adapted to the interval (Cohen, Daubechies, and Vial (1993)): L?[0,1] is
approximated by a multiresolution analysis, i.e., a ladder of closed subspaces

(3.5) Vie € Vijot1 CVjor2 C-or = L2[Ov 1],

with jo > 0, where V; is generated by 27 orthonormal scaling functions ¢;x, k =
0,...,29 — 1, such that supp(¢;jx) C [277(k — ¢),277(k + ¢)] (c does not depend on
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Jj). At each level, the orthonormal complement between V; and Vji; is generated
by 27 orthonormal wavelets v; 5, k = 0,...,27 — 1, such that supp(y;x) C [277(k —
¢),277(k + ¢)]. As a consequence, the family

(3.6) U {¥j k=0, 201

J>jo

completed by {@j,.k} k=0, 2i0_1, constitutes an orthonormal basis of L?[0,1]. Al-
though we shall not make use of this property, let us mention that when the support
of the scaling functions and wavelets do not contain 0 or 1, these functions are simply
defined from the standard scaling function and wavelet ¢ and v with the notation
fik = 2/2f(27 - —k).

The results of linear approximation in the wavelet basis relate the regularity of
R(t,u) on the diagonal line {¢t = u} and the cancellation properties of the wavelets,
i.e., their number of vanishing moments. However, equivalent results could be stated
in terms of linear approximation in the spaces V;, ignoring the functions 1;; and
considering the degree of polynomial reproduction satisfied by the scaling functions
Pjk-

We give here the formulation using the cancellation properties of the wavelets
that was given first in Cohen, Froment, and Istas (1991) in the case of a stationary
process. For this, we reorder the wavelet basis (3.6) by e, = ¢j,,» when n < 2Jo and
en =1 whenn=2+k 0<k<2/, j>j.

In the paper of Cohen, Froment, and Istas (1991) the regularity of R was con-
trolled with the help of the speed of decrease at infinity of its Fourier transform.
We use a simpler condition which emphasizes the fact that only the regularity of R
along the diagonal is of importance here. For a > 0, we say that a real function
F(z), z = (21,...,74) € RYis C* at z € R? if and only if there exists a polynomial
P(x) =371 1<q @amz™ (wWith [m| =m1 + -+ +mg and 2™ = 27", ..., 2"") such that
for all x in a neighborhood V, of z

(3.7) |P(z) = F(z)] < Cllz — 2]

Note that for o € N this is weaker than « differentiability. If D C R?, the function F
is said to be C* on D if it is C* at each point z € D and if the constant C in (3.7)
is uniformly bounded on D.

THEOREM 1. Suppose that R(t,u) is C“ on the diagonal line {(t,t)|t € [0,1]}
for a certain o > 0 and that for allm € NN [0,af, j > jo and k = 0,...,27 —1,
fol ™ k(x)dx = 0. Then

(3.8) e(N) < CN~.

Proof. Tt is clearly sufficient to prove (3.8) for N = 2P, p > jo. The property
that R(t,u) is C“ on the diagonal means that there exists C' > 0 such that for all
v € [0,1], there is a polynomial P,(t,u) of global degree strictly less than « with

(3.9) IR(t,u) — Py(t,u)| < C(It — v| + |u — v])®
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for all (t,u) € [0,1]?. Using this estimate at v = 277k, we get
Bllis b)) = [ Rt 00O i
- / /[0 L) = Pas 00 0 )l
<cf /[ e ) s 00
Using the support properties of the functions ¢, and Schwarz inequality, we derive

B(|(s,4;1)[2) < C(2¢)22~ / / 405 £ (885 ()t
[0,1]2
< O(2¢)oto= (o),

Summing on all £ = 0,...,27 — 1, then on all j > p, we finally obtain the desired
estimate. O

Remark. This result is in fact a simple rephrasing, in the stochastic framework, of
the deterministic results on the multiresolution approximation of functions in Sobolev
spaces, the error being measured in L? norm (see Meyer (1990) and Daubechies
(1992)): /2 represents the degree of differentiability in the mean square sense of
the process s(t).

Let us now consider the trigonometric system e, (t) = €™ n € Z. In that case,
an estimate on the quantity

(3.10) E(|(s,e,)?) = / / R(t,u)e?™™ = dtdy,
[0,1]>

can be easily obtained from the regularity of R(¢,u) only when this function is the
restriction of a regular Z2-periodic function. However, most signals—in particular,
images—do not satisfy this property. To estimate ¢(/N), one thus needs more infor-
mation on R(t,u).

At this point, let us remark that an important class of 1D signals satisfies the
property of stationarity, i.e., R(t,u) = (|t —u|). Note that in the case where r(t) is a
1-periodic function, the Karhunen—-Loeve basis is given by the trigonometric system.
As was mentioned, the signals that we have in mind do not satisfy this property: an
image, a video sequence, or a piece of speech is the restriction on a finite domain of
a nonperiodic function. For all these signals, r(¢) is typically an even function that
decreases on [0, 400/

In the case of black and white pictures, a commonly used approximation of the
autocorrelation function of real images is given by

(3.11) E(I(@,y)I(2',y)) = R(z.a',y,y') = RoeI#==1+lv=),

where Ry and A are constants that depend on the normalization of the light intensity
function and the size of the image. In particular, I(z,y) is supposed to be centered
around zero: it takes the values Ijax (resp., —Imax) in the white (resp., black) regions.
We shall thus focus on the 1D stationary processes with autocorrelation function

(3.12) R(t,u) = e~ 1t7ul,
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Note that the exponential decay of the correlation as a function of the distance is also
a typical feature of Markov processes.

In that particular case, Theorem 1 indicates that the linear approximation error

e(N) with a wavelet basis is majorized by CN~1.
For the trigonometric system, we obtain

E(s.cn)?) = [[ - emviemme iy
0.1
1 .
:/ e 11— |t])e " at
-1

1
_ / (1 _ t)e—t(eiQTrnt + e—i27rnt)dt
0

2 (872n? —2)(1 —1/e)
1+ 4m2n? (14 4n2n2)2

As N goes to infinity, we thus obtain the estimate

(3.13) N~ Y B(|(s,en)]?) ~ 22 1)

2
N
In|>N/2

which shows that the trigonometric system performs as well as a wavelet basis (for
these particular processes). In fact, all these systems are near optimal for linear
approximation, in the sense that they perform as well as the Karhunen—Loéve basis.
This can be checked by determining explicitly the Karhunen—Loeve functions: for a
given eigenvalue A > 0 of R (defined by (3.4)), the associated eigenfunction is C'*°
and satisfies

1
M(t) = / e tul f(u)du

0
¢ 1
_ ot u d t —u du.
e /Oef(u) u—l—e/te f(u)du

Differentiating once, we obtain

t 1
(3.14) A (t) = fe*t/ e" f(u)du + et/ e " f(u)du,
0 t
which shows that necessarily
(3.15) f(0)=f(0) and f'(1)=—f(1).
After a second differentiation, we obtain the equation
(3.16) A (8) = (A= 2)£(2).

Now it is clear that | R|| < 1 so that necessarily (A—2)/X < 0. The solutions of (3.16)
are thus of the form acos(wt) + bsin(wt) with w = 1/2/A — 1. From the boundary
conditions (3.15), we finally obtain the family of orthogonal eigenfunctions

(3.17) en(t) = mncos(mnt) + sin(mnt), n € Z— {0},
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with the associated eigenvalues
(3.18) A = (1+ 72027t

It follows that the approximation error in the Karhunen—Loéve basis satisfies
(3.19) e(N) ~ 2(n?N)~L.

The conclusion of this section is that, when the autocorrelation is given by (3.12),
the asymptotic performances of the Karhunen—Loeve basis, the trigonometric system
and wavelet bases are equivalent for linear approximation.

In the bidimensional case (3.11), it is immediate to derive an analogous estimate
because of the separable structure of R(x,z’,y,y’). One obtains in that case an
approximation error £(IN) of order N~!(log N)? for wavelet bases and N~!log N for
trigonometric and Karhunen—Loeéve bases.

In order to investigate nonlinear approximation, we shall now introduce more
information on the process s(t). In particular, in the case of images, the autocorrela-
tion function averages the smooth regions (that correspond to homogeneous objects)
and the isolated discontinuities (that correspond to sharp edges). The model that we
present in the next section is an attempt to describe this piecewise smooth aspect on
stochastic processes.

4. Piecewise stationary processes. In order to reflect the “piecewise smooth”
property in a stochastic framework, we shall describe our process s(t) as follows.

A finite set of discontinuities D = {dy,ds,...,dr} C [0,1], d; < d;41, is obtained
as the realization on [0, 1] of a Poisson process of parameter > 0. This means that
the number of discontinuity is a random number with probability law

L
(4.1) P(D|=1L) = e_”%

and that conditionally to the event |D| = L the distribution of (dy,...,dr) is uniform
over the simplex {0 <z <--- <z <1}

Conditionally to the data of such a set {d1,...,d}, we set dg =0 and dp41 =1
and define s(t) on [d;,d;i+1[, i =0,...,L, by

(4.2) s(t) = si(t),

where the functions s; are independent realizations of a stationary process with au-
tocorrelation function R(t,u) = (|t — u|) and mean M. We shall assume in the rest
of this section that r(t) is C* on [—1, 1] for some o > 3/2.

At this point, one should remark that the global process s(t) is also stationary:
its autocorrelation function is given by

(4.3) Rs(t,u) = P(t,u)R(t,u) + (1 — P(t,u)) M?,

where P(t,u) = e #l*=ul is the probability that no discontinuity d; lies between ¢ and
u. We thus have

(4.4) Ry(t,u) = M? + e M= (r (|t — u|) — M?) = ry(|t — ul).

Note that in the simplest case where s;(t) = s; are independent realizations of a
constant centered process, the autocorrelation function is given by

(4.5) Ry(t,u) = rs(0)e~Hlt=ul,
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This shows that the parameter p in the model (3.11) can be interpreted as the Poisson
density of discontinuities on a line in a real image.
Remarks.

e These processes are also a good model for the evolution in time of the intensity

of a fixed pixel in a video sequence: the discontinuities correspond to an edge
in motion that crosses the pixel at a given time or to a brutal change of image.
The generalization of this model to bidimensional signals is not straightfor-
ward: the discontinuities are no longer isolated points but curves. So far,
we have investigated only the unidimensional situation, which is nevertheless
revealing about the results that we can expect in the multidimensional case.
In contrast with the results of wavelet linear approximation in the previous
section, the result of nonlinear approximation that we shall prove in the
next section seems difficult to identify with deterministic approximation in
function spaces. Indeed, a proper function space that describes piecewise
smooth functions should be equipped with a norm that measures both the
height of the jumps at the discontinuities and the smoothness—for example,
in the Sobolev H' norm—between these discontinuities. For a function f
with a finite number of discontinuities, this norm would be given by

L

i diin 1/2
(4.6) || fllps = > 1f(di)s+ — f(di)-| + (Z/d () + If'(ﬂf)Ide) ~
i=0 v di

i=1

It is clear that the space of piecewise H' functions with a finite number of
discontinuities is not complete for the above norm. The completion process
leads to the space BV0,1], which cannot be well approximated linearly or
nonlinearly and does not describe the property of piecewise smoothness: the
smoothness term has been “swallowed” by the jump term.

We end this section with a result that shows that the piecewise smooth processes
that we have introduced cannot be well approximated if one proceeds linearly.

THEOREM 2. Let \,,, n > 0, be the sequence of eigenvalues of the integral operator
Rs associated with the kernel Rs(t,u). We assume that A, is nonincreasing and that
the eigenvalues are repeated according to their multiplicity. There exists C' > 0 such

that for all N >0

(4.7)

e(N)=> M >CN".

n>N

Consequently any linear approzimation of s(t) cannot achieve better than CN ™! in
the mean square sense.
Proof. From (4.4), we can write

(4.8)

where

Rs(t,u) = Ka(t,u) + Kp(t,u),

Ka(t,u) = e # = (r(0) — M?)

Kp(t,u) = M? + e‘“lt_ul(r(|t —ul) — r(0)).
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Note that Kp(t,u) belongs to C?. Denote by
(4.11) R.=A+B

the associated decomposition of the autocorrelation operator.

It is clear that A is a positive operator. From the discussion in section 3, we know
that its eigenvalues {ay }»>0, ordered as a nonincreasing sequence, satisfy
(4.12) lim n?a, = C,

n—-+4oo

where C depends on the parameters M, r(0), and p. In contrast, B need not be a
positive operator. We denote by {by},>¢ its singular values, i.e., the eigenvalues of
| B|, ordered as a nonincreasing sequence. To prove (4.7), we shall use the following
result due to Ky Fan (1951) (see also Gohberg and Krein (1965)).

Let A and B be compact operators in a Hilbert space, and let C' = A 4+ B. Let
Gn, bn, and ¢, be the associated sequences of singular values, and assume that, for
some 7 > 0,

(4.13) lirJrrl n"a, =C

and

(4.14) lirf n"b,, = 0.

Then

(4.15) lim n"¢, =C.
n—-+o00

We will thus concentrate on proving that

(4.16) lim n?b, = 0.

n——4o0o
By the Karhunen—Loeéve theorem, we remark that we have
(4.17) > by= min (en, |Blen),
{er} o.b.
n>N n>N

the minimum being taken over all orthonormal bases. Consider a wavelet basis of type
(3.6), reordered as in section 3, and such that the functions v, , have two vanishing
moments. We thus have, for p > jo,

(4.18) Db <Y Wik | Bltbg)-

n>2p i>p.k

We define zﬁjk = Ut where U is a unitary operator such that B = U|B|. We
thus have, using the Schwarz inequality,

(Wj: | Bl ) = sk Bje)

-/ KB O
0,1]2

(1 “)

sup .
te[0,1]

IN

| st

IN

| st
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Since Kp(t,u) is C? for 3 = min(a, 2) and the functions v; ; have two vanishing
moments, we have

sup
te0,1]

1 1
/ Kt upy i (u)du| < C / e — 279k |41 () |
0 0

<Cllosals [ Ju=27kfdu

|27u—k|<c
< o~ (B+1/2)j

We thus have

(4.19) (Vj.k, | Bl ) < C270F1/2)

and

(4.20) > by <CNTOHZ,
n>N

Finally, since the b,, are positive and nonincreasing, (4.20) implies
(4.21) b, < Cn—(8+1/2)

which allows one to apply Ky Fan’s theorem. |
Remark. Note that to estimate the decay of b,, one can use

(4.22) b, = inf |B—T|,
TeT,

where 7, is the space of operators with rank at most equal to n. To majorize this
infimum, it seems natural to choose a kernel K7 that is an approximation of K by
a sum of n separable functions, typically piecewise polynomial functions. Then one
can relate the decreasing order of the sequence (b,,) with the smoothness of R in the
Besov scale (see Birman and Solomyak (1977)). However, this does not lead to any
improvement of the theorem.

5. Nonlinear approximation. We now turn to the nonlinear approximation

(5.1) Ans= Y (s,ex)ex,

kEEN

where Exy = En(s) is the set of indices of the N largest coordinates of the process
s(t) that has been described in the previous section. In this section, the mean square
error will be defined by

(5.2) eN)=E([Ans —sl) =E | > ls.en)

n¢En(s)

We first consider the case where {e,, },>0 is a wavelet basis of the type (3.6), i.e.,
{@jo ke U{Wjk}j>jo.k reordered as in section 3. The following theorem shows that
nonlinear wavelet approximation performs as well as if there were no discontinuities
in the process s(t).
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THEOREM 3. Suppose that r(t) is in C* for some a > 0 and that for all m €
NN[0,af, j > jo, and k =0,...,29 — 1, fol ™ (x)dx = 0. Then

(5.3) e(N) < CON™™.

Proof. As with Theorem 1, it is clearly sufficient to prove (5.3) for N = 27, p > jj.
Remark that if we define

(5.4) s = Z (s,ex)er,

kEEY (5)
where E’\(s) C N has cardinal |EYy| < N, we always have
(5:5) e(N) < €'(N) = B(|Ays — s[l3).

By this remark, it is sufficient to build a near optimal nonlinear approximation
'v such that

(5.6) £(20) < C27°P,
For N = 2P, we shall define the set E'\(s) by
(5.7) Ey =1{0,1,...,2°71 — 1} U Ef(s),

where E}(s) is a set of cardinal |E%;| < 2P~! that depends on the locations of the
discontinuities {d1,da,...,dr} in s(t) : recalling from section 3 that supp(y;k) C
[277(k — ¢),277(k + c)], we consider the subset of discontinuities {d1,da,...,drp},
where

2r—1
(5.8) L(p) :max{me {1,...,L}; m< 20ap}’

and we define EY; as the set of indices n of all wavelets v, = e, such that p — 1 <
Jj < (a+1)p—1and d; € supp(¢; ) for some ¢ € {1,..., L(p)}. From the definition
of L(p), it is clear that |E};| < 2P~1.

We now evaluate ¢’'(2P). Two events will be considered: L(p) = L and L(p) < L.

In the event where L(p) = L, we remark that if the index n of a wavelet 9, = e,
is not in EY;, two situations are possible:

o d; ¢ supp(¢;i) for all i € {1,...,L(p)}. This means that the support of ¥

is fully contained between d; and d;y; for some ¢ € {1,..., L}, and we obtain from
Theorem 1
(5.9) E(|(s,05.0) %) = E(|(si,%0)[*) < C27(0F1I,

e d; € supp(¢; k) for some ¢ € {1,...,L(p)}. In that case, we use Schwarz
inequality to obtain a crude estimate,

(k4¢)277

(5.10) E((s, 3)°) < E ( /(

|s(t)|?dt | < 2cr(0)277.
k—c)2—7

However, in view of the definition of EY;, one necessarily has j > (a4 1)p — 1 in that
case.
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Summing (5.9) on k and on j > p —1 and (5.10) on k and j > (a+ 1)p — 1, we
finally obtain the desired estimate for the conditional expectation:

(5.11) e = B(|lAls — 5|3 L= L(p) < C2.
In the event where L(p) < L, i.e., L > %, a very crude estimate will be sufficient

(because of the very small probability of this event as p goes to +00). We simply use
(5.12) ey = B(|[Alys = sl3; L > L(p)) < B(|ls|3; L > L(p)) = r(0).
Combining these estimates, we obtain

¢'(27) = P(L = L(p))e} + P(L > L(p)é}

op—1
SC<2‘“”+P<L> ))
2cap

l
_ —ap | - a8
=C12 +e H Z I

2p—1
2cap

>

One easily checks that the second term decreases exponentially faster than the first
one so that we finally have (5.6). This concludes the proof of the theorem. a

We now turn to the trigonometric system e, (z) = €?™% n € Z. We shall
assume that r is twice differentiable; i.e., the process that describes s(t) between
the discontinuities is differentiable in the mean square sense. In that case, we shall
prove that nonlinear approximation does not perform substantially better than linear
projection: in contrast with the wavelet basis that sparsifies the process s(¢), the best
Fourier coefficients essentially coincide with the first Fourier coefficients. This fact
is specific to the type of processes that we are considering. Other types of signals,
such as velocity fields in turbulent flows (see Farge et al. (1992)), may present a more
lacunary structure in the Fourier domain.

THEOREM 4. Assume r(0) > r(1). Then the nonlinear approximation error in
the trigonometric system satisfies

(5.13) e(N)>CN~L

Proof. We define

1
(5.14) sk = (s, ex) z/ s(t)e 2Tkt gt
0
We shall prove that there exists K, D > 0 such that the event
(5.15) |k| > K — |s| > D|k|™*

has a probability p > 0. It is clear that this property will imply the estimate (5.13):
in the event (5.15), we have indeed, for any set Fiy of cardinal N > 0,

(5.16) > s> =CNh
k¢Fn
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Applying (5.6) to Ey, we finally obtain
(5.17) e(N) > pCN~1,

which is equivalent to (5.13), up to a change in the constant C.

To show that (5.15) occurs with strictly positive probability, we consider the event
where there is no discontinuity, i.e., L = 0. This event has a probability e™* > 0. In
that situation we decompose s(t) into

(5.18) s(t) = a(t) + b(t),
where
(5.19) a(t) = (1 —1)s(0) + ts(1) and b(t) = s(t) — (1 —¢)s(0) — ts(1).

We denote by ay and by, k € Z, the Fourier coefficients of a(t) and b(t) so that
Sk = ap + bg.
From the assumption r(0) > r(1), we get

(5.20) E(|s(0) — s(1)|*; L =0) = 2(r(0) — (1)) >0
and thus the event

(5.21) 15(0) — s(1)| = v/7(0) = (1)
occurs with probability p’ > 0. It is clear that (5.21) implies

(5.22) |ak| > 2Dk "

for some D > 0 related to y/7(0) — r(1).

We now turn to the coefficients by: from (5.19), it is clear that b(0) = b(1). Since
s(t) is differentiable in the mean square sense (in the case where L = 0), we have for
all k € Z — {0},

1
by = / b(t)e 2Rt
0
1

= (—i2rk)~" [ b (t)e M dt

1

= (—i27k)™t [ &' (t)e PR dt,

J
J

This leads to
E(|(s',ex)?)

2y _
Since E(||s'||3) < +o0, it follows that
(5.24) > KE(|bl?) < +oo,
k#0
which implies, by the Chebyshev inequality,
(5.25) > P(|bk| > DIk|™") < +o0.

k0
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From (5.25), we can apply the Borel-Cantelli theorem to conclude that for any
p > 0, there exists K, such that the event

(5.26) k| > K, — |by| < D|k|™*

has probability 1 — p. We choose p = p’/2 so that (5.22) and (5.26) occur simultane-
ously with a probability larger than p’/2.
Consequently, (5.15) is satisfied with K = K,/ and p > e™#p’/2 > 0. O
Remarks.
e To obtain the estimate (5.15), we have used the regularity of r(¢). In partic-
ular, it seems difficult to avoid the assumption that r is twice differentiable.
e In contrast, the assumption (0) > r(1) is not strictly necessary. It allows one
to consider only the event L = 0. If this assumption is removed, the process
could be periodic in the case L = 0. In this case, one still obtains (5.15) by
working on the event L = 1. We kept the assumption r(0) > r(1) since in
many practical situations r(t) reaches its maximum only at the origin.

6. Application to images. This part is devoted to the application of the differ-
ent algorithms that were studied previously in this paper to numerical images. More
precisely, we want to check the relevance of the model introduced in section 4 for
representing images and to test whether the discrepancies still occur for images be-
tween linear and nonlinear approximation with wavelet bases and between nonlinear
approximation with Fourier and wavelet bases.

Since our model is 1D and aims to represent lines and columns in images, we
consider approximation of 1D decompositions (wavelet and Fourier) applied separately
to lines and columns of images. But our goal is to evaluate algorithms based on 2D
decompositions of whole images. Therefore we also consider approximation of 2D
decompositions.

The main problem that we have to tackle is one of discretization. Namely, we want
to check the consistency of a continuous-time model with the help of discrete data.
To simulate the decomposition of the image over the continuous-time wavelet and
Fourier bases, we used, respectively, the pyramidal algorithm of Mallat (see Mallat
(1989)) and the discrete Fourier transform, applied directly to the pixel values.

To relate the discrete- and continuous-time transform in the case of wavelets,
one can for example, assimilate the pixel values in the image to the approximation
coefficients of some continuous time image f (see Mallat (1989)):

Pk = (frp(. = k,. = 1)).

However, this does not seem relevant to us, since the pixel values were not computed
by performing a scalar product of the light intensity function I with shifted versions
of the scaling function ¢, i.e.,

prp # (Lp(- =k, = 1))

As a consequence the pixel values do not have the same properties as these scalar
products. Nevertheless the approximation coefficients that are obtained after apply-
ing successive iterations of the pyramidal algorithm to the pixel values come closer
to the corresponding approximation coefficients of the light intensity function (see
Daubechies (1992)),

(fyo(20. =k, 27, = 1)) ~ (I, (20, — k,27. = 1)),
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35
Linear / WT —
Linear / FT -
| Nonlinear / WT ----- |
30 Nonlinear / FT

SNR
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4 8 16 32 64 128 256 512

Number of coefficients

Fi1a. 6. Linear/nonlinear approzimation error, averaged on rows and columns of height 1024
x 1024 images, using 1D wavelet/Fourier transform.

35
Linear / WT —
Linear / FT ----
30 | Nonlinear / WT - ]

Nonlinear / FT

SNR

Il Il Il Il Il
16 64 256 1024 4096 16384 65536 262144
Nombre de coefficients

F1G. 7. Linear/nonlinear approximation error averaged on height 1024 x 1024 images with 2D
wavelet/Fourier transform.

when j decreases to —oo. Therefore we can hope to check the consistency of our
model as long as fine details (which correspond to small values of |j]) in the wavelet
transform are not taken into account. This means that we have to look for values of NV
(the number of coefficients that are kept to reconstruct the approximation) that are
small compared to the total number of coefficients in the transform. (This number is
equal to the number of pixels in a line or a column in the 1D case and to the number
of pixels in the whole image in the 2D case.)
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FiG. 8. Original 512 x 512 image.

F1G. 9. Linear approximation with 16384 Fic. 10. Linear approzimation with
wavelet coefficients. PSNR = 28.2. 16384 Fourier coefficients. PSNR = 28.3.

Fi1G. 11. Nonlinear approzimation with F1Gc. 12. Nonlinear approzimation with
4096 wavelet coefficients. PSNR = 28.6. 4096 Fourier coefficients. PSNR = 26.3.

Since our theoretical results are essentially asymptotic and thus concern large
values of N, we are faced with two contradictory requirements. N should not be
too big or too small. The same conclusion applies to Fourier transform: the high
frequencies’ coefficients are not to be taken into account because of the discretization
problem, and our theoretical results are asymptotic too. To partially overcome this
difficulty, we considered relatively big images (1024 x 1024).
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In Figures 6 and 7, we plotted in the log-log scale the approximation error as a
function of the number of coefficients that are kept in the decomposition, respectively
for 1D transforms applied separately to rows and columns and for 2D transforms
applied to the whole images. We used the Daubechies wavelet basis adapted to the
interval with a cancellation degree of 4, which is closest to a symmetric function (see
Cohen, Daubechies, and Vial (1993) and Daubechies (1992)).

We observe in Figure 6 that the curves are rectilinear for N < 128 in the case of
linear approximation and N < 64 in the case of nonlinear approximation. The same is
true in Figure 7 for N < 1282 = 16384 with linear approximation and N < 642 = 4096
with nonlinear approximation. Thus it appears that the asymptotic results that we
presented in this paper are also true for small values of IV in the case of images. Note
that the images that we used contain a lot of fine detail. For images containing, on
the other hand, large smooth regions like that in Figure 8, one obtains curves that
are rectilinear over a wider range of values of N.

We observe also that the slope of the curves in the 2D case is roughly half the
slope in the 1D case. This suggests that it is sufficient to consider 1D approximation
and models to get an insight into what happens with 2D approximation.

One can estimate the empirical value of a from the slope of these curves. In Figure
6 we obtain a ~ 0.5. Since this is less than 1, it is quite normal, according to Theo-
rems 1 and 3, to get roughly the same slope for linear and nonlinear approximation.
Thus the empirical discrepancy observed between linear and nonlinear approximation
corresponds to a difference between the constants C' appearing in (3.8) and (5.3): the
vertical shifts of these curves are proportional to —log C. It would be interesting to
precisely estimate these constants from a theoretical point of view. Note that in the
case of 1D nonlinear wavelet approximation, the slope of the curve is slightly higher
(corresponding to a ~ 0.6). This is negligible when compared to the difference of
vertical shifts with linear approximation. However, this is quite significant when com-
pared to nonlinear Fourier approximation, since for N ~ 128 it implies a difference of
1 dB between the two curves. Our model is still too rough to explain this discrepancy.

Finally we present some examples of approximating images using the different
algorithms presented in this paper. We see that for linear approximation, Fourier and
wavelet bases give similar results. (The mean square errors are also roughly equal for
Figures 9 and 10.) In contrast, for nonlinear approximation, wavelet bases outperform
trigonometric bases. (There is a difference of 2.3 dB between Figures 11 and 12.)
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