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Abstract

We describe a simple scheme, based on the Nyström method, for extending em-
pirical functions f defined on a set X to a larger set X. The extension process
that we describe involves the construction of a specific family of functions that we
term geometric harmonics. These functions constitute a generalization of the prolate
spheroidal wave functions of Slepian in the sense that they are optimally concen-
trated on X. We study the case when X is a submanifold of Rn in greater detail. In
this situation, any empirical function f on X can be characterized by its decomposi-
tion over the intrinsic Fourier modes, i.e., the eigenfunctions of the Laplace-Beltrami
operator, and we show that this intrinsic frequency spectrum specifies the largest
domain of extension of f to the entire space Rn.

Key words: Nyström method, intrinsic and extrinsic geometries, subsampling,
prolate functions

1 Introduction

In applications where a large amount of data is involved, the only way to per-
form certain tasks like clustering, regression and classification is to subsample
the data set X in order to reduce the size of the problem, process the new set
X, and then extend the result to the original data X. If in addition, the data
are embedded in a high-dimensional space, then kernel methods like those
based on radial functions constitute an interesting alternative to grid-based
methods (which are unusable in high dimension).
In this paper, we describe a scheme for extending empirical functions defined
on X to X. This technique is inspired from the Nyström method, widely used
in partial differential solvers, and recently employed in machine learning and
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in spectral graph theory as a way to subsample large data sets (3; 6; 10). For
instance, in order to perform an efficient (fast) image segmentation, it was
noticed that one could subsample the pixels of an image, do the segmentation
in this subgrid, and then extend the results to the entire image. In this ar-
ticle, we show how the Nyström method naturally leads to the construction
of a particular set of functions that we term geometric harmonics, and we
show that these functions, which are solutions of an eigenproblem and gener-
alize the prolate spheroidal wave functions (8; 9), are optimally concentrated
on X. In the case when X is a submanifold of Rn, any function f can de-
composed as a sum of intrinsic Fourier modes, namely, the eigenfunctions of
the Laplace-Beltrami operator, and we show that the geometric harmonics
relate the intrinsic oscillations of functions on X to that of their extensions
to X, and therefore build bridges between the intrinsic and extrinsic Fourier
analyses. More precisely, we show that the restriction and extension opera-
tions preserve the bandwidth of signals, and that, following some version of
the Heisenberg principle, a function f with intrinsic bandlimit ν on X can
be extended as a function with the same extrinsic bandlimit on Rn, and is
numerically supported in a tubular neighborhood of radius O( 1

ν
) around X.

This allows us to define a multiscale extension scheme for empirical functions
in which each function is decomposed as a superposition of atoms with specific
time-frequency localization.

The paper is organized as follows. In section 2, we introduce the notation,
explain the construction of the geometric harmonics and their properties. We
also describe the associated extension algorithm of empirical functions. In
section 3, we give examples of geometric harmonics, and in particular we
show that they generalize the prolate spheroidal wave functions of Slepian et
al. Last, in section 4, we focus on the case when X is a submanifold of Rn.

2 Geometric harmonics

2.1 Construction

Let X and X be two sets such that X ⊂ X. Let µ be a finite measure on
X,i.e., µ(X) < +∞. Our goal is to be able to extend a function f defined
on X to the set X and for that to be done, we construct a set of functions,
the geometric harmonics, that allow us to perform this extension. Notation:
functions defined on X will be denoted using capital letters, whereas functions
on X will be represented using lower case letters. In this section, arbitrary
points in X will be denote with a bar, for instance x.

Our main ingredient is a “kernel” k : X ×X → R satisfying
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• k is symmetric: k(x, y) = k(y, x)
• k is positive semi-definite, i.e., for any m ≥ 1 and any choice of real numbers

α1, ..., αm, and of points x1, ..., xm, we have

m∑

i=1

m∑

j=1

αiαjk(xi, xj) ≥ 0 .

This property is not necessary to be able to define geometric harmonics
and extensions, however, it allows to interpret the geometric harmonics as
maximizing some concentration measure over X.

• k is bounded on X×X by a number M > 0. Although this assumption can
be weakened, it is very convenient for the simplicity of the exposition.

Since k is positive semi-definite, there exists a unique reproducing kernel
Hilbert space H of functions defined on X for which k is the reproducing
kernel (see appendix A). Let 〈·, ·〉X and ‖ · ‖X be denote the inner product
and norm of this space. In contrast, we use 〈·, ·〉X and ‖ · ‖X to represent the
inner product and norm in L2(X, dµ).

The kernel k can be restricted to X, and employed to define a linear operator
K : L2(X, dµ) → H:

Kf(x) =
∫

X

k(x, x)f(x)dµ(x) where x ∈ X .

We have the following lemma:

Lemma 1 The adjoint K∗ : H → L2(X, dµ) is the restriction operator on X:
for all F ∈ H and x ∈ X,

K∗F (x) = F (x) .

Moreover, K∗K : L2(X, dµ) → L2(X, dµ) is compact.

PROOF. First, in can be checked that the adjoint is given by K∗F (x) =
〈k(x, ·), F 〉X . This fact, together with the reproducing kernel identity (A.1)
implies the first assertion. We now show that K∗K is Hilbert-Schmidt, which
implies compactness:

∫

X

∫

X

|k(x, y)|2dµ(y)dµ(x) < +∞ .
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Indeed, we have

∫

X

∫

X

|k(x, y)|2dµ(y)dµ(x) ≤ M2µ(X)2 < +∞ . 2

Since this operator is self-adjoint and compact on L2(X, dµ), it has a discrete
sequence of eigenvalues {λj} (in non-increasing order) and eigenvectors {ψj}
defined on X: for dµ-almost all x ∈ X,

λjψj(x) =
∫

X

k(x, y)ψj(y)dµ(y) .

Note that, because the operator is positive semi-definite, for all j, λj ≥ 0.
Also, by the result of this lemma, ψj is obtained by diagonalizing the kernel
k(x, y) with x and y restricted to X.
The eigenfunction ψj is defined on X, but provided λj 6= 0, it can be extended
to the set X via a technique known as the Nyström method (see (7)). This
technique consists in observing that k(x, y) is defined for x ∈ X, and therefore
so is the right-hand side of the above equation, and that it can be used for
the definition ψj outside X.

Definition 2 When λj 6= 0, the eigenfunction ψj can be extended to x ∈ X
by

Ψj(x) =
1

λj

∫

X

k(x, y)ψj(y)dµ(y) .

This extension is called Geometric Harmonic.

The term “geometric harmonics” is inspired from the fact that ψj is extended
as an average of its values on the set X, and thus can be thought of as veri-
fying a certain form of mean value theorem.
Numerically, this extension procedure is extremely ill-conditioned as one di-
vides by the eigenvalues of a compact operator (λj → 0 as j → +∞). Conse-
quently, we introduce the following notations:

Definition 3 For any δ > 0, let

Sδ = {j such that λj ≥ δλ0} ,

and define the following finite-dimensional vector spaces

L2
δ = Span{ψj, j ∈ Sδ} ,
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and

Hδ = Span{Ψj, j ∈ Sδ} ,

The extension procedure from L2
δ to Hδ has a condition number equal to 1

δ
.

We summarize the algebraic relation between K,K∗, Ψj and ψj:

Kψj = Ψj (Extension),

K∗Ψj = λjψj (Restriction).

We conclude this section with two remarks. First, an important class of posi-
tive kernels is generated by covariance kernels, i.e., by kernels of the form

k(x, y) =
∫

ξ∈I

eξ(x)eξ(y)p(ξ)dξ ,

where {eξ}ξ∈I is a family of functions defined on X and p(ξ) ≥ 0. Each function
eξ, restricted to X, is interpreted as a vector whose coordinates are indexed
by x ∈ X, and the kernel k represents the covariance of the cloud of points
generated by the mass distribution p(ξ)dξ. Finding the eigenfunctions and
eigenvalues associated with this kernel is equivalent to computing the axes and
moments of inertia of this cloud of points, which is also referred to Principal
Component Analysis.
The other remark concerns a variational interpretation of k. Let B represent
the orthogonal projector onto H, defined by BF (x) = 〈F, k(x, ·)〉H, and let
D be the restriction operator to X defined by DF (x) = F (x) if x ∈ X, and
DF (x) = 0 otherwise. Then it can be checked that K = BD and if x ∈ X,

K∗Kf(x) = DBDf(x) .

This decomposition of K∗K as a product of orthogonal projection leads to a
variational interpretation of the geometric harmonics that motivated Slepian
et al in introducing the prolate spheroidal wave functions (8; 9).

2.2 Properties

The geometric harmonics feature two interesting properties: they are orthog-
onal on X and on X, and among all functions of H, they have maximum
concentration on X.

Proposition 4 The system {Ψj}j∈Sδ
forms an orthogonal basis of Hδ, and
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their restrictions {ψj}j∈Sδ
to X forms an orthogonal basis of L2

δ.

PROOF. By definition, the ψj’s are obtained as the eigenfunctions of a self-
adjoint operator, therefore they are orthogonal on X. In addition,

〈Ψi, Ψj〉X =
1

λj

〈Ψi,KK∗Ψj〉X

=
1

λj

〈K∗Ψi,K
∗Ψj〉X

=
1

λj

〈ψi, ψj〉X

2

Definition 5 For a function F ∈ H, with restriction f ∈ L2(X, dµ), we
define the concentration of F over X to be the Rayleigh quotient

cX(F ) =
‖f‖X

‖F‖X

.

where f = K∗F is the restriction of F to X.

The geometric harmonics are also the function of H that have maximum con-
centration on the set X:

Proposition 6 The function Ψj is a solution to the problem

max
F∈H

cX(F ) ,

under the constraint that F ⊥ {Ψ0, Ψ1, ..., Ψj−1}. In particular, Ψ0 is the
element of H that is the most concentrated on X.

PROOF. By homogeneity of the ratio, we can restrict our attention to all
F ∈ H with norm 1. Thus we need to maximize

〈f, f, 〉X = 〈K∗F,K∗F 〉X = 〈F,KK∗F 〉X ,

under the constraints 〈F, F 〉X = 0, 〈F, Ψ0〉X = 0,...,〈F, Ψj−1〉X = 0. Using the
Lagrange multipliers technique, we conclude that there exist numbers λ and
α0, ..., αj−1 such that

KK∗F = λF + α0Ψ0 + ... + αj−1Ψj−1 .
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Taking the inner product with Ψi for i = 0, ..., j − 1, and invoking the con-
straints and the orthogonality of the geometric harmonics (see previous propo-
sition), we obtain that

αi‖Ψi‖2
X

= 〈KK∗F, Ψi〉X = 〈F,KK∗Ψi〉X = λi〈F, Ψi〉X = 0 .

As a consequence, αi = 0, and F is a geometric harmonic associated with the
eigenvalue λ, and the functional to be minimized now takes the form

〈f, f〉X = λ .

The maximum is therefore achieved for F = Ψj. 2

2.3 Extension Algorithm

We now describe the natural extension algorithm associated with the geomet-
ric harmonics. We assume that ψj is normalized so that it has norm 1 on
X.

Algorithm 1 (Extension Scheme) Given a function f ∈ L2(X, dµ),

• project f onto the space L2
δ spanned by the orthonormal system {ψj}j∈Sδ

:

f 7→ Pδf =
∑

j∈Sδ

〈f, ψj〉Xψj ,

• use the extension Ψj of ψj to extend Pδf on X as

Ef(x) =
∑

j∈Sδ

〈f, ψj〉XΨj(x) ,

with x ∈ X.

This algorithm computes a truncated pseudo-inverse for K∗, and is consistent
in the sense that the restriction of Ef to X is, again, extended as Ef by the
algorithm.

We now make two comments on this algorithm. First, this technique does not
provide an extension for f but rather for a filtered version of it, namely, its
orthogonal projection Pδf onto L2

δ . This space is precisely that of functions
that can be numerically extended to X, since the condition number of the
operator E is 1

δ
. Moreover, a general empirical function defined on X can be
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extended if the residual ‖f −Pδf‖X is smaller than a prescribed error, which
leads to the definition:

Definition 7 A function f defined on X is said to be (η, δ)-extendable if

‖Pδf‖X =
∑

j∈Sδ

|〈f, ψj〉X |2 ≥ (1− η)‖f‖2
X .

The obvious consequence is that not all functions f can be extended at a given
precision, and this fact can be used to relate the oscillations of f on X to a
notion of extrinsic bandlimit (see section 4.

The second point we wish to discuss concerns the interpretation of the exten-
sion. As we shall see in the next section, for a given f defined on X, there
generally exist infinitely many possible extensions F ∈ H as functions in H
might not be determined by their values on X. However, according to proposi-
tion 6, Ef is the extension that has maximal concentration over X. From the
point of view of statistics, where extension means regression, this is related to
the predictive ability of Nyström extensions. For instance, it is known that if
a random variable (U, V ) ∈ Rm+n has the following covariance matrix

C(U, V ) =




A B

BT C




then the covariance of V given U is

C(V |U) =




A B

BT C −BT A−1B




while the Nystöm extension method (taking X to be the set of first m indices,
and X being the set of m + n indices) implicitly approximates C(U, V ) as

C(U, V ) '



A B

BT BT A−1B




Therefore, the norm of the Schur complement ‖C−BT A−1B‖ is a measure of
the average randomness of V that is left when one knows U . If the Nyström
approximation is accurate, then the predictive power of U over V is large.
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3 Examples of geometric harmonics

In this section we give some examples of geometric harmonics.

3.1 The prolate spheroidal wave functions - bandlimited extension

In (8), Slepian et al introduce the prolate spheroidal wave functions as the
solution of finding functions optimally concentrated in time and frequency. By
construction, the prolates are bandlimited functions of unit energy that have
maximum energy within an interval of the time domain. They also generalize
their result to higher dimension (9) by definingHB to be the space of functions
of L2(Rn whose Fourier is supported in the ball centered at the origin and of
radius N

2
. This space is a reproducing kernel Hilbert space with kernel (see

appendix B)

kB(x, y) =
(

B

2

)n
2 Jn

2
(πB‖x− y‖)
‖x− y‖n

2
,

where Jν is the Bessel function of the first kind and of order ν. Such a kernel
is referred to as a Bessel kernel. The prolate spheroidal wave functions are
defined as the eigenfunctions of the integral operator of kernel kB restricted
to a certain space domain X ⊂ X = Rn. In the prolate setting, X is a
set of positive measure (and the kernel is non-integrable), and functions of
HB are determined by their values on X. On the contrary, we are mainly
interested in the case where X is singular in Rn. In this situation, there are
infinitely many bandlimited extensions for a function f defined on X, as two
such extensions differ by a (non-zero) bandlimited function that vanishes on
X. However, among all these extensions, the operator E produces an extension
with maximum concentration on X, or equivalently, that has minimal energy
outside X.
From now on, we will refer to EB as the Bessel kernel with bandlimit B > 0;
this operator computes the bandlimited extension of band B that is maximally
concentrated on X. On figure 1, we show examples of bandlimited extensions
(at a fixed band) of the functions cos(jθ) for j = 1, 2, 4, 8 from the unit circle
to the plane. The Bessel kernel tends to generate a large amount of oscillations
outside the circle, whereas inside the circle the oscillation seem to cancel out.
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Fig. 1. Bandlimited extensions of the functions cos(jθ) for j = 1, 2, 4, 8, from the
unit circle to the plane.

3.2 Harmonic extension

Another example comes from potential theory. Consider the single-layer New-
tonian potential in X = Rn,

k(x, y) =




− log(‖x− y‖) if n = 2 ,

1
‖x−y‖n−2 if n ≥ 3 .

By definition, this kernel is the Green’s function for the Laplace operator on
Rn, and as a consequence, the potential is positive semi-definite. Assuming
that n = 3, and that X is a Lipschitz surface in R3, then H is the space of
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potentials

F (x) =
∫

X

dρ(y)

‖x− y‖ ,

where ρ is a signed measure supported on X, representing a distribution of
charges. In this space, the inner product is the electrostatic energy of interac-
tion between two distributions of charges:

〈F1, F2〉X =
∫

X

∫

X

dρ1(y)dρ2(x)

‖x− y‖ .

Note that all elements ofH are harmonic and that the geometric harmonics are
harmonic functions that minimize their electrostatic self-energy. The operator
E allows to construct harmonic extensions for empirical functions defined on
X.

An interesting feature of the harmonic extension is that, unlike the bandlim-
ited extension, it does not involve a scale (or bandwidth) parameter. In fact,
the size of the numerical support of the extension of f depends on the oscil-
lations of f on X. Indeed, suppose that X is a closed curve in R3, and that
f oscillates p times along X. Then since f is extended as a sum of elemen-
tary potentials generated by charges along X, it is roughly extended as the
potential generated by a multipole of order p, and therefore will decay as 1

rp

where r is the distance from the curve X. This relation between the intrinsic
frequencies of f and its domain of extension is illustrate on figure 2 and is
further investigated in section 4.

3.3 Wavelet extension

Let {Vj}j∈Z be a multiresolution analysis in Rn and let H be the space of
scaling functions Vj at a fixed scale 2−j. Let X be a subset of Rn. One can define
geometric harmonics corresponding to this space and use them to construct
scaling functions adapted to the geometry of X and to compute extensions at
a given scale.

We illustrate this idea in the simple case of the Haar multiresolution. Let Φ
be the indicator function of the unit cube in Rn, and let X be a finite length
curve. Therefore, for H = Vj, the reproducing kernel is given by

∑

m∈Zn

2−njΦ(2jx−m)Φ(2jy −m) ,
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Fig. 2. Harmonic extensions of the functions f(θ) = cos(jθ) for j = 1, 2, 4, 8, from
the unit circle to the plane. When the number of the oscillations increases, so does
the order of the multipole extending f , and the extension decays faster.

and when one restricts it to the curve X,

k(x, y) =
∑

m∈QX

2−njΦ(2jx−m)Φ(2jy −m) ,

where QX is the set of indices in Zn associated with unit cubes intersecting
X. This formula allows to conclude that the geometric harmonics are the
indicator of the dyadic cubes at scale 2−j that intersect the curve X, and it
can be checked that the eigenvalues are given by the quantities 2−nj|Q ∩ X|
where |Q ∩ X| is the length of the piece of X that intersect a given dyadic
cube Q at scale 2−j. As an illustration, on figure 3 we show the extension of
the function f(θ) = θ from the circle to the plane, at different scales.

The Haar case was simple as these scaling functions, when restricted to any
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curve, remain orthogonal. For more general scaling functions, the geometric
harmonics provide scaling functions adapted to the geometry of X. Note that
the same kind of construction can be done with wavelet spaces Wj.
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Fig. 3. Extension of the function f(θ) = θ using the Haar scaling function at different
scales.

4 Multiscale extension

We now restrict our attention to the case when X = Rn and X is smooth com-
pact submanifold of dimension d. To simplify the exposition, we assume that
the measure dµ is now the Riemannian measure dx on X. In this case, two
different Fourier (or Paley-Littlewood) analyses can be performed on a func-
tion f defined on X. The first one is purely intrinsic and is obtained by using
the eigenfunctions of the Laplace-Beltrami operator ∆ on X. We recall that
these eigenfunctions are the analogue of the Fourier basis to arbitrary sub-
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manifolds. The spectrum of ∆ is discrete (as X is compact) and corresponds
to pure frequency modes. The other frequency analysis is that of the classical
Fourier transform in Rn and that can be applied to the various extensions of
f .

In this section we investigate the relation between these two analyses by ex-
ploring the action of the restriction and extension operators. In particular, we
ask the question of whether the intrinsic diffusion of heat is equivalent to the
extrinsic diffusion. We show that this is true, provided the embedding of the
manifold X into Rn is not too “complicated”. We also develop a multiscale
extension scheme for functions defined on X.

4.1 Restriction operator

Since the set X is a smooth submanifold, the restriction of a function F to
X is a well-behaved operation, in the sense that if F is smooth, then so is its
restriction f .

We can give a precise meaning of this statement using a space characterization
of smoothness: suppose that F is differentiable with a bounded derivative,
then f is obviously differentiable as a map from X into R, and its (intrinsic)
gradient at a point x ∈ X is nothing else but the orthogonal projection of
gradient of F onto the tangent plane at that same point x.

The same idea can be characterized by a frequency argument. Consider plane
waves in Rn:

Fξ(x) = e2iπ〈ξ,x〉

Let ∆ be the Laplace-Beltrami operator on X that we can assume to be a
curve for the sake of simplicity. Let {ν2

j } and {φj} be its eigenfunctions (in
non-decreasing order) and eigenvalues:

∆φj = ν2
j φj .

Definition 8 (Intrinsic bandwidth) A function f ∈ L2(X, dx) defined on
X is said to be intrinsically bandlimited if it can be written as

f =
m∑

j=0

cjφj ,

for some m ≥ 0, with cm 6= 0. The largest pure frequency ν2
m in this decompo-

sition is called intrinsic bandwidth of f .

To relate the extrinsic bandwidth ξ to the intrinsic one, we have the following
result:
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Proposition 9 Suppose that the curvature of X is bounded by a number M >
0.
Then if ‖ξ‖ > M

π
, the intrinsic spectrum of fξ decays exponentially according

to

|〈φj, fξ〉| ≤
√

µ(X)

(
4π2‖ξ‖2

ν2
j

)m

for all m ≥ 0. As a conclusion, a function with only low extrinsic frequencies
is also a function with low intrinsic frequencies when restricted to X, with
approximately the same band.

PROOF. Locally, on the curve around x ∈ X, the function Fξ has the form

fξ(y) = Fξ(y) = exp(2iπ(〈ξ, x〉+ uξT + a(x)u2ξN)

where u is the local coordinate in the tangent plane of the point y, a(x) is the
scalar curvature at x, and ξT and ξN are the tangent and normal projections
of ξ in the osculatory plane at x (see configuration on figure 4). A Taylor

x

x

x

y

u
ξ

ξ

T

N

Fig. 4. Geometric configuration.

expansion yields:

fξ(y) = e2iπ〈ξ,x〉 (
1 + 2iπξT u + 2iπ(a(x)ξN + iπξ2

T )u2 + ...
)

.

Now, since for any function f defined on X, we have the Taylor expansion

f(y) = f(x) + u
df

ds
(x) +

1

2
u2 d2f

ds2
(x) + ... ,

and since ∆ = d2

ds2 , we identify

∆fξ(x) = 4iπ(a(x)ξN + iπξ2
T )fξ(x) .

Therefore, if the curvature is bounded by M > 0, we have the trivial estimate
for ‖ξ‖ > M

π
,

‖∆fξ‖X ≤ 4π2‖ξ‖2‖fξ‖X .
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In fact it is easily seen that for all m ≥ 0,

‖∆mfξ‖X ≤
(
4π2‖ξ‖2

)m ‖fξ‖X .

Since

∆mfξ(x) =
∑

j≥0

ν2m
j 〈φj, f〉φj(x) ,

and

‖fξ‖2
X ≤ µ(X) ,

we must have, by Parseval,

∑

j≥0

ν4m
j |〈φj, fξ〉|2 ≤ µ(X)

(
4π2‖ξ‖2

)2m
.

In particular,

|〈φj, fξ〉| ≤
√

µ(X)

(
4π2‖ξ‖2

ν2
j

)m

for all m ≥ 0. Therefore the coefficients of expansions in the eigenfunctions of
the Laplace-Beltrami operator are negligible, except for finitely many, namely
those for which the eigenvalue ν2

j is less than 4π2‖ξ‖2. 2

4.2 Extension Operator

The extension algorithm described in Section 2.3 is a two-step procedure

• the function f on the data is first pre-filtered by a projection on the geo-
metric harmonics that numerically admit an extension,

• then the extension is computed.

However, we know that not all functions f defined on X are (η, δ)-extendable.
This means that some functions cannot be extended to some bandwidth, but
for a given (η, δ) and any function f , if we choose the band B sufficiently
large, f will be (η, δ)-extendable as a B-bandlimited function. This leads to
the natural definition for the notion of extrinsic bandwidth as the infimum

16



over all such B > 0. However, we prefer the following alternate definition
which is easier to deal with:

Definition 10 (Extrinsic bandwidth) For a fixed value of ε > 0, the ex-
trinsic bandwidth of a function f defined on X is the infimum of all B > 0
such that there exists a function F defined on Rn satisfying:

• F is an extension of f , i.e.,

F (x) = f(x) for all x ∈ X ,

• F can be approximated to relative precision ε by a B-bandlimited function
G on Rn:

(∫
Rn |Fj(x)−Bj(x)|2 dx

) 1
2

(∫
Rn |Fj(x)|2 dx

) 1
2

≤ ε .

For the study of the restriction operator, we looked at the restriction of the
Fourier modes in Rn, namely the plane waves. For the extension problem, it
is natural to extend the Fourier modes on X, i.e. the set of eigenfunctions
of the Laplace-Beltrami operator on X. In order to relate the intrinsic fre-
quencies that these functions represent to the extrinsic spectrum (provided
by the Fourier analysis in Rn), it can be instructive to compute the extrinsic
bandwidth of φj, or equivalently how far φj can be extended away from the
set.

A simple example displayed on figure 5 shows that if the embedding of the set
X in Rn is complicated, then the extrinsic bandwidth can be very different
from the intrinsic bandwidth. The curve X was chosen to have low frequencies
on the left part, and steep variations on the right part. We considered the
following intrinsic wave packets:

wt
x(y) = wx,t(y)φj(y)

where wx,t is a window function centered at x and of width
√

t. For instance,

wx,t(y) = exp
(
−d2(x, y)/t

)

is a Gaussian window along the curve, where d(x, y) is the geodesic distance
between x and y. In some sense, wj,t

x defines an intrinsic local cosine waveform:
x represents the time location parameter, j is the intrinsic frequency location,
and

√
t is the time-width. On figure 5 we have plotted the domains of the

plane where the function wj,t
x can be locally extended, for different values of

x, and a fixed value of j and t.

Clearly, this elementary example shows that the extrinsic bandwidth can be
much larger than the intrinsic one, especially at locations where the curve
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Fig. 5. Domain of extension for wj,t
x can be locally extended, for different values of

x, and a fixed value of j = 10 and t.

has wild oscillations. In the following proposition, we show that a function f
with intrinsic bandlimit B on X admits an approximate extension that is a
bandlimited function with band CB where C is some universal constant that
depends on the geometry of X. In order to adopt a broader point of view,
instead of considering the eigenfunctions of the Laplace-Beltrami operator ∆,
we will study the extension of eigenfunctions of the following elliptic operator:

∆∆ = ∆ + Q ,

where Q is a bounded potential function. In (4), the authors show that this
type of differential operator arises naturally as the small-scale limit of several
families of kernel operators. We keep the same notations for the eigenfunctions
and eigenvalues, namely,

∆∆φj = ν2
j φj .

Proposition 11 Let ε > 0 be a preset accuracy. There exists a constant C >
0 such that for all j ≥ 0, one can construct a function Fj defined on Rn

satisfying:

• Fj is an extension of φj, i.e.,

Fj(x) = φj(x) for all x ∈ X ,

• Fj can be approximated to relative precision ε by a bandlimited function Bj

18



of band Cνj:

(∫
Rn |Fj(x)−Bj(x)|2 dx

) 1
2

(∫
Rn |Fj(x)|2 dx

) 1
2

≤ ε .

In particular, this proposition asserts that the extrinsic bandwidth is less than
or equal to the intrinsic bandwidth times a constant C that depends on the
precision ε and on the geometry of X. In some way, it is a measure of the
complexity of the embedding of X into Rn. For instance, in the example of
figure 5, C can be quite large because of the oscillations of the curve.

PROOF. For any x ∈ Rn, let x′ ∈ X be such that

‖x− x′‖ = inf
y∈X

‖x− y‖ .

Define Fj by

Fj(x) = e−ν2
j ‖x−x′‖2φj(x

′) .

The function Fj is an extension of φj to Rn. To estimate the decay of its
spectrum, we need to bound its gradient ∇mFj(x) (tensor of order m). The
Leibnitz formula yields:

‖∇mFj(x)‖ ≤
m∑

i=0

(
m

i

)
‖∇i(e−ν2

j ‖x−x′‖2)‖.‖∇m−i(φj(x
′))‖ .

The triangle inequality in L2(Rn) gives




∫

Rn

‖∇mFj(x)‖2dx




1
2

≤
m∑

i=0

(
m

i

) 


∫

Rn

‖∇i(e−ν2
j ‖x−x′‖2)‖2.‖∇m−i(φj(x

′))‖2dx




1
2

.

To evaluate each term of the right-hand side, we make use of the following
lemma:

Lemma 12 Let fν be a function on Rn of the form

fν(x) = g(ν‖x− x′‖)hν(x
′) ,
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where g has an exponential decay. Again, let M > 0 be a bound on the curva-
ture of X. Then, if ν > 4M ,

∫

Rn

|f(x)|dx ³ ν−(n−d)

+∞∫

0

|g(r)|rn−ddr
∫

X

|hν(u)|du .

Because of the decay of g, up to exponentially small terms, this integral can
be computed on the set Ων of all points at distance less than or equal to a
multiple of 1

ν
. We can associate to any x ∈ Rn a pair (u, t) where x′ = u is the

closest point to x ∈ Ων and t = x− u. Conversely, to any u ∈ X and t normal
to X at u, we can associate the point x = u+t. Let J(u, t) denote the Jacobian
of the change of variable (u, t) 7→ x. The lemma follows from the fact that
J is bounded from below and above for all x ∈ Ων . Indeed, first, a variation
dt of t entails the same variation of x. Second, a variation du in the tangent
plane at u entails a variation of x of order (1 + 2α(u)|‖t‖)du in the tangent
direction, where |α(u)| ≤ M , and of order ‖t‖du2 in the normal direction.
To conclude, since ‖t‖ < 1

ν
< 1

4M
, we obtain that 1 − 2α(u)‖t‖ > 1 − 1

2
and

1 + 2α(u)‖t‖ < 1 + 1
2
. Finally,

1

2
< J(u, t) <

3

2
.

Therefore, with the same constants,

∫

Rn

|fν(x)|dx ³
∫

X

|hν(u)|du
∫

Rn−d

g(ν‖t‖)dt ,

which ends the proof of the lemma.

Going back to the proof of the proposition, the lemma implies that




∫

Rn

‖∇mFj(x)‖2dx




1
2

≤
m∑

i=0

(
m

i

)
Kiν

i−n−d
2

j




∫

X

‖∇m−iφj(u)‖du




1
2

, (1)

where Ki is a constant of the order of magnitude of the L2 norm of the ith

derivative of the univariate Gaussian at scale 1. What remains to be done
is to bound the L2(X)-norm of the derivatives of φj. To do so, we need the
following result:
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Lemma 13 For all s ≥ 0, there exists C ′
s such that

‖φj‖s =


 ∑

|α|≤s

∫

X

|∂αφj(u)|2du




1
2

≤ C ′
sν

i
j .

This lemma follows from the classical theory of elliptic operators, which says
that since we can bound the norm of ∆∆kφj, we have a bound on all derivatives
of order less than or equal to 2k.

Let

CQ = sup
u∈X

|Q(u)| .

For i = 0, the lemma is trivial, and for i = 1, it results from an integration by
parts as

‖∇φj‖2
X = 〈∆φj, φj〉X by the Stokes formula,

= 〈∆∆φj, φj〉X − 〈Qφj, φj〉X ,

≤ ν2
j + CQ ,

and therefore

‖φj‖2
1 = ‖φj‖2

X + ‖∇φj‖2
X = 1 + ν2

j + CQ ≤ C ′2
1 ν2

j .

In (5), p 262, it is shown that if L is an elliptic operator of order k, then for
all i ≥ k and all f defined on X, we have:

‖f‖i ≤ C ′(‖Lf‖i−k + ‖f‖i−1) . (2)

We can now proceed by induction:

• for i = 2s and L = ∆∆s, identity (2) yields

‖φj‖2s≤C ′(‖∆∆sφj‖X + ‖φj‖2s−1)

≤C ′(ν2s
j + C ′

2s−1ν
2s−1
j )

≤C ′
2sν

2s
j ,

• for i = 2s + 1 and L = ∆∆s, identity (2) becomes

‖φj‖2s+1 ≤ C ′(‖∆∆sφj‖1 + ‖φj‖2s) .

We have
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‖∆∆sφj‖2
1 = ‖∆∆sφj‖2

X + ‖∇∆∆sφj‖2
X by definition,

= ν4s
j + 〈∆∆∆sφj,∆∆

sφj〉X by the Stokes formula,

= ν4s
j + 〈∆∆s+1φj,∆∆

sφj〉X − 〈Q∆∆sφj,∆∆
sφj〉X ,

≤ ν4s
j + ν

2(2s+1)
j + CQν4s

j ,

and finally,

‖φj‖2s+1 ≤ C ′
(√

(1 + CQ)ν4s
j + ν

2(2s+1)
j + C ′

2sν
2s
j

)
≤ C ′

2s+1ν
2s+1
j .

The lemma is now proven, and it allows us to finish the proof of the proposition
as from equation (1), we can conclude that




∫

Rn

‖∇mFj(x)‖2dx




1
2

≤ Cmν
m−n−d

2
j .

Now for a fixed value of m, define

B̂j(ξ) =





F̂j(ξ) if ‖ξ‖ < Cνj,

0 otherwise,

then, by the Parseval identity, we have

∫

Rn

|Fj(x)−Bj(x)|2 dx =
∫

‖ξ‖>Cνj

|F̂j(ξ)|2dξ ,

≤
∫

‖ξ‖>Cνj

|F̂j(ξ)|2 ‖ξ‖2m

(Cνj)2m
dξ ,

≤ 1

(Cνj)2m

∫

Rn

‖∇mFj(x)‖2dx ,

≤ C2
m

C2m
ν
−(n−d)
j .

Form lemma 12, we have
∫

Rn

|Fj(x)|2dx ≥ K2ν
−(n−d)
j

for some K > 0, and we merely have to pick C so that

C
1
m
m

KC
< δ . 2
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Recall that EB is the bandlimited extension operator corresponding to band
B. From now on, we set B = Cνj. The consequence of this proposition is that,
because of its optimal property, the extension provided by EB must have
an energy on Rn that is less than or equal to that of the extension that we
constructed in the proof above. This means that the numerical support of EBφj

will be included in a tube of radius proportional to 1
νj

around X. Theoretically,

it could be much thinner, but because of the Heisenberg principle, then the
support cannot really be smaller:

Lemma 14 The standard deviation of the extension EBφj along any normal
direction to X is at least equal to C′

νj
for some C ′ > 0 independent of νj.

PROOF. Let f be the restriction of EBφj on a line that is normal to X.
Then f is a univariate bandlimited function of band C

√
dνj. Let

Var(f) =

∫
R(x− x)2|f(x)|2dx∫

R |f(x)|2dx

and

Var(f̂) =

∫
R(ξ − ξ)2|f̂(ξ)|2dξ

∫
R |f̂(ξ)|2dξ

be the variances of f in the space and frequency domains, x and ξ being the
corresponding means. Then since f is bandlimited,

∫

R

ξ2|f̂(ξ)|2dξ ≤ (C
√

dνj)
2

∫

R

|f̂(ξ)|2dξ ,

and consequently, Var(f̂) ≤ (C
√

dνj)
2 (the variance is always smaller than the

second moment). The Heisenberg uncertainty principle implies that Var(f) ≥
C ′2ν−2

j .

As a conclusion, the extension operation satisfies a certain version of the
Heisenberg principle relating the spectrum of the operator ∆∆ to the space
and frequency localizations of the extensions of its eigenfunctions φj. This
principle says that if ∆∆φj = ν2

j φj, then the operator EB extends φj to a
bandlimited function of band O(νj) and localized in a tube of radius O( 1

νj
)

around X. It is worthy to mention that similar results can be obtained for,
say, Gaussian kernels.
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4.3 Multiscale extension scheme

As a consequence of the previous section, where we have related the intrinsic
and extrinsic Fourier analysis of a function on X, the size of the domain of
extension and the bandwidth to which a given function f can be extended
depends on int intrinsic spectrum. In particular, we know that each eigen-
function φj of ∆ can be extended as a bandlimited function with bandwidth
Cν2

j , at distance proportional to 1
νj

from X. This observation gives rise to a

natural multiscale extension technique that we now describe.

Algorithm 2 (Multiscale extension scheme) Fix a precision η and a con-
dition number 1

δ
.

• Precomputation phase: for each eigenfunction φj of ∆, compute the minimal
frequency band Bj to which it can be extended using EBj

. This step can also
be done by grouping the eigenfunctions in dyadic packets, and by computing
a band for each packet.

• Extension phase: for any function f defined on X, compute its decomposi-
tion over {φj} and retain enough coefficients so that the relative error is of
order η:

f =
∑

j∈S

〈f, φj〉Xφj +O(η‖f‖X) ,

and use the precomputed extensions of φj to extend f as

F =
∑

j∈S

〈f, φj〉XEBj
φj .

This algorithm extends f as a linear combination of “atoms” with different
localizations in time and frequency. More precisely, F is a sum of functions
that oscillate at intrinsic frequency ν2

j on X and that vanish at distance 1
ν2

j

from this set. From the implementation point of view, it is to be noted that
in (4), the authors provide an efficient way to compute the eigenfunctions of
∆ on a submanifold X.

We illustrate the space-frequency localization principle on figure 6 where dif-
ferent Fourier modes of the unit circle are extended to the plane using a
Gaussian kernel.

5 conclusion

We have described the construction and properties of the geometric harmonics,
and we have shown how they can be used to perform out-of-sample extension
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Fig. 6. Gaussian extensions of the functions cos(jθ) for j = 1, 2, 4, 8, from the
unit circle to the plane. Unlike the bandlimited extensions, these ones are much
more localized in the plane, and they don’t oscillate off the circle. These plots also
illustrate the Heisenberg principle as functions with high frequencies are extended
as functions with a small support.

of empirical function. The study of the case of submanifolds shows that these
functions are an interesting tool for relating the intrinsic and extrinsic Fourier
analyses.
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A Reproducing kernel Hilbert spaces

In this section, we provide the basic background concerning reproducing ker-
nel Hilbert spaces, and their connection to positive semi-definite kernels. A
classical reference concerning this topic is (2).

Definition 15 (Reproducing kernel Hilbert space) A space HilbertH of
functions defined on a set X is said to be a reproducing kernel Hilbert space if
there exists a function (“kernel”) k : X ×X → Rn such that

• for almost every x ∈ X, k(x, ·) ∈ H,
• if 〈·, ·, 〉X is the inner product in H, then for all function f ∈ H and almost

all x ∈ X,

〈f, k(x, ·)〉X = f(x) (A.1)

In (2), it is shown that the concepts of reproducing kernels and positive kernels
are identical in the following sense: any reproducing kernel is positive semi-
definite, and to any positive kernel k there corresponds a reproducing kernel
Hilbert space H for which k is the reproducing kernel. The construction is
given in (2).

In the particular case when X = Rn and k(x, y) = h(x − y), then more can
be said. By Bochner’s theorem, we know that the Fourier transform ĥ of h is
a finite positive measure. Assuming that this measure has the form ĥ(ξ)dξ,
then it can be checked that H is the space of functions f defined on Rn such
that

∫

ĥ(ξ)>0

|f̂(ξ)|2 dξ

ĥ(ξ)
< +∞ ,

and such that f̂(ξ) = 0 if ĥ(ξ) = 0. Consequently, this space is the Fourier
transform of a weighted L2 space, where the weight penalizes high frequencies
since ĥ is integrable.

In the case of the Bessel kernel, the function ĥ is the indicator of a ball, and
therefore H is imply a space bandlimited of bandlimited functions endowed
with the classical inner product of L2(Rn, dx).
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B Expression of the Bessel kernel

In what follows, we derive the form of the kernel corresponding to functions
whose Fourier transform is the indicator function of the ball of radius B

2
cen-

tered at the origin, namely:

kB(x, y) =
∫

‖ξ‖< B
2

e2iπ〈ξ,x−y〉dξ =
(

B

2

)n
2 Jn

2
(πB‖x− y‖)
‖x− y‖n

2
,

where Jν is the Bessel function of the first kind of order ν. This kernel will be
termed “Bessel kernel”.

Since the kernel is really a function of ‖x− y‖, we are looking for the form of
the Fourier transform of the indicator of the unit ball in dimension n. To do so,
we make use of a result known under the name of the Bochner-Coifman-Howe
periodicity relations:

Lemma 16 Let f be a radial function, and let Fnf(ξ) = hn(‖ξ‖2) be its
Fourier transform in dimension n. Then the Fourier transforms of f in di-
mension n and n + 2 are related in the following manner:

hn+2(u) = − 1

π
h′n(u) .

In other words, to compute the Fourier transform hn+2(‖ξ‖2) of f in Rn+2,
one can start from the Fourier transform hn(‖ξ‖2) in dimension n, view this
function as a function of ‖ξ‖2 and compute its derivative in this variable.

PROOF. Since any radial function or tempered distribution can be approx-
imated as a sum of Gaussians, one merely needs to verify the relation for
f(x) = e−αr2

. In this case,

Fnf(ξ) =
(

π

α

)n
2

e−
π2ξ2

α .

Thus

hn(u) =
(

π

α

)n
2

e−
π2u

α ,

and the identity is satisfied. 2
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Using this lemma we can now conclude:

Proposition 17 In dimension n, the Bessel kernel has the following form:

kB(x, y) =
(

B

2

)n
2 Jn

2
(πB‖x− y‖)
‖x− y‖n

2
.

Moreover, if n is odd, then the simpler formula can be used:

kB(x, y) = MB

(
1

r

d

dr

)n−1
2

sinc(Br) ,

where r = ‖x− y‖ and

Mc =
(

B

2

)n
2 √

2B(−1)
n−1

2 .

PROOF. By a trivial scaling argument, we may assume that B = 2.

Then if n = 1, then

k(x, y) =

1∫

−1

e2iξπ(x−y)dξ = 2sinc(2‖x− y‖) =
J 1

2
(2π‖x− y‖)
‖x− y‖ 1

2

,

where the third equality is obtained using 10.1.1 and 10.1.11 in (1).

If n = 2, then in polar coordinates (ρ, θ):

∫

‖ξ‖<1

e2iπ〈ξ,x−y〉dξ =

1∫

0

2π∫

0

e2iπrρ cos θdθρdρ ,

= 2π

1∫

0

J0(2πrρ)ρdρ by 9.1.21 in (1),

=
1

2πr2

2πr∫

0

uJ0(u)du ,

=−1

r
J ′0(2πr) since by 9.1 in (1) (uJ0(u))′ = −uJ0(u) ,

=
J1(2πr)

r
by 9.1.28 in (1).
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For higher orders we proceed by induction on n, noting that if

h(u) =
Jn−2

2
(2π

√
u)

u
n−2

4

,

then

h′(u) =
J ′n−2

2

(2π
√

(u)) π√
(u)

u
n−2

4 − Jn−2
2

(2π
√

u)n−2
4

u
n−2

4
−1

u
n−2

2

,

=
2π
√

uJ ′n−2
2

(2π
√

u)− n−2
2

Jn−2
2

(2π
√

u)

2u
n−2

4
+1

,

=−π
√

uJn
2
(2π

√
u)

u
n−2

4
+1

according 9.1.27 in (1) ,

=−πJn
2
(2π

√
u)

u
n
2

.

Now invoking lemma 16 yields the result. Finally, to obtain a formula in terms
of the variable r instead of r2, notice that d(r2) = rdr, and this implies that
for odd values of n

k(x, y) = 2(−1)
n−1

2

(
1

r

d

dr

)n−1
2

sinc(2r) .

2
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