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Abstract

Di�usion Maps and Geometric Harmonics

Stéphane S. Lafon

2004

The purpose of this thesis is twofold. First we investigate the problem of �nding mean-
ingful geometric descriptions of data sets. The approach that we propose is based upon
di�usion processes. We show that by designing a local geometry that re�ects some quan-
tities of interest, it is possible to construct a di�usion operator whose eigendecomposition
produces an embedding of the data into Rn via a di�usion map. In this space, the data
points are reorganized in such a way that the geometry combines all the local information
captured by the di�usion process, and the Euclidean distance de�nes a di�usion metric that
measures the proximity of points in terms of their connectivity. The case of submanifolds
of Rn is the object of greater attention, and we show how to de�ne di�erent kinds of dif-
fusions on these structures in order to recover their Riemannian geometry. General types
of anisotropic di�usions are also addressed, and we explain their interest in the study of
di�erential and dynamical systems.

Secondly, we introduce a special set of functions that we term geometric harmonics.
These functions allow to perform out-of-sample extensions of empirical functions de�ned on
the data set. They can also be employed for embedding the data points in a Euclidean
space with a small local Lipschitz distortion. We show that the geometric harmonics, and
the corresponding restriction and extension operators are a valuable tool for the study of
the relation between the intrinsic and extrinsic geometries of a set. In particular, they allow
to de�ne a multiscale extension scheme, in which empirical functions are decomposed into
frequency bands, and each band is extended to a certain distance so that it satis�es some
version of the Heisenberg principle.
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Notation

Z - the set of integers.
R - the set of real numbers.
dx - the Lebesgue measure on Rn or the Riemannian volume on a Riemannian manifold.
∇ - gradient in Rn.
∆ - the Laplacian on Rn or the Laplace-Beltrami operator on a Riemannian manifold. The
convention of sign here is such that ∆ is a positive semi-de�nite operator. Its eigenfunctions
are noted {φj} and its eigenvalues are expressed as squares {ν2

j }:

∆φj = ν2
j φj .

pt(x, y) - the Neumann heat kernel on a manifold.
L2(Γ, dµ) - the space of square integrable functions on Γ with respect to the measure dµ.
〈f, g〉Γ - the inner product for functions in L2(Γ, dµ):

〈f, g〉Γ =
∫

Γ
f(x)g(x)dµ(x) .

Hs(Γ, dµ) - the Sobolev space of functions whose derivatives of all orders up to s are square
integrable on Γ with respect to dµ.
‖f‖s - the norm in the Hilbert space Hs(Γ, dµ), given by:


 ∑

|α|≤s

∫

Γ
|∂αf(x)|2dµ




1
2

.

f̂ - the Fourier transform of f with the frequency convention:

f̂(ξ) =
∫

Rn

e−2iπ〈ξ,x〉f(x)dx .

f ∗ g - the convolution of two functions.
f = O(g) - means that the ratio of f over g is bounded from above.
f ³ g - means that the ratio of f and g is bounded from above and below.
A - the topological closure of a set.
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Chapter 1

Introduction

1.1 The problem of dimensionality reduction
The tremendous growth of available data sources together with the amazing advances in
storage capabilities have opened new horizons in science, business and government, and have
drastically changed our relationship to the world. Nowadays, we are constantly �ooded with
information of all sorts and forms, and our strong attachment to induction makes us believe
that it is somehow possible to learn from data. Learning is the key concept here, but this term
comes in a variety of meanings. For instance, it is sometimes believed that learning should
help us make predictions on the future, based on past experiences that are recorded in the
data at our disposal. In that sense, learning means memorizing and reproducing information.
But learning also means making automatic discoveries, or reinterpreting knowledge. In this
case, learning involves comprehending the data as well as the ability to relate di�erent parts
of the information.

In any case, in response to the fast growing needs of governments, corporations and
engineers to process information, there has recently been a huge e�ort to develop tools that
convert data into useful knowledge, in particular in the following areas:

• biotechnologies: the human genome has now been entirely sequenced, and there re-
mains to understand what each gene does. The analysis and interpretation of DNA
microarrays has been a hot topics in molecular biology these last years. Even more
challenging is the �eld of proteomics which aims at determining the structure, function
and expression of proteins involved in our metabolism.

• text mining and web search engines: a substantial amount of human communication
is produced in the form of text. The obvious consequence is that speci�c techniques
need to be developed for this medium.

• Information Retrieval from meta data in general, with applications ranging from Cus-
tomer Relationship Management to industrial espionage and foreign intelligence.

The common denominator of data analysis in these �elds is that scientists are con-
fronted with large amounts of observations that have high dimensionality. The dimension
factor means that the description of each observation in the data or the relationship between
observations involves a great number of observable quantities. For instance, in hyperspectral
imagery, each observation is a collection of images whose pixels are themselves long vectors of
re�ectance at di�erent wavelengths, and typically, each point in the data is a 500×500×500
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data cube (see our example on �gure 1.11). For this particular application, the data can
be represented as points in a vector space, but other kinds of structures, such as graphs,
are sometimes more adequate. A good example is provided by DNA sequences: a typical
fragment of DNA contains 500 nucleotides, each of which being one out of four possible bases
{A,C, G, T}. A common tool used for reordering the fragments is that of Markov chains of
order k for which the nucleotides constitute the di�erent states, and the goal is to estimate
the transition probabilities between nucleotides along the DNA molecule. For the homoge-
neous Markov chain model, this approach is equivalent to viewing the data as a weighted
graph with 4k vertices corresponding to all k−words from the alphabet {A,C, G, T}, and
the weight between the vertices being the probability of transitions. Empirical studies have
shown that the memoryless Markov chain model (k = 0) is unrealistic, and that to obtain
accuracy it is necessary to consider higher order Markov chains (see [22]). This means that
we have to deal with large graphs having possibly many edges. In short, by high dimen-
sionality, we mean that the representation of the data presents a potentially large number
of degrees of freedom.

Figure 1.1: A slice of human colon tissue. The actual data is a cube of 652× 491 pixels by
128 wavelengths.

The high dimensionality is an obstacle to an e�cient processing of the data, and this
phenomenon, termed curse of dimensionality by Bellman (see [5]), manifests itself in several
ways:

• in Rd, all norms are not (numerically) equivalent when d is large. In particular, the
same function will have di�erent degrees of smoothness under di�erent norms.

• approximating functions is di�cult; grid-based methods require ε−d evaluations of a
C1 function f to approximate it with accuracy ε. Consequently, integration is a hard
task too.

1Courtesy of Mauro Maggioni, Yale University.
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• likewise, density estimation requires an number of sample points that grows exponen-
tially with d, otherwise most bins of any histogram will be empty. This situation
high dimension - low sample size is actually quite common. Although it constitutes
a challenge for computational e�ciency, a large number of observations is in general
desirable.

• several algorithms notoriously fast in low dimension become prohibitively slow in high
dimension as their complexity (in time, space and sometimes both) scales exponentially
with d. For instance, when d is the average number of edges arriving at each node
of a graph (its degree), algorithms for nearest neighbors search exhibit a complexity
growing like an exponential function of d, making the brute force method the only
realistic option... So to speak (the number of vertices is also a limitation).

See [9] for other aspects of this phenomenon and its impact on data analysis. Note that from
these few remarks, it is clear that a vector space can be considered to be high-dimensional
as soon as it has dimension greater than 10.

Fortunately, in spite of all these di�culties, the situation is not hopeless. Indeed, in many
cases, the apparent complexity of the data is an artefact of the choice of their representation
and has nothing to do with the actual complexity of the process that generated these data. It
is often the case that the variables involved in the representation of the data are correlated
through some functional dependence, and as a consequence, although the description of
the data is highly multivariate, the number of independent variables that are necessary to
e�ciently describe the data is often small. This number of free parameters will be referred
to as the intrinsic dimensionality of the data. Note that this notion applies to points in
a vector space as well as vertices of a graph, where it means that some kind of regularity
holds (bound on the degree of the vertices, volume growth condition). As an illustration,
consider the example of hyperspectral data from the colon tissue (image 1.1) where each
pixel is viewed as a point in R128. In the image space, the variability is explained by the
local changes of the chemistry, plus some noise with much smaller variance. Therefore we
can expect to observe correlations between wavelengths of neighboring pixels, and it is clear
that the number of degrees of freedom for hyperspectral data is far less than for arbitrary
points in a 128 dimension vector space.

Under the assumption of low intrinsic dimensionality, it seems reasonable to try to trans-
form the representation of the data into a more e�cient description by reducing the dimen-
sionality. Not only would this allow to further process the data, but it could also reveal
information and provide insight on the process at the origin of the data. Although a major
obstruction to overcoming the curse of dimensionality is our lack of understanding of geom-
etry in high dimension (see [8]), various attempts at reducing the dimension of data have
been made and this problem now occupies a central position in many �elds: in informa-
tion theory where it is related to compression and coding, in statistics (latent variables), in
pattern recognition (feature extraction), statistical learning (manifold learning)...

1.2 A brief review of some dimensionality reduction techniques
To reduce the dimensionality means to �nd a function Φ that will map our data from the
space X of their original description to a new space Y where their description is considered
to be simpler. In other words, Φ is supposed to discard part of the information in the data.
As stated, the problem of dimensionality reduction is ill-posed, and we need to impose some
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constraints on Φ. These conditions are de�ned by what information we are ready to lose,
(or equivalently, what we want to preserve), and are dictated by the application we have in
mind. Note that the loss of information is not necessarily a negative aspect of the dimension
reduction as this information could be totally irrelevant to us (it could be noise for instance).

The mapping Φ will be referred to as an embedding of X into Y.

1.2.1 Model �tting
One way to impose a constraint on the choice of Φ is to assume a model for the data.
More precisely, dimension reduction can be achieved by �tting a low-dimensional model,
and by using the model to describe the data. This is equivalent to performing some kind of
regularization on the data, and therefore the choice or assessment of the model is a critical
step prior to further treatment of the samples. The model should re�ect our prior knowledge
on the data, and at the same time result from a balance between its low complexity and its
faithfulness to the data. Indeed, low complexity (measured by the number of parameters, by
the Vapnik-Chernovenkis dimension or in terms of Kolmogorov complexity [10]) is desirable
to achieve maximum dimensionality reduction and to avoid over�tting, but at the same
time, one is inclined to increase the complexity to obtain a good accuracy, at the price of a
large variance of estimators. There is no simple answer to that question, also known as a
manifestation of the bias-variance tradeo� (see [16] for a description of several strategies).

Linear models: Principal Component Analysis
Assume that the data consist of points {x1, ..., xN} in Rd. In Principal Component Analysis
(PCA), the data are �t to a linear model by computing the best linear approximation in the
sense of the quadratic error. If X represents the N × d matrix of the data where the rows
represent the samples, then we need to solve the problem

arg min
x∈Rn,dim H=k

N∑

i=1

‖xi − x− PHxi‖2

where PH is the orthogonal projector onto a vector space H. It can be checked that the
solution is obtained by the mean of the data

x =
1
N

M∑

i=1

xi

and
H = span{u1, u2, ..., uk}

the linear space spanned by the eigenvectors {u1, u2, ..., uk} (the principal components)
corresponding to the k largest eigenvalues {σ2

1, σ
2
2, ..., σ

2
k} of the matrix

XT (I −M)T (I −M)X

where M is the N × N matrix with each entry equal to 1
N . The quadratic deviation from

the a�ne space x + H is simply the sum
N∑

i=k+1

σ2
i .
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Therefore, the more eigenvalues we retain, the more accurate the model. At the same time,
the dimension reduction is directly related to the number k of eigenvectors that we keep.
From a statistical point of view, the data set can be thought of as the realizations of N i.i.d.
random variables. Then 1

N XT (I −M)T (I −M)X is the empirical covariance matrix and
its k top eigenvectors for the axes of maximum variance.

The linear model is often unadapted as the correlations between the variables of the
data are generally nonlinear. Despite this problem, PCA is extremely popular because of
its simplicity and the interpretability of its results.

Kernel PCA

Among the di�erent attempts to correct the fact that PCA cannot handle nonlinear data sets,
kernel PCA is of particular interest in this thesis because it relies on the diagonalization
of a positive semi-de�nite kernel restricted to a data set {x1, x2, ..., xN}. More precisely,
assume the existence of a function Φ that maps the data points into some vector space V ,
possibly in�nite dimensional (the "feature space"). In the space V , classical PCA can be
performed, and the principal components can be employed for classi�cation or regression
ends. In particular, if the classi�cation scheme is linear (in V ), it will only involve the
evaluation of inner products between linear combinations of terms of the form Φ(xj) and
possibly Φ(x) where x is a new point. In particular, all computations are based upon the
knowledge of the matrix with entries 〈Φ(xi), Φ(xj)〉. Consequently, one does not need to
know Φ explicitly, but instead one could start from a positive semi-de�nite kernel k(xi, xj)
and think of it as the Gram matrix 〈Φ(xi), Φ(xj)〉. Now kernel PCA is equivalent to the
diagonalization of the matrix k(xi, xj), and all operations are realized in terms of the known
quantities k(x, xj) (see [15] for more details).

Popular choices of kernels are k(x, y) = (〈x, y〉)p (polynomial kernel) and k(x, y) =
exp(−‖x−y‖2

σ2 ) (Gaussian kernel). Kernel PCA reduces the dimension of the space of functions
de�ned on the data in the sense that all such functions are represented as a linear combination
of bumps of the form k(xi, .), and the dimensionality of this space depends on the decay of
the spectrum of this kernel on the data.

Cluster analysis

Suppose that there exists a measure of similarity between the observations. Clustering
aims at partitioning the data into groups such that the similarity between points in the
same groups is smaller than that between points of di�erent groups. A popular clustering
technique is based on mixture models for which the density of the observations is represented
as a convex combination of elementary shapes, like Gaussians for instance.

1.2.2 Preservation of mutual distances
Suppose that the data is a collection of points Γ = {x0, x1, ...} in some metric space (X , ρ).
For instance X can be a Euclidean space with its associated norm, or a graph with ρ being
the geodesic distance between vertices. Let Φ : (X , ρ) → (Y, η) be an embedding into
another metric space. De�ne the expansion of Φ as

M(Φ) = sup
u,v in X

η(Φ(u), Φ(v))
ρ(u, v)

5



and its shrinkage to be
m(Φ) = sup

u,v in X

ρ(u, v)
η(Φ(u), Φ(v))

.

Therefore we have, for all u and v in X ,

1
m(Φ)

ρ(u, v) ≤ η(Φ(u),Φ(v)) ≤ M(Φ)ρ(u, v) .

The Lipschitz distortion of Φ is the following product:

dist(Φ) = m(Φ)M(Φ) .

The distortion measures how much stretching or contraction is applied to points in X when
embedded via Φ, and it is a generalization of the condition number of linear functions to
nonlinear mappings. In particular,

dist(Φ) ≥ 1

with equality if and only if Φ is a transform that changes all distances in the same ratio.
When mutual distances between the data points are meaningful and therefore need to

be preserved, we want to obtain an embedding Φ with distortion as close to 1 as possible.
But at the same time, it is necessary to reduce the dimension and a trade-o� is to be found
between these two competing requirements.

Multidimensional scaling
The existence and construction of isometric embeddings (distortion equal to 1) into Eu-
clidean spaces are easily obtained by using a technique that goes by the name of (classical)
Multidimensional Scaling (MDS). The result is the following: the set Γ can be embedded in
a Euclidean space if and only if the kernel

k(x, y) = ρ2(x0, x) + ρ2(x0, y)− ρ2(x, y)

is positive semi-de�nite (x0 is any point in the data set). The idea here is that k represents
(twice) the Gram matrix of the image of the data set through the embedding Φ. The
embedding is given by the column of any matrix a such that k = aT a, for instance a can be
obtained from the Cholesky decomposition of k or using its Singular Value Decomposition
(SVD). Small singular values represent dimensions that can be numerically neglected, and
the number of signi�cant singular values will give the dimension of the Euclidean space
necessary to isometrically embed the data to a preset accuracy. This was known to the
mathematicians of the 1930's and Schoenberg (see [25]) showed that this characterization
of the kernel k could also be transferred to other types of kernels: the data points will be
isometrically embeddable in a Euclidean space if and only if the kernel e−ρ2(x,y) is positive
semi-de�nite on Γ.

It can be veri�ed that when the data already lie in a vector space, classical MDS and
PCA are dual in the sense that MDS amounts to diagonalizing (I − M)XXT (I − M)T

whereas PCA is obtained from the eigenvectors of XT (I −M)T (I −M)X.
We conclude this section by mentioning that classical MDS has inspired several algo-

rithms for visualization of abstract data or for nonlinear dimensionality reduction, like the
recent ISOMAP (see [33]) that uses an MDS embedding on the set of geodesic distances of
a graph or a manifold.
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Randomized embedding

Another approach consists in randomizing the search for an embedding with small distor-
tion. Randomness is a promising tool for overcoming the di�culties related to the curse
of dimensionality, and is already exploited for integration and simulation in high dimension
(via Monte-Carlo and quasi Monte-Carlo methods) and in fast matrix computations [13].
Random methods can be used for �nding low distortion embeddings as it is shown in the
following theorem [18]:

Theorem 1 (Johnson-Lindenstrauss). Let ε > 0 and suppose that Γ ⊂ Rd contains n
points. If k ≥ 24

ε2 log(n) then there exists a mapping Φ : Γ → (Rk, ‖.‖2) such that

dist(Φ) ≤
√

1 + ε

1− ε
.

Moreover, this map can be found in randomized polynomial time.

In other words, n points of a Euclidean space can always be mapped into a space of
dimension O (

1
ε2 log n

)
with a small distortion. The mapping is found by projecting the

points onto random low-dimensional linear spaces. It is remarkable that a solution exists for
all set Γ (this is not the case if the Euclidean metric is changed into the L∞ or L1 distance
function), but it is also a drawback because this technique does not take into account the
speci�c geometry that Γ might have. In particular, the intrinsic dimensionality of Γ plays
no role in the theorem above, and the embedding is therefore suboptimal.

1.2.3 Global vs local
One of the major drawbacks of the methods presented so far (except for kernel PCA and
cluster analysis) is that they all aim at minimizing some global cost function:

• for PCA, one tries to globally �t the data with a linear model. Most data sets are
highly nonlinear, and this method fails at capturing the nonlinear structures in the
data.

• To realize the potential ine�ciency of classical MDS, consider a curve in Rd (d large)
following each of the d coordinate axes successively . This curve will be mapped to
itself through classical MDS (no dimension reduction).

• The Lipschitz distortion as de�ned above is also a global measure in the sense that
under a mapping with reasonable distortion, two close points must be mapped to two
close points, and two points far apart must stay as such. The Johnson-Lindenstrauss,
as well as ISOMAP, are thus largely suboptimal in situations where large distances do
not need to be preserved.

As indicated above, trying to preserve large distances can be quite ine�cient. Not only
is it a limitation on the �nal dimensionality, but in many applications it is also irrelevant.
The reason for this lies in the fact that, often, the distance used to discriminate between
data points is only meaningful for close points. Indeed, suppose that the data points xi were
generated by a low dimensional parameter θi via a mapping Φ : Rk → Rd (d much larger
than k). If we measure distances with Euclidean distances in both spaces, how do ‖θi − θj‖
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and ‖Φ(xi)− Φ(xj)‖ compare? A related question is how smooth can Φ be ? Consider the
following simple example: θ ∈ [0, 1] and Φ : [0, 1] → L2([0, 1]) de�ned by

Φ(θ)(t) =
{

1 if 0 ≤ t ≤ θ
0 otherwise.

This mapping is a simple but instructive model for edges in images for instance, θ being a
location parameter. Then it is immediate that

‖Φ(α)− Φ(β)‖ = |α− β| 12 .

This means that Φ is not very smooth and as a consequence, small variations of the parameter
value will entail large variations in the high dimensional space. Therefore, although the
Euclidean distance in L2([0, 1]) will sharply discriminate between points with very close
values of the parameter, it is essentially useless for comparing all other points. Thus it is
clear that minimizing a global cost function like Lipschitz distortion makes no sense in this
case as large distances are meaningless and need not be preserved.

In recent years, several local methods have emerged from the �eld of manifold learning
to address this issue: Local Linear Embedding (LLE) [24], Laplacian eigenmaps [4], Hessian
eigenmaps [11], Local Tangent Space Alignment (LTSA) [34], etc... All these techniques aim
at minimizing distortions of the form:

Q(f) =
∑

i

Qi(f)

under the constraints that ‖f‖2 = 1. Here the sum is taken over all points in the data set
and Qi(f) is a positive semi-de�nite quadratic form in f . In all the methods cited above
Qi is local in the sense that it involves values of f in a neighborhood of xi, typically Qi(f)
is a measure of the variation of f around xi: squared norm of the gradient for Laplacian
eigenmaps, Frobenius norm of the Hessian matrix for Hessian eigenmaps, deviation from
a local representation of the points for LLE and LTSA. The idea behind the special form
of Q is that one hopes to derive global information from local overlapping structures. In
addition, the problem can be solved e�ciently as the matrix of Q is sparse. The solution to
the optimization problem is given by the axes of inertia of Q, and the �rst eigenvectors are
used to represent the data. It was noted in [15] that all these methods are subcases of kernel
PCA. In the �rst part of this thesis, we will attempt to explain that they also all have an
interpretation in terms of di�usion process.

In his thesis work, Belkin [3] showed that the so-called weighted graph Laplacian allows
to reconstruct the Laplace-Beltrami operator on a manifold from points uniformly sampled,
and that the eigenfunctions of this operator can be used to perform dimensionality reduction.
In our work, we show that this is not true for non-uniform densities, and we improve his
result by describing an algorithm that handles general densities.

1.3 Extrinsic and intrinsic geometries
In this thesis, the geometry of a set Γ of objects will be de�ned as a set of rules that describe
the relationship between the elements of Γ. When Γ is a subset of a bigger set Ω, we will say
the geometry is intrinsic to Γ if the rules can be formulated without reference to Ω and the
possible structures already existing on it. If it is the case that Ω possesses its own geometry,
then the geometry induced on Γ will be referred to as extrinsic geometry of Γ.
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Weighted graphs and Riemannian manifolds are two examples of structures of particular
interest in the work presented here. A weighted graph (Γ, k) is a collection of points Γ
together with a real-valued weight function k de�ned on Γ× Γ. In that case, the geometry
of the graph is de�ned by the weight k of the edges that describe the degree of association of
the vertices. For a Riemannian manifold Γ, the geometry is contained in the �eld of metric
tensors on the manifold. At each point x on the manifold, the tensor {gij(x)} de�nes an
inner product on the tangent space, and a metric in a neighborhood of x via the exponential
map. When Γ is a submanifold of a Euclidean space, the metric on each tangent space is
inherited from that of the bigger space.

In this thesis, we explore the following simple observation: much of the geometry of
a set Γ can be understood through the analysis of the geometry of the space of functions
de�ned on Γ. In some way, this dual approach to the study of the set Γ allows us to deal
with the same kind of objects (functions or operators on those functions) for all di�erent
types of sets (graphs, manifolds...). Dualization is a powerful tool that allows to generalize
some concepts as it was done in distribution theory for instance, where a function is not
de�ned by the values taken on a set, but rather by its action on a space on test functions.
The idea of studying functions de�ned on a set (and operators on these functions) to gain
some insight on the geometry of the set itself is not new. Indeed, it is at the center of many
inverse problems and has been extensively studied in inverse scattering, potential theory
and spectral geometry. For instance consider the problem of learning the structure of the
ground from seismic data, or the reconstruction of 3D models from the scattering of X-rays
in medical imaging. In these examples, the geometric structure of some objects is inferred
from the action of a set of functions (plane waves) on these objects. Similarly, in potential
theory, the singularities of the boundary (corners, cusps) are re�ected in the behavior of
the solutions of the Dirichlet and Neumann problems. Spectral geometry asks the question
of whether the geometry of a Riemannian manifold is determined by the spectrum of the
Laplace operator. More generally, the study of spectral asymptotics for partial di�erential
operators relates geometric characteristics of sets Γ to the growth of the eigenvalues for such
operators.

In this thesis, we explore the relation between both geometries by investigating the
action of certain restriction and extension operators, and investigate the question of how
the intrinsic and extrinsic di�usion are related.

1.4 Contribution of this thesis
The principal contribution of this thesis is twofold. First we show the relevance and useful-
ness of di�usion processes for understanding the geometric structures of data sets, and we
explain how it is related to the geometry of spaces of functions de�ned on these data. We
also show that this approach generalizes some concepts that were introduced in areas such as
manifold learning and di�erential calculus. Second, we introduce a simple tool, the geomet-
ric harmonics, that allows to perform an out-of-sample extension of an empirical function
known on the data. In addition to their obvious potential in applications, the geometric
harmonics are shown to be very useful to relate the intrinsic and extrinsic geometries of
data sets.

Chapter 1 deals with de�ning di�usion processes on a data set, and these are used to infer
a description of the intrinsic geometry of the data. We explicitly construct a di�usion kernel
on the data, and employ its spectral properties, spectrum and eigenfunctions, to de�ne a
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di�usion map that embeds the data into a Euclidean space, where the Euclidean distance
corresponds to a di�usion metric. The case of submanifolds of Rn is studied in details, and
we de�ne a di�usion process that corrects the defects of the classical tool, namely the Graph
Laplacian. Numerical experiments are presented, and we discuss the usefulness of general
di�usion processes, in particular for the study of dynamical and di�erential systems.

Chapter 2 includes the extrinsic geometry in the discussion. We construct a special set
of functions, termed geometric harmonics, and show that they allow to extend an empirical
function known on the data to new points. We then show two other ways to use these
functions. First, we empirically show that they provide a reduction of dimensionality of the
data with a small local distortion. And second, they are shown to provide a link between the
intrinsic and extrinsic geometries of a set, and they allow to de�ne a multiscale extension
scheme, in which empirical functions are decomposed into frequency bands, and each band is
extended to a certain distance so that it satis�es some version of the Heisenberg principle.
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Chapter 2

Di�usion Maps

2.1 Motivation: from local to global
For a large variety of data, the notion of similarity or distance between points is de�ned
only locally. More precisely, at each point of the set is de�ned a neighborhood, and within
this neighborhood, one has a similarity or distance function between points. This idea is
contained in that of a Riemannian manifold: for such a structure the domains of the charts
de�ne the neighborhoods and the metric tensor explains how to locally measure the distance
between points. The point of view of Riemannian geometry is not the only relevant one, and
in the following, it will be useful to think of the data as forming a weighted oriented graph.
With this approach, the neighborhood of a point x is de�ned as the set of points that are
connected to x, and the similarity between x and y is given by the weight of the edge (x, y).

To illustrate the idea that the similarity measure only makes sense locally, let's consider
a database of digit pictures, as those used for calibrating Optical Character Recognition
systems. The set consists of images of handwritten digits, and each picture being composed
of m×n pixels, it is generally viewed as a point sitting in the Euclidean space Rmn. Ideally,
one would like to identify 10 clusters in the data (corresponding to the digits 0,1,...,9), but the
geometry of the set as measured with the Euclidean distance (for instance) is quite complex
and does not allow to perform an e�cient clustering. The ine�ciency of the Euclidean
distance is easily explained by the following observation: two points of the set are either
close, and then their Euclidean distance brings us some useful information, or they are
far from each other and the information of their distance is irrelevant (the points can be
considered to be at in�nite distance). This situation is simply the expression of the fact
that in high dimension (mn), the Euclidean distance is not a smooth function of the natural
parameters controlling the variability within the data set. For example, if two instances of
the same digit, say 1, are almost identical except that one is a rotated version of the other
by a small angle α, then the Euclidean distance between these points will be proportional to√

α. In fact, due to the �nite resolution, the situation is even worse: two instances of 1 will
be either at very large distance or at distance almost zero, making the Euclidean distance
practically meaningless for this example.

As a consequence, several instances of the same digit, that we would like to group in
a unique cluster, can di�er by a large amount in the Euclidean distance. Therefore this
distance can only relate instances of these 1's that are very similar. If the parameters
that control the variability between these 1's are su�ciently sampled, then one can hope to
agglomerate the local information of the Euclidean distance to infer the global structure of
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Figure 2.1: Two instances of the same digit. Their Euclidean distance is roughly proportional
to √α.

the data set. This is precisely what a random walk (di�usion, Markov process) does, as its
trajectories chain the di�erent points according to the local geometry.

In this chapter, we explain how the eigenvalues and eigenfunctions of averaging operators,
i.e., operators whose kernel corresponds to transition probabilities of a Markov process,
de�ne a natural embedding of the data through a di�usion map. In the embedding space,
the Euclidean distance gives rise to natural metric on the data. We show that this metric
measures the distance in terms of di�usion between the data points and that it provides us
with robust information on the intrinsic geometry of the data set. Furthermore, the study
of the eigenvalues allows us to use the eigenfunctions for dimensionality reduction. We also
explain how the Neumann heat kernel can be approximated when Γ is a submanifold of Rn,
and we illustrate these ideas by some numerical experiments. We conclude this chapter by
a discussion on anisotropic di�usions.

2.2 De�nition of the di�usion metric
Let (Γ,A, µ) be a measure space, where Γ is a set whose points are abstract objects. Γ can
have a very general form, but in many practical situations, it will consist of �nitely many
data points, and µ will be the counting measure in order to represent the distribution of the
points in the data set. To simplify, we shall assume that µ is �nite. Our goal is to study
the intrinsic geometry of this set, and to do so, we construct a di�usion kernel and use its
spectral properties to analyze the geometry of the data.

2.2.1 Construction of a di�usion kernel
Suppose that the geometry of Γ is de�ned by a kernel k(x, y), that is, assume that k(x, y)
measures the degree of similarity between two points x and y. The kernel k represents our
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a priori information on Γ. In this section we show how to construct a di�usion kernel from
k. We make the following additional assumptions on k:

• k is symmetric: k(x, y) = k(y, x),

• k is positivity-preserving: for all x and y in Γ, k(x, y) ≥ 0,

• k is positive semi-de�nite: for all bounded function f de�ned on Γ,
∫

Γ

∫

Γ
k(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0 .

In the following, these conditions will be referred to as the admissibility conditions.
Let's make a few remarks on these properties. First, the kernel de�nes a notion of

neighborhood, namely the neighborhood of x corresponds to all points y that interact with
x, i.e., such that k(x, y) is numerically signi�cant. In that sense, the kernel de�nes the
local geometry of Γ. Second, as we will show in an example, the symmetry is not really
a constraint since we can always consider a symmetrized version of the kernel. Third, the
positivity preservation property will allow us to renormalize k into a Markov kernel and to
de�ne a random walk on the data. Last, as we will see, the third condition is necessary for
imposing the positivity of the di�usion metric. Under some technical conditions on µ and
Γ, it has an equivalent discrete formulation (see [6]).

An important class of examples is generated by the situation when Γ is a subset of the
Euclidean space Rn. In this case, if x and y belong to Γ, the similarity measure is a function
of the Euclidean distance ‖x− y‖:

k(x, y) = η(‖x− y‖) .

To guarantee the positivity of this kernel, η must be chosen as the Fourier transform of a
positive measure (Bochner's theorem). This type of example is investigated in more details
in section 2.3.

Another situation is provided by graph theory. Let the points of Γ be the vertices of
an oriented graph, and let b(x, y) be the associated adjacency matrix, that is, b(x, y) = 1 if
there is an edge going from x to y, and b(x, y) = 0 otherwise. The kernel b de�nes a notion
of neighborhood for each point, and also a non-symmetric distance given by 1 − b(x, y).
Clearly b is not symmetric in general, but we can consider

k1(x, y) =
∫

Γ
b(x, u)b(y, u)dµ(u)

and
k2(x, y) =

∫

Γ
b(u, x)b(u, y)dµ(u) .

The kernel k1(x, y) counts the number of common neighbors to x and y, whereas k2(x, y)
counts the number of points for which x and y are common neighbors, i.e., two kernels are
admissible.

The kernel k can be re-normalized to be stochastic (to have sum 1 along its rows): de�ne

v2(x) =
∫

Γ
k(x, y)dµ(y) .
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This is well-de�ned as k(x, y) ≥ 0. Then clearly ã(x, y) = k(x,y)
v2(x)

has sum 1 along the y

coordinate: ∫

Γ
ã(x, y)dµ(y) = 1 .

Moreover, for all x and y, ã(x, y) ≥ 0. As a consequence, ã can be interpreted as the transi-
tion matrix of a homogeneous Markov process on Γ. This normalization is very commonly
used in spectral graph theory (see [7]) where I − Ã is known as the normalized weighted
graph Laplacian. This procedure shows that to each admissible kernel one can associate a
random walk on Γ. Note that from an analysis perspective, the operator

Ãf(x) =
∫

Γ
ã(x, y)f(y)dµ(y)

corresponding to this kernel is an averaging operator as it �xes constant functions, and it is
also positivity-preserving: if f ≥ 0 then Ãf ≥ 0.

Since we are interested in the spectral properties of this operator, it is preferable to work
with a symmetric conjugate to Ã: we conjugate ã by v in order to obtain a symmetric form
and we consider

a(x, y) =
k(x, y)

v(x)v(y)
= v(x)ã(x, y)

1
v(y)

and
Af(x) =

∫

Γ
a(x, y)f(y)dµ(y) .

The new kernel is therefore conjugate to the stochastic kernel, and shares the same spectrum,
and its eigenfunctions are obtained by conjugation by v. In what follows, we will use A rather
than Ã and we will refer to A as a di�usion operator.

Lemma 2. The di�usion operator A with kernel a

Af(x) =
∫

Γ
a(x, y)f(y)dµ(y)

is bounded from L2(Γ, dµ) into itself. Its norm is

‖A‖ = 1

and is achieved by the eigenfunction v:

Av = v .

Moreover, A is symmetric and positive semi-de�nite.

Proof. Let f ∈ L2(Γ, dµ). We have,

〈Af, f〉 =
∫

Γ

∫

Γ
k(x, y)

f(x)
v(x)

f(y)
v(y)

dµ(x)dµ(y) . (2.1)

If we apply the Cauchy-Schwarz inequality:
∣∣∣∣
∫

Γ
k(x, y)

f(y)
v(y)

dµ(y)
∣∣∣∣ ≤

(∫

Γ
k(x, y)dµ(y)

) 1
2
(∫

Γ
k(x, y)

f(y)2

v(y)2
dµ(y)

) 1
2

≤ v(x)
(∫

Γ
k(x, y)

f(y)2

v(y)2
dµ(y)

) 1
2

.
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Consequently,

〈Af, f〉 ≤
∫

Γ
|f(x)|

(∫

Γ
k(x, y)

f(y)2

v(y)2
dµ(y)

) 1
2

dµ(x) .

Let's apply the Cauchy-Schwarz inequality once again:

〈Af, f〉 ≤ ‖f‖
(∫

Γ

∫

Γ
k(x, y)

f(y)2

v(y)2
dµ(y)dµ(x)

) 1
2

= ‖f‖2 .

where we have used the symmetry of the kernel. The positivity results from equation (2.1)
and the positivity of k. Last, it is immediate that Av = v.

2.2.2 Spectral decomposition of the di�usion kernel
The operator A being bounded and self-adjoint, the spectral theorem applies:

a(x, y) =
∑

j≥0

λjφj(x)φj(y)

where
Aφj(x) = λjφj(x) .

Here we have assumed that A is more than bounded, it is also compact (therefore the spec-
trum is discrete). The eigenvalues λj are non-increasing and non-negative by the positivity
of A. In addition, λ0 = 1 by lemma 2.

Let a(m)(x, y) denote the kernel of Am. Then we have

a(m)(x, y) =
∑

j≥0

λm
j φj(x)φj(y) . (2.2)

There are two possible levels of interpretation for the kernel and its eigenfunctions:

• at the level of the data points, i.e., the elements of Γ, the kernel a(m)(x, y)dµ(y) has a
probabilistic interpretation as (up to a conjugation by v) the probability for a Markov
chain with transition matrix a to reach y from x in m steps. Likewise, eigenfunctions
can be thought of as coordinates on the data; this idea is explored in the next section.

• the dual point of view is that of the functions de�ned on the data. The kernel a(m)

can be viewed as a bump of scale m, and as the value of m increases, the kernel gets
wider on the data points. To relate this scale to the spectrum of Am, we make the
following observation: since 0 ≤ λj ≤ 1, as m increases, only a few terms survive in
sum (2.2), namely those for which λm

j exceeds a certain threshold. This means that
to reconstruct the bump a(m)(x, y) centered at x and of "width" m, a small number
of eigenfunctions are needed, and this number gets smaller as the scale m increases.
This observation, which corresponds to a version of the Heisenberg principle, shows
how the spectral decomposition (2.2) provides a multiscale analysis of the functions
de�ned on the set Γ.

We now make use of the result of lemma 2 to de�ne a mapping of the data into a
Euclidean space and we investigate the �rst point of view presented above.
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Figure 2.2: Typical spectra of A and some of its iterates.

2.2.3 Nonlinear embedding, di�usion metrics and dimensionality reduc-
tion

We introduce the following mapping:

Φ(x) =




φ0(x)
φ1(x)
φ2(x)

...


 .

Φ maps Γ into the Euclidean space l2(N). Therefore, each eigenfunction is interpreted as
a coordinate on the set. This mapping thus takes abstract entities (remember that the
data points need not be points in a vector space) and provides a representation of the data
as points in a Euclidean space. This seems remarkable, but is it really? In fact there
are thousands of ways to achieve this. The relevant question is: what characterizes this
mapping?

To be able to answer this question, we also de�ne the family {Dm}m≥1 of metrics on Γ
as:

D2
m(x, y) = a(m)(x, x) + a(m)(y, y)− 2a(m)(x, y)

which is well-de�ned because a(m) is a positive semi-de�nite kernel and it can be checked
that

D2
m(x, y) =

(
1 −1

)(
a(m)(x, x) a(m)(x, y)
a(m)(x, y) a(m)(y, y)

)(
1
−1

)
. (2.3)

The quantity Dm(x, y) has a set and a functional interpretation. First it can be consid-
ered as a di�usion distance between x and y: it measures the rate of connectivity between
points of the data set. It will be small if there are a lot of paths of length less than or
equal to m between these two points, and it will be large if, on the contrary, the number of
connections is small. Unlike the geodesic distance, the di�usion distance is robust to noise
and topological short-circuits because it is an average over all paths connecting two points,
see Figure 2.3. In this example, the set is composed of points thrown at random on two
disjoint disks. Because of the presence of some noise, there is some leakage between the
two disks. This entails that the geodesic distance from A to B is not much larger than
that between B and C. From the point of view of the di�usion metric, points B and C are
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connected by a lot of paths and therefore are close. On the contrary, because of the presence
of a bottleneck, points A and B are connected by relatively few paths, making these points
very distant from each other. The di�usion distance is therefore able to separate the two
disks.
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Figure 2.3: Unlike the geodesic distance, the di�usion metric Dm is robust to short circuits.
In the example above, points B and C are connected by a lot of paths and therefore are
close in the sense of Dm. On the contrary, because of the presence of a bottleneck, points
A and B are connected by relatively few paths, making these points very distant from each
other.

In addition to being a distance between points of the set, Dm is also a distance between
the bumps mentioned in section 2.2.2. Indeed, D2m(x, y) is the Euclidean distance between
the columns of indices x and y in the matrix a(m). In other words,

D2
2m(x, y) =

∫

Γ
|a(m)(x, z)− a(m)(y, z)|2dµ(z) = ‖a(m)(x, ·)− a(m)(y, ·)‖2 .

A remarkable fact is that this complex quantity can be simply measured in the embedding
space l2(N):
Proposition 3. We have:

D2
m(x, y) =

∑

j≥0

λm
j (φj(x)− φj(y))2 .

In other words, the di�usion metric can be computed as a weighted Euclidean distance in the
embedding space, the weights being λm

0 , λm
1 , ... As a corollary, in l2(N) the di�usion balls are

ellipsoids whose axes are parallel to the coordinate axes, with lengths given by the powers of
the eigenvalues.

By the weighted Euclidean distance with weights (wi) we mean that

‖(ui)− (vi)‖2 =
∑

i

wi(ui − vi)2 .
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Proof. The equality is the mere consequence of identity (2.2).

This proposition gives an answer to the question raised previously: the embedding Φ
provides a representation of the data as points of a Euclidean space in such a way that the
weighted distance in this space is equal to the di�usion distance on the data. Also, this
proposition shows that Dm is a semi-metric in the classical sense (it is symmetric, non-
negative and veri�es the triangular inequality). Moreover, identity (2.3) shows that when
the kernel is strictly de�nite positive, then Dm is a metric, i.e., Dm(x, y) = 0 ⇒ x = y.

A corollary of this result is that the embedding generated by the eigenfunctions allows
a dimensionality reduction of the data. Indeed, for a given accuracy δ, we retain only the
eigenvalues λ0, ..., λp−1 that, when raised to the power m, exceed a certain threshold (related
to δ), and we use the corresponding eigenfunctions φ0, ..., φp−1 to embed the data points
into Rp. The property of this embedding Φp is that the Euclidean distance weighted by
λm

0 , ...λm
p−1 gives the di�usion distance Dm at time m with accuracy δ. As a consequence,

the maps Φ and Φp will be referred to as di�usion maps.
In short: the jumps of the spectrum (spectral gaps) specify the dimension reduction given

some accuracy, and the eigenfunctions provide coordinates to implement this reduction. Note
that the dimension of the embedding is not necessarily equal to the dimensionality d of the
set. Indeed, the dimension of the new representation depends on the di�usion process on
the data, and although it is related to d, it is in general greater than this number.

2.3 The case of submanifolds of Rn

We now investigate in further details the case when Γ is a compact di�erentiable submanifold
of Rn. This means that Γ is a Riemannian manifold whose Riemannian metric is given by
the Euclidean distance of the ambient vector space Rn.

2.3.1 Framework
We emphasize the fact that the case of Γ being a submanifold is of great practical importance
as in many applications, each point of the data set is a collection of numerical measurements.
In image processing for instance, an image is a collection of pixels, or each pixel is mapped to
its 3× 3 neighborhood. In hyperspectral imaging, each point is a sequence of measurements
of transmittance at di�erent wavelengths. Another example of interest is that of a system
of N particles, where each point is the measurement of 3N position coordinates and 3N
velocity coordinates. These three examples justify the importance of Γ being a subset of
Rn. Very often, the data points are locally related by a set of equations that arise from
the phenomenon at the origin of the data, and in this case the submanifold model makes
sense. In the example of the N particles, the data points are related by the equations arising
from the physical laws governing the evolution of the system. For more discussion on the
relevance of the submanifold model, see [3] for the general setting, and [17] for the example of
computer vision and edge modeling. Furthermore, in a large variety of data, the dimension
of the submanifold is much smaller than that of the ambient space. In other words, although
the representation of the data points is highly multivariate, the local variability is controlled
by a small number of parameters.

As for the notations, let Γ be a C∞ submanifold of dimension d in Rn, d < n, and µ
be a measure on Γ. The metric on Γ is that induced by that of the ambient space Rn. We
shall assume that µ has a density with respect to the Riemannian measure dx on Γ (i.e.,
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dµ(x) = p(x)dx). This density p(x) can be thought of the density of the sample points in our
data set, thus it does not have to be uniform. From a practical point of view, the following
study makes sense if the number of points is su�ciently high, so that discrete sums over the
data set can approximate integrals against dµ = p(x)dx.

The Laplace-Beltrami operator on Γ has a simple expression in normal coordinates. We
remind the reader that by choosing an orthonormal basis e1, ..., ed of the tangent plane Tx to
Γ at x, one de�nes coordinates on Tx. The image of these coordinates by the exponential map
expx forms a chart around x on Γ, and the corresponding system is called normal coordinates.
Normal coordinates are thus merely a local system of coordinates along orthogonal geodesics.
From now on, let (s1, s2, ..., sd) denote these coordinates.

If f ∈ C∞(Γ), then the Laplace-Beltrami operator acts on f as:

∆f = −
d∑

j=1

∂2f

∂s2
j

.

From now on, we make the fundamental assumption that the only objects that are ob-
servable are de�ned in terms of the geometry of the ambient space Rn(the so-called extrinsic
geometry) and the distribution dµ = p(x)dx of the points. The idea here is that in practical
situations, the sole quantities that we observe from an experiment or a series of measure-
ments are the multidimensional description of the data and their statistical distribution.
For instance, we have access to the Euclidean distance between two points, or it makes
sense to compute integrals against dµ (it is a mere summation over the data points), but
we do not have the knowledge of the geodesic distances on Γ. Likewise, the action of the
Laplace-Beltrami operator cannot be observed as it is an object of the intrinsic geometry of
Γ. Our goal is to show that by using the geometry of the ambient space, we can approximate
di�usion-related objects (di�usion kernel, in�nitesimal generator) whose de�nitions rely on
the intrinsic geometry only.

We restrict our attention to rotation invariant kernels, i.e., of the form

k(x, y) = h(‖x− y‖2) .

As already mentioned, Bochner's theorem implies that u 7→ h(u2) must be chosen as the
Fourier transform of a �nite positive measure (a popular choice consists in taking k(x, y) =
e−‖x−y‖2). This kind of kernel is calculated from the Euclidean distance between the points,
which is known to us. We also introduce a scale parameter: let ε be a positive number, the
scale will be represented by √ε. In other words, we consider the following family of kernels
indexed by ε:

kε(x, y) = h

(‖x− y‖2

ε

)
.

To simplify the proofs, we assume that h has an exponential decay at in�nity and that it is
in�nitely di�erentiable. The role played by ε is now clear: this parameter speci�es the size
of the neighborhoods de�ning the local geometry of the data. Asymptotically, as ε → 0,
this geometry will coincide with that of the manifold.

In the following, we investigate the asymptotic properties, as ε → 0, of kernels obtained
by normalizing kε in various ways. More precisely, we study the asymptotic in�nitesimal
generator resulting from the graph Laplacian normalization and show that in general, as
dµ is not a multiple of the Riemannian measure on Γ (i.e., the density of the points is
not uniform on the manifold), this generator is not the Laplace-Beltrami operator. Indeed,
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in [3], Belkin shows that the weighted graph Laplacian on points uniformly sampled on a
manifold allows to reconstruct the Laplace-Beltrami operator, but as we show, it fails when
the density is non-uniform. We then describe a simple modi�cation of this normalization
that handles the case of non-uniform density. In other words, we are able to separate the
distribution of the points from the intrinsic geometry of Γ.

In the next section, we establish an asymptotic expansion for the following operator:

Gεf(x) =
1

ε
d
2

∫

Γ
kε(x, y)f(y)dy

2.3.2 Technical results
This section is dedicated to the proof of Proposition 7 that will be used in the next section
to show how the heat kernel on Γ can be approximated via averaging kernels. The result of
Proposition 7 is a Taylor expansion of Gε in terms of powers of ε

1
2 . The calculations carried

out in this section are similar to those that can be found in [3] or in [31].
For y ∈ Γ, we consider the orthogonal projection u of y on Tx. Let (u1, ..., ud) be the

coordinates of u in e1, ..., ed and let (s1, ..., sd) be the normal coordinates of y. Let γ1, ..., γd

denote the coordinate geodesics on Γ. Without loss of generality we can assume that the
origin 0 belongs to Γ and we choose x = 0.

The idea here is to express all quantities as functions of the variable u on the (�at)
tangent plane T0. All we have to do is thus a change of variable in the integral de�ning our
operators. To understand the geometric con�guration, it is useful to refer to Figure 2.4.

In the �rst lemma we show a basic result of di�erential geometry, namely we give the
asymptotic form of the Jacobian matrix of the change of variable (u1, ..., ud) 7→ (s1, ..., sd) =
y:
Lemma 4. Let y ∈ Γ be in a Euclidean ball of radius C

√
ε centered at 0 (C is a positive

constant). Then if i 6= j
∂si

∂uj
= O(ε

3
2 )

and
∂si

∂ui
= 1 + 2a2

i u
2
i +O(ε

3
2 )

where ai is the curvature of the geodesic γi at 0.
Proof. Let γ be the geodesic between x and y. Since the covariant derivative of the speed
vector along γ is zero (by de�nition of a geodesic), the osculatory plane of γ at 0 is orthog-
onal to T0. As a consequence, the deviation of γ from this plane is of order ε

3
2 = (

√
ε)3.

Consequently, a small variation duj of uj entails a variation of order ε
3
2 of si. This proves

the �rst equality.
In the osculatory plane, the curve is locally a parabola, and therefore up to the deviation

from the plane and terms in ε
3
2 , we have

si =
∫ ui

0

√
1 + 4a2

i v
2dv +O(ε

3
2 )

where the O can be di�erentiated (the geodesic being C∞). Eventually, we conclude that
∂si

∂ui
= 1 + 2a2

i u
2
i +O(ε

3
2 ) .
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Figure 2.4: Geometric con�guration. All terms of order ε
3
2 (including the deviation from

the osculatory planes) have not been represented.

Corollary 1. We have

det(
dy

du
) = 1 + 2

d∑

i=1

a2
i u

2
i +O(ε

3
2 ) .

The next lemma gives the Taylor expansion of the Euclidean and geodesic distance in
the variable u:

Lemma 5. We have:

‖y(u)‖2 = ‖u‖2 +

(
d∑

i=1

aiu
2
i

)2

+O(ε
5
2 )

and
si = ui +O(ε

3
2 ) .

Proof. The �rst equality is easy to derive from the de�nition of u and the parabola shape
of the γi's. The second identity follows from elementary computations: we have seen that

si =
∫ ui

0

√
1 + 4a2

i v
2dv +O(ε

3
2 )

and a Taylor expansion gives the result.

In the neighborhood of x = 0, the Taylor expansion of f is given by

f(y) = f(0) +
d∑

i=1

si
∂f

∂si
(0) +

1
2

d∑

i=1

d∑

j=1

sisj
∂2f

∂si∂sj
(0) +O(ε

3
2 ) .

Using the previous lemma we arrive at

Lemma 6.

f(y) = f(0) +
d∑

i=1

ui
∂f

∂si
(0) +

1
2

d∑

i=1

d∑

j=1

uiuj
∂2f

∂si∂sj
(0) +O(ε

3
2 ) .
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We now have all the necessary tools to prove the following proposition
Proposition 7. If x ∈ Γ\∂Γ,

Gεf(x) = m0f(x) + ε
m2

2
(E(x)f(x)−∆f(x)) +O(ε

3
2 )

where
m0 =

∫

Rd

h(‖u‖)du

m2 =
∫

Rd

u2
i h(‖u‖)du

and

E(x) =
d∑

i=1

ai(x)2 −
d∑

i=1

∑

j 6=i

ai(x)aj(x) .

Therefore if the density of points is uniform on Γ, the operator Gε de�nes an in�nitesimal
generator of the form Laplace operator + potential, and that this potential is zero when
the manifold is a vector subspace of Rn (in which case the lemma is trivial). Moreover, this
proposition shows that the operator Gε is diagonal up to order ε. We will use this fact in the
next section to approximate a particular diagonal operator, namely the Laplace-Beltrami
operator. Last, we see that this in�nitesimal operator combines information from intrinsic
geometry (the Laplace-Beltrami operator) and extrinsic geometry (the curvature potential).
Getting rid of the extrinsic information via di�erent normalizations will be one of the goals
of the next section.

Proof. The �rst observation is that due to the exponential decay of h, the domain of inte-
gration can be restricted to the intersection of a Euclidean ball of radius C

√
ε with Γ. Since

x /∈ ∂Γ, and because of lemma 5, the domain of integration can be taken to be the ball
‖u‖ < C

√
ε. Thus, up to exponentially small terms,

∫

Γ
h

(‖y‖2

ε

)
f(y)dy '

∫

‖y‖<Cε
h

(‖y‖2

ε

)
f(y)dy .

Using lemma 5, we Taylor expand the kernel at ‖u‖2
ε with respect to the increment

1
ε

(∑d
i=1 aiu

2
i

)2

h

(‖y‖2

ε

)
= h

(‖u‖2

ε

)
+

1
ε

(
d∑

i=1

aiu
2
i

)2

h′
(‖u‖2

ε

)
+O(ε

3
2 ) .

We now invoke corollary 1 and lemmas 5 and 6 to change the variable in the integral de�ning
Gεf(x). We obtain:

ε
d
2 Gεf(0) =

∫

‖u‖<C
√

ε


h

(‖u‖2

ε

)
+

1
ε

(
d∑

i=1

aiu
2
i

)2

h′
(‖u‖2

ε

)


×

f(0) +

d∑

i=1

ui
∂f

∂si
(0) +

1
2

d∑

i=1

d∑

j=1

uiuj
∂2f

∂si∂sj
(0)




×
(

1 + 2
d∑

i=1

a2
i u

2
i

)
du +O(ε

3
2 ) .
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The symmetry of kε allows to simplify the expression of the leading orders:

• all terms of the kind of ui
∂f
∂si

(x) can be ignored as they are odd and when integrated
against even functions they will vanish

• for the same reason, terms like uiuj
∂2f

∂si∂sj
(x) can be ignored when i 6= j.

We obtain:

ε
d
2 Gεf(0) = f(0)

∫

Rd

h

(‖u‖2

ε

)
du− 1

2
∆f(0)

∫

Rd

h

(‖u‖2

ε

)
u2

1du

+ 2f(0)
d∑

i=1

a2
i

∫

Rd

h

(‖u‖2

ε

)
u2

1du

+
1
ε
f(0)

d∑

i=1

d∑

j=1

aiaj

∫

Rd

h′
(‖u‖2

ε

)
u2

i u
2
jdu +O(ε

3
2 ) .

where the domain of integration was extended to Rd (exponential decay of h).

Gεf(0) = m0f(0)− ε
m2

2
∆f(0) + 2εm2f(0)

d∑

i=1

a2
i

+ εf(0)
d∑

i=1

d∑

j=1

aiajmij +O(ε
3
2 )

with
mij =

∫

Rd

u2
i u

2
jh
′ (‖u‖2

)
du .

Now integrations by parts show that mii = −3
2m2 and if i 6= j, mij = −1

2m2. The proposi-
tion results from these identities.

2.3.3 Asymptotics for the weighted graph Laplacian
We now use the result of Proposition 7 to study asymptotics for the weighted graph Laplacian
normalization of the kernel kε. In particular, we give the explicit form of the in�nitesimal
generator, and we show that, in general, it does not coincide with the Laplace-Beltrami
operator on the submanifold. The result presented here is a generalization of that of Belkin
[3] to non-uniform densities. In particular, we show that the weighted graph Laplacian fails
at approximating the Laplace-Beltrami operator in the case of non-uniform densities.

We remind the reader that p(y) is the density function of the measure µ on Γ, i.e,
dµ = p(y)dy. Let

v2
ε(x) =

∫

Γ
kε(x, y)p(y)dy ,

and de�ne the averaging operator

Aεf(x) =
1

v2
ε(x)

∫

Γ
kε(x, y)f(y)p(y)dy .

This construction corresponds to viewing the set Γ as a weighted graph with weights of the
kε(x, y) and use the graph Laplacian normalization to de�ne Aε (see section 2.2.1). Note
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that the de�nition of these objects only involves observable quantities. Moreover, aε(x, y)
can be put in a symmetric form by considering

ãε(x, y) = vε(x)aε(x, y)
1

vε(y)
.

We de�ne the graph Laplacian operator as

∆ε =
I −Aε

ε
.

For K > 0, let EK be the space of all functions f ∈ C∞(Γ) such that

• for all multi-index α = (α1, ..., αd),
∥∥∥∥
∂α1+...+αdf

∂sα1
1 ...∂sαd

d

∥∥∥∥
2

≤ Kα1+...+αd‖f‖2

• f veri�es the Neumann boundary condition: for all x ∈ ∂Γ,

∂f

∂ν
(x) = 0

where ν is any tangent vector at x that is normal to ∂Γ.

Let's explain these two conditions. First, note that for a given K > 0, all the estimates
given in the previous section are uniform on EK , that is to say the constants of the O's are
the same for all elements in a ball of EK . The second condition happens to be the only
boundary condition that allows to de�ne a limit operator to ∆ε. Another useful property of
this space is ⋃

K>0

EK = L2(Γ) .

Proposition 8. For f ∈ EK and x ∈ Γ\∂Γ then

Aεf(x) = f(x) + ε
m2

2m0

(
∆p(x)
p(x)

f(x)− ∆(pf)(x)
p(x)

)
+O(ε

3
2 ) .

Proof. The idea is to make use of Proposition 7 to obtain asymptotic expansions. We invoke
this result to obtain that

∫

Γ
kε(x, y)f(y)p(y)dy = ε

d
2

(
m0f(x)p(x) + ε

m2

2
(E(x)f(x)p(x)−∆(fp)(x)) +O(ε

3
2 )

)
.

Now plugging-in f = 1 yields

v2
ε(x) = ε

d
2

(
m0p(x) + ε

m2

2
(E(x)p(x)−∆p(x)) +O(ε

3
2 )

)
.

Taking the ratio gives:

Aεf(x) = f(x) + ε
m2

2m0

(
∆p(x)
p(x)

f(x)− ∆(pf)(x)
p(x)

)
+O(ε

3
2 ) .
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Corollary 2. On the space EK , we have

lim
ε→0

∆ε = H

where
Hf =

m2

2m0

(
∆(pf)

p
− ∆p

p
f

)
=

m2

2m0

(
∆f + 2

〈∇p

p
,∇f

〉)
.

Under a conjugation by the density, this operator has the form "Laplacian+potential":

pH(
g

p
) =

m2

2m0

(
∆g − ∆p

p
g

)

where g = pf .

Proof. We have to consider two distinct cases, depending on whether x is or is not close to
the boundary :

• it can be checked from the proof of Proposition 7 and the �rst condition imposed on
functions of EK that the result of the previous proposition holds uniformly for all
x ∈ Γ at distance from the boundary ∂Γ at least equal to C

√
ε

• if, on the contrary, x is within distance C
√

ε from the boundary, then this is where
the Neumann condition comes into play:

Aεf(x) =
∫

Γ
aε(x, y)(f(y)− f(x))dy + f(x)

since we have an averaging operator, and if d(., .) is the geodesic distance then

d(y, x) = O(
√

ε)

and the Neumann boundary condition implies that

sup
d(z,x)<C

√
ε

‖∇f(z)‖ = O(
√

ε) .

We deduce from the mean value theorem that

|f(y)− f(x)| = O(ε) .

Here the constants in the O's do not depend on the point x as Γ is compact. We arrive
at

Aεf(x)− f(x) = O(ε)

if x is at distance less than C
√

ε from the boundary.

Combining these two points with the fact that µ(∂Γ) = 0, one can easily conclude that:

Aε = I − εH +O(ε
3
2 )

on EK .
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This result proves that when the density is uniform then the limit operator H is equal
to a multiple of the Laplace-Beltrami operator on Γ, which was already known (see [3]).
From the proof, we see that the normalization allows to get rid of the curvature potential
term E(x), but at the price of the introduction of a damping term when the density is not
constant. Since

Hf =
m2

2m0

(
∆f + 2

〈∇p

p
,∇f

〉)

we see that the damping coe�cient is proportional to the relative rate of change of the den-
sity. By conjugation with the density, we obtain that H has the form "Laplacian+potential":

pH(
g

p
) = ∆g − g

∆p

p

where g = fp.
Since in most applications, the density is non-uniform, the weighted graph Laplacian

method is clearly inappropriate1 if the goal is to recover the intrinsic geometry of the man-
ifold. We now modify this procedure to handle general densities.

2.3.4 Heat kernel approximation
In the construction of di�usion operators explained in sections 2.2.1 and 2.3.3, the informa-
tion of the local geometry speci�ed by the kernel kε and the distribution of the points on
in Γ, given by dµ = p(x)dx, are combined. On the contrary, the Laplace-Beltrami operator
is solely de�ned through the geometry. Therefore, instead of applying the normalization
procedure to the kernel kε(x, y), we could rather use the kernel

kε(x, y)
p(x)p(y)

in order to separate the geometry of Γ from the distribution of the points. In practise,
this assumes that p is known, which is often not the case. However, the density can be
approximated (up to a multiplication factor) by convolving the kernel with the measure on
the set

pε(x) =
∫

Γ
kε(x, y)p(y)dy .

We can now replace kε by the kernel

k̃ε(x, y) =
kε(x, y)

pε(x)pε(y)
(2.4)

and proceed as in sections 2.2.1 and 2.3.3 by de�ning

v2
ε(x) =

∫

Γ
k̃ε(x, y)p(y)dy

and forming the averaging operator Aε de�ned on L2(Γ) by

Aεf(x) =
1

v2
ε(x)

∫

Γ
k̃ε(x, y)f(y)p(y)dy .

1In some situations, it might be desirable to take the distribution of the points into account. Indeed, from
a statistical point of view, the information brought by clusters of data points with high density of sample
points is more reliable.
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Let aε(x, y) be its kernel, and let a
(m)
ε (x, y) be the kernel of Am

ε . Note that, again, all the
quantities involved are observable in the sense given in 2.3.1.

This two step procedure to obtain a di�usion kernel is therefore di�erent from the con-
struction of the graph Laplacian because of the �rst step that aims at separating the dis-
tribution of the data points from the geometry of the underlying manifold. Remark also
that dividing by pε(x) in equation (2.4) has no e�ect in the sense that this factor disappears
when one later divides by v2

ε(x), however, it has the advantage that the new weight k̃(x, y) is
symmetric and that consequently, this approach can be cast in the form of a graph Laplacian
construction, except that one operates on a modi�ed graph.

Again, we introduce a Laplace operator on Γ by

∆ε =
I −Aε

ε

acting on the space EK , where K is a �xed number.
In this section we prove that the operator ∆ε tends (when acting on EK) to ∆0, a

multiple of the Laplace-Beltrami operator as ε → 0. We also show that

A
t
ε
ε = (I − ε∆ε)

t
ε ' (I − ε∆0)

t
ε → e−t∆0 .

Thus, although the family {Aε}ε>0 does not form a di�usion semigroup, it allows to approx-
imate the heat semigroup of operators {e−t∆}t>0.

Proposition 9. For f ∈ EK and x ∈ Γ\∂Γ then

Aεf(x) = f(x)− ε
m2

2m0
∆f(x) +O(ε

3
2 ) .

Proof. The approximation of p(x) is de�ned as

pε(x) =
∫

Γ
h

(‖x− y‖2

ε

)
p(y)dy

and by Proposition 7,

pε(x) = ε
d
2 m0p(x)

(
1 + ε

m2

2m0

(
E(x)− ∆p(x)

p(x)

)
+O(ε

3
2 )

)
.

Consequently, if
G̃εf(x) =

∫

Γ
k̃ε(x, y)f(y)p(y)dy ,

then

G̃εf(x) =
ε−

d
2

pε(x)

∫

Γ
kε(x, y)

f(y)
m0

(
1− ε

m2

2m0

(
E(y)− ∆p(y)

p(y)

)
+O(ε

3
2 )

)
dy

=
1

pε(x)

(
f(x) + ε

m2

2m0

(
∆p(x)
p(x)

f(x)−∆f(x)
)

+O(ε
3
2 )

)

where we have applied the result of proposition 7. If we plug f = 1 in the last equality, we
obtain

v2
ε(x) =

1
p(x)

(
1 + ε

m2

2m0

∆p(x)
p(x)

+O(ε
3
2 )

)

and taking the ratio of G̃εf(x) over v2
ε(x) yields the result.
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Just like for the graph Laplacian, the operator Aε can be put in a symmetric form by
considering the symmetric kernel

ãε(x, y) =
k̃(x, y)

vε(x)vε(y)
.

Then, it can be checked that

aε(x, y) = vε(x)ãε(x, y)
1

vε(y)
.

From the previous proposition, we deduce an immediate consequence:

Corollary 3. On EK ,
lim
ε→0

∆ε = ∆0

where ∆0 = 2m0
m2

∆.

Proof. The proof is identical to that of corollary 2, when H is replaced by ∆0.

We can now prove a result on approximations of the heat kernel:

Proposition 10. For any t ∈ R, then on L2(Γ):

lim
ε→0

A
− t

ε
ε = e−t∆0

where e−t∆ is the Neumann heat operator. In other words, the Neumann heat kernel pt(x, y)

on Γ can be approximated by a
( t

ε)
ε (x, y).

This result shows that the di�usion of heat on a submanifold can be e�ciently computed
by properly normalizing a �ne Gaussian on the data.

Proof. The idea of the proof is to exploit the fact that the short time heat kernel (for t = ε)
on Γ is close to a Gaussian and can therefore be approximated by any bump. Then we use
the semi-group property to extend this approximation to large times (t = ε + ε + ... + ε).

To simplify we assume that t = 1. Observe that it su�ces to prove the result on EK as:

• ⋃

K>0

EK = L2(Γ)

• (Aε)ε>0 is uniformly bounded in operator norm by 1 (see lemma 2) on L2(Γ)

Consequently, we �x the value of K and we prove the proposition on EK . In corollary 3, we
showed that

Aε = I − ε∆0 + ε
3
2 R(0)

ε

where R
(0)
ε is bounded on EK .

If 2l = 1
ε , then we need to square Aε, l times. To do so, we prove by induction that if l

is su�ciently large, then if 1 ≤ m ≤ l,

A2m

ε = (I − ε∆0)2
m

+ ε
3
2 R(m)

ε (2.5)
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with
‖R(m)

ε ‖ ≤ 2m+1‖R(0)
ε ‖ .

Indeed,

A2
ε = (I − ε∆ε)2

= (I − ε∆0 + ε
3
2 R(0)

ε )2

= (I − ε∆0)2 + ε
3
2 ((I − ε∆0)R(0)

ε + R(0)
ε (I − ε∆0) + ε

3
2 R(0)2

ε )

= (I − ε∆0)2 + ε
3
2 R(1)

ε .

Now observe that by the positivity of ∆0, if ε is su�ciently small, ‖I − ε∆0‖ ≤ 1 and
therefore

‖R(1)
ε ‖ ≤ 2‖R(0)

ε ‖+ ε
3
2 ‖R(0)

ε ‖2 .

Now if
A2m

ε = (I − ε∆0)2
m

+ ε
3
2 R(m)

ε ,

then

A2m+1

ε = (I − ε∆0)2
m+1

+ ε
3
2

(
(I − ε∆0)2

m
R(m)

ε + R(m)
ε (I − ε∆0)2

m
+ ε

3
2 R(m)2

ε

)

and the same argument shows that if ε is small enough (independently of m), then

‖R(m+1)
ε ‖ ≤ 2‖R(m)

ε ‖+ ε
3
2 ‖R(m)

ε ‖2 .

Let um = 2−m‖R(m)
ε ‖, then

um+1 ≤ um + 2m−1− 3
2
lu2

m .

Suppose that for all m ≤ m0 ≤ l, um ≤ 2u0, then by summing the previous inequality, one
obtains

um0 ≤ u0 + 2−1− 3
2
l4u2

0

m0−1∑

j=0

2j

≤ u0 + 21− 1
2
l2m0−lu2

0

≤ u0 + 21− 1
2
lu2

0

≤ 2u0

if l is su�ciently large (independently of m0). We have proved that um ≤ 2u0 for all m ≤ l,
and equivalently,

‖R(m)
ε ‖ ≤ 2m+1‖R(0)

ε ‖
for ε su�ciently small. Noting that ‖R(0)

ε ‖ remains bounded as ε → 0, and taking m = l in
equation (2.5) yields:

A
1
ε
ε = (I − ε∆0)

1
ε + 2ε

1
2 R(0)

ε → e−∆0 .

The previous proposition shows how to approximate the Neumann heat kernel using
�ne scale kernels. Since we are interested in using the eigenfunctions and the spectrum of
the heat kernel for dimension reduction, we need to know whether the eigenfunctions and
eigenvalues of A

t
ε
ε converge to those of the heat operator. This is indeed the case:
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Proposition 11. The averaging operator Aε is compact, and one can write

A
t
ε
ε =

∑

j≥0

λ
t
ε
ε,jPε,j

where Pε,j is the orthogonal projector on the eigenspace corresponding to λε,j. Furthermore,
if the spectral decomposition of the Neumann heat operator is

e−t∆0 =
∑

j≥0

e−tν2
j Pj

where Pj is the orthogonal projector on the eigenspace corresponding to the eigenvalue ν2
j of

∆, then we have:
lim
ε→0

λ
t
ε
ε,j = e−tν2

j

and
lim
ε→0

Pε,j = Pj .

Proof. It is known that the Neumann heat operator e−t∆0 is compact since Γ is a compact
manifold (for instance, see a proof in [23]). The same proof can be applied to show the
compactness of Aε. Indeed, the kernel aε is C∞, and therefore so is Aεf for f ∈ L2(Γ, dx).
Consequently, Γ being compact, Aεf belongs to all Sobolev spaces Hs(Γ, dx) for s ≥ 0.
In fact, the derivatives of the kernel being bounded, it follows that Aε is bounded from
L2(Γ, dx) into Hs(Γ, dx). Since the injection of Hs(Γ, dx) into L2(Γ, dx) is compact when
s > 0, we conclude that Aε is a compact operator from L2(Γ) into itself.

A straightforward application of the spectral theorem yields

A
t
ε
ε =

∑

j≥0

λ
t
ε
ε,jP

j
ε .

Since the heat kernel is compact,

e−t∆0 =
∑

j≥0

e−tν2
j Pj .

Now to prove the convergence claims, we refer to classical theorems of spectral pertur-
bation theory. For instance Weyl's theorem asserts that

sup
j≥0

|λ
t
ε
ε,j − e−tν2

j | ≤ ‖A
t
ε
ε − e−t∆0‖ .

A detailed exposition of the main results concerning the perturbation of the singular value
decomposition is given in [32].

2.3.5 Intrinsic multiscale analysis
Classically, the eigenfunctions of the Laplace-Beltrami operator are viewed as forming a
Hilbert basis of L2(Γ), and combining this point of view with simple observations allows us
to de�ne an intrinsic multiscale analysis of functions de�ned on Γ.

The spectral decomposition of the heat kernel is given by

pt(x, y) =
∑

j≥0

e−tν2
j φj(x)φj(y) .
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Since ∆ is positive, we have ν2
j ≥ 0 and in the sum above, the eigenfunctions needed to

reconstruct the kernel at time t correspond to the eigenvalues e−tν2
j that are numerically

signi�cant. The kernel pt(x, y), as a function of y, is a bump at the scale
√

t and centered
at x. When t is small, it is close to a very �ne Gaussian, and as t increases, the kernel gets
coarser and coarser. Thus, in addition to its interpretation as the time, the parameter t also
represents a scale, and linear combinations of these bumps at di�erent locations on Γ can
be synthesized with only a few eigenfunctions to a good accuracy.

Let δ > 0 be a given accuracy, and let Pt be the orthogonal projector de�ned by

Ptf(x) =
∑

e
−tν2

j >δ

〈φj , f〉φj(x) .

The sequence {ν2
j } having no accumulation point but +∞, when the value of t is doubled,

then the number of eigenfunctions de�ning the projector is roughly divided by 2, whereas the
size of the numerical support of pt(x, y) is approximately doubled. Likewise, the numerical
rank of the projector is divided by 2. These observations allow to use the projectors Pt to
de�ne a multiresolution analysis of functions of L2(Γ) corresponding to the identity:

Id =
∑

k∈Z
(P2kt − P2k+1t)

and this analysis is only based upon the intrinsic geometry of Γ. In fact, the eigenfunctions
{φj} constitute the generalization of the Fourier basis to submanifolds, and to each of them
is associated a frequency content. Therefore, through these functions it is possible to de�ne
a notion of intrinsic frequency and Fourier analysis. The interplay between intrinsic and
extrinsic analysis is investigated in the next chapter.

2.3.6 Low-dimensional embedding
So far, we have presented a method for computing the eigenfunctions of the Laplace-Beltrami
operator on a submanifold Γ, and we have given these functions the usual interpretation of a
Hilbert basis. We now give another point of view on the eigenfunctions, namely we consider
the functions as forming a set of coordinates on the submanifold Γ. In addition, we explain
how they can be employed for dimensionality reduction.

The spectral decomposition of the Neumann heat kernel on Γ

pt(x, y) =
∑

j≥0

e−tν2
j φj(x)φj(y)

allows us to de�ne the distance Dt by

D2
t (x, y) =

∑

j≥0

e−tν2
j (φj(x)− φj(y))2

which becomes small if the amount of heat that has been di�used from x to y at time
t is important. Therefore it measures the proximity of points in terms of heat di�usion
assuming the manifold Γ is heat-insulated (since the eigenfunctions verify the Neumann
boundary condition). As previously noticed, this quantity is also equal to the L2 distance
between the bumps pt(x, ·) and pt(y, ·):

D2
t (x, y) = ‖pt(x, ·)− pt(y, ·)‖2 .
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Note that since h is di�erentiable, for small values of t one has

Dt(x, y) ³ ‖x− y‖√
t + ‖x− y‖ .

Indeed, a Taylor expansion of the approximation kernel gives pt(x, y) ³ ‖x − y‖2 when
y → x, and D2

t (x, y) = pt(x, x) + pt(y, y) − 2pt(x, y) ³ ‖x − y‖2. On the other hand, if
‖x − y‖ > C

√
t, then the di�usion distance is bounded. All constants here depend on the

geometry of Γ.
A simple procedure of dimension reduction works as follows: for a given numerical

accuracy δ, and a �xed value of t, the dimension m of the embedding should be chosen such
that ∣∣∣∣∣∣

pt(x, y)−
∑

0≤j≤m

e−tν2
j φj(x)φj(y)

∣∣∣∣∣∣
≤ δ .

We deduce that, just like in Proposition 3, the heat di�usion metric can be e�ciently
approximated via di�usion maps of the following form:

Φm(x) =




φ1(x)
φ2(x)

...
φm(x)


 .

The eigenfunction φ0 is being omitted because it is a constant function if Γ is connected.
Therefore, the dimension m of the embedding is such that the di�usion distance can be
calculated using a weighted Euclidean metric in this space (in particular, m is greater than
or equal to the dimension d of the submanifold). In other words, the description of the
data provided by the embedding Φm is subject to a global constraint: it approximates the
di�usion distance on Γ. But of course, other types of constraints can be imposed on the
embedding. In particular, the number m of coordinates can be further reduced if we drop
that particular global constraint. For instance, in some situations it might be useful to
obtain a piecewise bi-Lipschitz mapping of the data, and possibly with small distortion.
Given the importance of the subject (see [18] and [20]), we study this kind of embedding
in the next chapter where it can be treated from the more general point of view of positive
semi-de�nite kernels.

2.4 Numerical experiments
In this section, we illustrate the ideas developed so far by numerical examples: we generate
sets Γ that are either submanifolds of Rn or graphs, and we compute the eigenfunctions
and eigenvalues of the heat operator using the procedure explained in the previous section.
Then we plot the embedding that is obtained from these eigenfunctions. In some cases, we
also have compared this embedding with that obtained using the classical weighted graph
Laplacian.

These simple experiments underline three advantages in using this method for analyzing
the geometry of sets:

• in the simulations, the points of Γ were unordered, and yet they are embedded as a
circle, where they are easily reorganized. The eigenfunctions allow to recover the arc
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length parametrization of the curve. Although this is not so impressive for curves,
things are getting very interesting for submanifolds of higher dimension where the
points are naturally reorganized according to the heat �ow.

• the technique is completely insensitive to the dimension of the ambient space since the
rotation invariant kernels are function of the mutual distances between the points of
Γ

• the entire method is fairly robust to noise, as shown in Section 2.4.3.
Concerning the implementation, the heat kernel is approximated using a �ne scale Gaus-

sian kernel appropriately normalized as an averaging operator (as explained in Section 2.3.4).
Since we are not dealing with continuous data but with �nitely many points, all integrals
against the empirical measure p(x)dx of the data are computed as discrete sums, i.e.,

pε(x) =
∑

y

kε(x, y)

and
Aεf(x) =

∑
y

aε(x, y)f(y)

where a(x, y) is obtained from k(x, y) by applying the proper normalization, as described in
Section 2.3.4. These summations come down to approximating integrals using the rectangle
rule of integration, which does not require to know any kind of ordering of the points. From
now on, we choose to use the Gaussian kernel

kε(x, y) = e
‖x−y‖2

ε

In matrix notations, the graph Laplacian can be computed as follows:

Weighted graph Laplacian

1. Form the matrix K1 with entries exp(−‖xi−xj‖2
ε )

2. Set v = sqrt(K1 ∗ 1) where 1 = (1 1 ... 1)′

3. De�ne K = K1./(v ∗ v′)

4. Diagonalize K by [U,S,V] = svd(K)

5. The spectrum of the graph Laplacian is that of K whereas its
eigenvectors are given by U(:, i)./U(:, 1)

We used the Matlab notations where ./ and sqrt are pointwise operations. The choice
of the scaling parameter ε is also a matter of concern and we choose ε to be of the order of
the average smallest non-zero value of ‖xi − xj‖2, that is to say, we set

ε =
1
N

N∑

i=1

min
j: xj 6=xi

‖xi − xj‖2

The approximation of the eigenfunctions and eigenvalues of the Laplace-Beltrami oper-
ator (see Section 2.3.4) are obtained from the diagonalization of the matrix K constructed
as follows:
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Approximate Laplace-Beltrami

1. Form the matrix K1 with entries exp(−‖xi−xj‖2
ε )

2. Set p = K1 ∗ 1 where 1 = (1 1 ... 1)′

3. De�ne K2 = K1./(p ∗ p′)
4. Set v = sqrt(K2 ∗ 1)

5. De�ne K = K2./(v ∗ v′)

6. Diagonalize K by [U,S,V] = svd(K)

7. The eigenvalues of ∆ are approximated by those of K, and its
eigenfunctions φi are approximated by U(:, i)./U(:, 1)

2.4.1 Curves
Closed curves
We �rst discuss the case of closed curves in Rn. We assume that Γ is a C∞ simple curve
(it has no double points) of length 1. Since Γ has no boundary, the Neumann heat kernel is
merely the heat kernel.

This case is degenerate as from the heat di�usion point of view, all such curves are the
same: the amount of heat that has propagated from x to y at a given time t only depends
on the initial distribution of temperature and the length of the curve between x and y.
Equivalently, every curve is isometric to a circle and the heat kernel is a function of the
geodesic distance. As a consequence, all closed simple curves can be identi�ed to a circle of
the same length, and for the circle, the eigenfunctions of the Laplace-Beltrami operator are
known to be the Fourier basis. For these curves, the heat kernel is

pt(α, β) =
1√
4πt

∑

j≥0

e−
(α−β+2πj)2

4t =
∑

j∈Z
e−j2te2iπj(α−β)

where α and β are the curvilinear abscissas of two points on Γ. Thus

pt(α, β) = 1 + 2
∑

j≥1

e−j2t(cos(2πjα) cos(2πjβ) + sin(2πjα) sin(2πjβ))

which constitutes the spectral decomposition of this kernel.
This identity shows that for very moderate values of t, only the �rst terms contribute

to this sum, and the heat �ow can be accurately computed using the embedding α 7→
(cos(2πα), sin(2πα)). In other words, the curve Γ is mapped onto a circle in the plane. We
therefore have shown that the heat metric can be computed on a closed simple curve as the
cord length of a circle to any accuracy:

etD2
t (x, y) =

∑

j≥1

e−(j2−1)t
∣∣∣e2iπjα − e2iπjβ

∣∣∣
2

=
∣∣∣e2iπα − e2iπβ

∣∣∣
2 (

1 + e−3trt(x, y)
)

where rt(x, y) is a bounded function.
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This is illustrated on Figure 2.5 where two helix curves and a trefoil curve in R3 are
embedded as a circle in R2. The conclusion of these examples is that no matter how com-
plicated these curves may be, they are immediately re-organized as circles when the kernel
is properly normalized. These examples also show that the weighted graph Laplacian em-
bedding is sensitive to the density of the points. In particular, when the density has a steep
peak, this embedding tend to map all points around this peak to a single point, creating a
corner.
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Figure 2.5: Curves in R3 (two helix curves and the trefoil curve), their embedding using
the graph Laplacian (2nd column), their embedding using the correct normalization (3rd

column) and the density of points on these curves (last column).

Curves with endpoints

We now consider an example of curve with two endpoints. We studied a sequence of face
images from the UMIST Face Database2, more particularly Γ is a set of 36 pictures of the
face of a same person turning his head. Each picture is a pre-cropped 112×92 pixel image in
grayscale colormap, and the time sampling rate being su�ciently high (see Figure 2.6), we
expect them to be organized along a curve. To recover this point, we proceeded as follows
(see Figure 2.7):

2Courtesy of Daniel Graham and Nigel Allinson (see [14])
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Figure 2.6: In the original �le, the pictures are ordered from left to right, and top to bottom

• Initially, the pictures were indexed by the time parameter, or equivalently, by the angle
of the head. To illustrate the capabilities of reorganization of the method, we shu�ed
the set at random so that they appear unordered.

• We computed their mutual distances using the L2 metric in R112×92. Although this
metric is generally not adapted to the discrimination of images (see introduction of
this chapter), its use yields satisfactory results in this case because the sampling rate
in time is su�ciently high and there is very little noise.

• We computed the approximation of the eigenfunctions of the Laplace-Beltrami oper-
ator on this structure.

Unordered
  pictures

Organized
  pictures

algorithm

Parametrization

Figure 2.7: The data are completely unordered, and the algorithm reorganizes the sequence
of pictures.

From the spectrum, it is clear that, λ0 = 1 being ignored, the eigenvalue λ1 = 0.97
prevails over the following ones (λ2 = 0.87, λ3 = 0.74, λ4 = 0.63,...) as shown on Figure
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2.8. The second eigenfunction φ1 associates a real number to each image, and when this set
of numbers is reordered as a non-decreasing sequence and rescaled to have range [−1, 1], we
obtain the graph shown on Figure 2.8. It is striking to see how this graph looks like that
of half a period of cosine, which is precisely the �rst non-trivial Neumann eigenfunction of
the Laplace-Beltrami on a non-closed curve. Indeed, remember that for a curve with two
endpoints and of length L, the Neumann eigenfunctions of ∆ are of the form cos(j s

L) where
s the arclength variable with s = 0 and s = L corresponding to the endpoints.

Therefore the data seem to be approximately lying along a curve in R112×92, whose
endpoints are easily identi�ed, and φ1 allows to recover the organization of the data with
respect to time, or more precisely with respect to the angle of rotation of the face.
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Figure 2.8: Left: spectrum of the Laplace-Beltrami operator. λ0 = 1 being ignored, the
eigenvalue λ1 = 0.97 prevails over the following ones. Numerically, λ2 = 0.87, λ3 = 0.74,
λ4 = 0.63. Right: values of φ1 reordered. This graph is very similar to that of a cosine on
half a period, which is the second eigenfunction of the Laplace operator on a curve with two
endpoints.

2.4.2 Surfaces
We now move on to the case of surfaces. For these submanifolds, and unlike the case of
curves, the curvature does play a role in the di�usion of heat. In what follows, we compute
the embedding provided by φ1, φ2 and φ3 for di�erent surfaces: an ellipsoid, a torus, a
dumbbell shape and a set of images parameterized by two real numbers.

Ellipsoid

The ellipsoid is the simplest closed surface, with a lot of symmetries. Its image via the
mapping (φ1, φ2, φ3) of the Laplace-Beltrami operator is an ellipsoid-like shape, although
it di�ers from an actual ellipsoid. For the graph Laplacian, the density on the surface
plays a major role. We emphasize this fact on Figure 2.10 where the density is taken to be
approximately constant along meridians, but also to be essentially concentrated around the
parallel line ϕ = π. The result is that, just like in the case of curves, the graph Laplacian
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Figure 2.9: Left: Set of images randomly permuted. This is the input of the algorithm.
Right: output of the algorithm, the sequence is reordered with respect to the angle of
rotation of the head (the sequence is to be read from left to right, and top down).

tend to map high density patches into very small patches, creating an edge at the maximum
where the density is maximum.

Torus
The torus is an example of non simply connected surface. To implement the embedding, we
choose to use φ1, φ2, φ5 and φ6. This choice enables us to represent the torus in cylindrical
coordinates:

• eigenfunctions φ1 and φ2 are essentially the cosine and sine of the angle on the big
circle of the torus

• eigenfunction φ5 captures the z coordinate

• eigenfunction φ6 essentially computes the distance of the points to the axis of the torus

As is, the embedding (φ1, φ2, φ5, φ6) maps the torus as a subset of R4. A further trans-
formation allows to obtain the cylindrical coordinate representation.

Dumbbell
This time, our set is a dumbbell. It is made up of two large components C1 and C2 which are
connected by a thin bottleneck. The di�usion between two points of the same component is
easy when compared to the heat di�usion between the two components. This is illustrated
on Figure 2.12, where the embedding via (φ1, φ2, φ3) tends to separate C1.

Figure 2.13 shows the eigenfunctions φ1, φ2, φ3, φ4, φ5 and φ6. The second eigenfunction
φ1 separates the two sides of the dumbbell, and in fact it is known that it is the solution of
the relaxed normalized cut problem for the surface (see [27]).
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Figure 2.10: Upper left: Original ellipsoid; the colors represent the density. Upper right: Em-
bedding using the graph Laplacian. Lower left: Embedded set using approximate Laplace-
Beltrami eigenfunctions. Lower right: density function in the (θ, ϕ) plane
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Figure 2.11: Eigenfunctions chosen for the embedding of the torus. φ1 and φ2 (top) measure
the angle, φ5 (lower left) computes the z coordinate, and φ6 (lower right) captures the
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in the embedding space.

Image database

The last example we study for surfaces is that of a database of images parameterized by two
real numbers. More precisely, the set Γ is composed of a sequence of 1275 images (75× 81
pixels) of the word �3D� viewed under di�erent angles. Each image was generated by a
renderer software from a three dimensional model for the two letters �3� and �D�, and the
object was rotated along the vertical axis (angle α) and horizontal axis (angle β), like shown
on Figure 2.14. The data were highly sampled: α was uniformly sampled from −50 to 50
degrees with a step of 2 degrees, whereas β was sampled every 4 degrees from −46 to 50
degrees.

>From the data, we created a graph in which each point is connected with its 8 nearest
neighbors. Then each edge (x, y) was assigned the weight e−

‖x−y‖2
ε , and we applied the

normalization procedure already described to the resulting kernel. Last we plotted the
image of the set by the mapping (φ1, φ2) (Figure 2.14).

The result is that the orientation of the object can be controlled by the two coordinates
φ1 and φ2. What appears on Figure 2.14 is that there is a bi-Lipschitz mapping between the
angles (α, β) and the couple (φ1, φ2). In other words, the natural parameters of the data set
has been recovered by the algorithm.

2.4.3 Robustness to noise
We have already mentioned that di�usion distances exhibit some good robustness to noise
perturbation of the data set, and the reason for this being that Dm(x, y) is computed as a
sum over all paths joining x and y. This sum has a smoothing e�ect on small perturbations
of the data set.

Concerning the in�uence of these perturbations on the eigenvalues and eigenfunctions,
the answer is provided by classical spectral perturbation theory. In short, the perturbation
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Figure 2.13: Values of the eigenfunctions plotted on the dumbbell. The second eigenfunction
φ1 separates the two components C1 and C2. It is the solution of the relaxed normalized
cut problem. The next four eigenfunctions correspond to a degenerate eigenspace because
of the symmetries of the dumbbell.
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Figure 2.14: Upper left: In the original set, the angle α is discretized 51 times between −50
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right: the set is mapped into R2 via (φ1, φ2). Bottom: some images of Γ are plotted in
(φ1, φ2). The natural parameters α and β are recovered.
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on the eigenvalues and eigenspaces is controlled by the amplitude of the perturbation on the
operators. Remember that Weyl's theorem [32] says that if Ãε is a perturbed version of Aε,
with spectrum {λ̃j} instead of {λj} then

sup
j
|λ̃j − λj | ≤ ‖Ãε −Aε‖

Now if the similarity kernel kε is smooth, then a perturbation on the location of the data
points can be interpreted as an additive perturbation on the operators by Taylor expand-
ing the kernel and the corresponding operator with respect to the perturbation amplitude.
This simple argument shows that the eigenvalues and eigenspaces computation is relatively
robust to a perturbation on the data set. However it is to be noted that eigenfunctions
corresponding to degenerate eigenvalues are not stable. Nevertheless, in this case, the de-
generacy of the eigenspace reveals some symmetry in the data space, and the choice of any
set of orthogonal eigenfunction makes sense.

In conclusion, methods of classi�cation or clustering based on the di�usion metric will
not be subject to instabilities related to sensitiveness to the particular realization of the
data set.

In Figure 2.15, we illustrate our point with the computation of the embedding of a
perturbed version of the helix used in Figure 2.5.
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Figure 2.15: Left: the helix of Figure 2.5 was perturbed by an additive Gaussian white
noise. Right: the data is still approximately mapped onto a circle.

2.5 Doubling of manifolds and Dirichlet heat kernel
As shown in section 2.3.4, when Γ is a submanifold of the Euclidean space, the Neumann
heat kernel can be approximated by properly normalizing a �ne Gaussian on the data.
An interesting feature of this method is that it is completely blind to the location of the
boundary: we do not need to know which point are in a neighborhood of the boundary. In
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the case when the boundary ∂Γ is known to us, then a simple operation can be performed
to obtain the Dirichlet heat kernel in addition to the Neumann one, namely we double the
submanifold into a closed manifold that no longer stands in Rn, but has the advantage to
have no boundary. The way this can be done is by generating a copy Γ− of Γ = Γ+, and
by identifying points on ∂Γ− with those on ∂Γ+. To complete our construction, we need to

Γ =Γ+

Γ−

Figure 2.16: The original manifold Γ = Γ+ is doubled by generating a copy Γ− of it and by
identifying points on the boundary of each copy.

specify a metric on Γ+ ∪ Γ−. The simplest way is probably the following one: for x and y
on Γ+ ∪ Γ−, we de�ne the distance d(x, y) between x and y to be the length of the shortest
path between these points. Thus if x and y belong to the same component, then d(x, y)
is the usual geodesic distance. If on the contrary, they are on opposite components, then
d(x, y) can be de�ned as the in�mum3:

d(x, y) = inf
z∈∂Γ+

(d(x, z) + d(z, y))

We can now form the kernel

kε(x, y) = e−
d(x,y)2

ε

and normalize it as usual to obtain the di�usion kernel aε. Because of the obvious symmetry
of Γ+ ∪ Γ−, the eigenspaces corresponding to non-constant functions are degenerate: each
of them is the direct sum of the space of even eigenfunctions (with respect to the boundary)
with that of odd eigenfunctions. As ε → 0, the even eigenfunctions tend to the Neumann
heat eigenfunctions, whereas the odd eigenfunctions tend to the Dirichlet heat eigenfunctions.

The method described here is thus a natural extension of that presented in the previous
sections, and if the boundary is known to us, it constitutes a simple way to obtain all
eigenfunctions of the heat operator on Γ, regardless of the nature of the boundary condition
(Dirichlet/Neumann).

2.6 Anisotropic di�usions
So far, we have mainly employed rotation invariant kernels, but in several situations, it is
desirable to de�ne other types of di�usions. Rotation invariant kernels generate isotropic

3Note that the computation of d(x, y) is to be carried out only for x and y su�ciently close as the kernel
kε is localized.
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di�usions (like the homogeneous heat di�usion) for which all directions are equal, and in
particular all variables in the data play the same role. But of course, it can sometimes be
useful to design anisotropic di�usions

• to deal with ambiguous geometric con�gurations, like crosses, forks, and other bifur-
cations,

• to take advantage of some a priori knowledge on the data, like the fact that locally,
some variables might be more important than others.

The main ingredient in order to construct an anisotropic di�usion is to be able to locally
separate variables.

We focus on 2 possible applications of anisotropic di�usions: dealing with crosses and
forks, and the analysis of di�erential systems.

2.6.1 Incomplete data and ambiguous geometries
It is not uncommon for a data set to exhibit structures like forks, and the reason for this
is that in several cases, the variables used in the multidimensional representation of the
sample do not describe entirely the data because of some loss of information inherent to the
data acquisition process. In other words, in their high-dimensional representation, samples
are already the result of some projection and consequently, crosses appear in the data (see
Figure 2.17). An isotropic random walker along a curve arriving at a fork will choose equally
between the several branches, and this behavior is not faithful to the original geometry of
the data (before the projection). However, there are several ways to rede�ne the local
geometry of Γ in order to force the di�usion to recognize such a situation and to favor one
of the possible paths. A very basic idea is to modify the Euclidean geometry by adding
other features than just the coordinates of the points. An example of of modi�ed distance
that allows to deal with crosses is to take the new distance to be the sum of the Euclidean
distance and a distance between tangent planes.

For instance, at each point of the set, one can perform a local Principal Component
Analysis and use the singular values and principal axes to rescale the local metric. More
precisely, suppose that Γ is the union of the two coordinate axes in the plane R2. This set
has a cross at the origin. Now, for a given ε > 0, and for all x ∈ Γ, compute the PCA of all
points in the Euclidean ball of center x and radius √ε. The principal axes are parallel to
the coordinate axes and let σ2

1 and σ2
2 denote the singular values along the horizontal and

vertical axes. Suppose that x = (u, v) and y = (w, z), and let the new distance between x
and y be

d(x, y)2 =
σ2

1

σ2
1 + σ2

2

(u− w)2 +
σ2

2

σ2
1 + σ2

2

(v − z)2

De�ne the kernel
kε(x, y) = e−

d(x,y)2

ε

When |u| > √
ε, nothing changes compared to a classical Gaussian kernel (with the Euclidean

distance). On the contrary, as x gets closer to the origin, this kernel gives higher probability
to jumps to points on the same axis as x than the orthogonal axis. For more general sets,
this kernel will encourage connections between points that are locally aligned, the reason
for this being that the distance d(x, y) is in fact the sum of a distance between the points
and a distance between the tangent planes attached to these points.
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Figure 2.17: Projections create loops.

A di�erent way to proceed is as follows. De�ne dΓ(x) to be the distance of x to the set
Γ. Assuming this is well de�ned, this is a local computation. For ε > 0, consider the kernel

kε(x, y) = exp

(
−‖x− y‖2

ε
− dΓ

(x+y
2

)2

ε2

)

Just like the previous one, this kernel will favor transitions between points locally aligned.

2.6.2 Di�erential systems
Another important application of anisotropic di�usions is the study of di�erential systems.
Suppose that the gradient ∇f of a function f : Ω → R is known at all points, and that the
domain Ω is compact. To recover f up to a constant, we need to integrate a di�erential
system. Another approach consists in designing a di�usion adapted to this problem, namely
by considering the kernel

kε(x, y) = exp
(
−‖x− y‖2

ε
− (〈∇xf, x− y〉)2

ε2

)

Proposition 12. Suppose that f : Ω → R is C2 and has no critical point, i.e., at all point,
∇f 6= 0. Then if g is C2, then at all point x not on the boundary of Ω,

A
t
ε
ε g(x) → e−αt∆cg(x)

where ∆c is the Laplace-Beltrami operator on the curve

Γc = {y : f(y) = c = f(x)}

and α is some constant independent of x.
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The di�usion de�ned by the kernel kε properly renormalized identi�es the level sets of
f . By iterating the kernel, we allow it to expand by steps of √ε along the level set and ε in
the orthogonal direction. Doing it 1

ε times will force the random walks to remain at distance√
ε from this level set.

Proof. All we need to prove is that as ε → 0, the operator

Gεg(x) =
∫∫

Ω
e−

‖x−y‖2
ε e−

〈∇f,x−y〉2
ε2 g(y)dy

acts like the operator
Gc

εg(x) =
∫

Γc

e−
‖x−y‖2

ε g(y)dσ(y)

where dσ(y) is the Lebesgue measure on the curve Γc.
The key point is to locally separate variables. To simplify, suppose that x = (0, 0)

and y = (y1, y2) where the axes of coordinates are taken to be respectively orthogonal and
parallel to ∇f at x. In other words, ∇f = (0, ‖∇f‖). Up to exponentially small terms, we
have:

Gεg(x) =
∫

|y2|<Cε
e−

y2
2‖∇f‖2

ε2

∫

|y1|<C
√

ε
e−

y2
1+y2

2
ε g(y1, y2)dy1dy2

=
ε

‖∇f‖

(
m0

∫

|y1|<C
√

ε
e−

y2
1
ε g(y1, 0)dy1 +O(ε2)

)

where we have applied the trivial version of lemma 7 along the (�at) lines y1 = constant.
Now up to terms of order ε

3
2 , integrating on the segment {(y1, 0) : |y1| < C

√
ε} is identical

to integrating on the portion of Γc de�ned as {(y1, y2) : f(y1, y2) = f(x), |y1| < C
√

ε}, in
other words,

Gεg(x) =
ε

‖∇f(x)‖
(

m0

∫

Γc

e−
‖x−y‖2

ε g(y)dσ(y) +O(ε
3
2 )

)

where we have extended the integration to the whole curve Γc by neglecting exponentially
small terms. This means that using kε on the domain Ω is approximately equivalent to using
the isotropic Gaussian kernel e−

‖x−y‖2
ε with the function g restricted to Γc. This approxima-

tion holds up to a term of order ε
3
2 . We can conclude that all the normalizations described

before and applied to kε will yield the corresponding normalized isotropic Gaussian kernels
restricted to the curve Γc. In particular, if we apply the normalization for approximating
the heat kernel to kε, we will obtain that

Aεg(x) = g(x) + αε∆cg(x) +O(ε
3
2 )

This simple example shows that by de�ning an appropriate local metric, we are able to
construct a di�usion that

1. integrates a vector �eld,

2. allows to compare the trajectories.
The di�usion framework therefore seems to have a great potential for addressing di�er-

ential equations and dynamical systems.
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Chapter 3

Geometric Harmonics

In the previous chapter, we showed how positive semi-de�nite kernels could be used to
analyze the intrinsic geometry of a set Γ. We obtained a set of functions that we interpreted
as coordinates on the set, as well as a basis of expansion for functions de�ned on Γ. Although
we focused on the case Γ ⊂ Rn, the technique works for abstract sets that are not necessarily
subsets of an ambient space.

However, in some situations like those occurring in statistical learning, such an ambient
space does exist, and not only is it important to learn the geometry of Γ (viewed as the
training set), but it is also essential to be able to extend functions de�ned on Γ to a neigh-
borhood of this set. This kind of situation is illustrated by the paradigm training-prediction
dear to statistical regression theory: imagine that one needs to predict some quantity of
interest f(x) associated with a sample point x. One usually proceeds as follows: one �rst
adjusts the parameters of a regression model for f using the information at one's disposal
(the training set Γ and the training values for f), this step is termed training or calibration,
and then one uses this model to predict the value f(x) for any new point x /∈ Γ. The model
chosen for f corresponds to a certain number of constraints, and is essentially arbitrary,
unless one has a priori knowledge on the data. We do not address the problem of model
selection here, our goal being to explain how one can naturally extend such a function f to
a neighborhood of Γ when we are given a model in the form of a functional class, and how
the extrinsic geometry of the set imposes constraints on the feasibility of this extension.

In what follows, the functional model for f will be represented by a kernel k(x, y), namely
f will be a function of the form

∫

Γ
k(x, y)g(y)dµ(y)

for an appropriate g. This means that f is restricted to belong to the space of linear
combinations of the kernel k. When k is a semi-de�nite positive kernel, the Nyström method
will allow us to extend f outside the set Γ using a special set of functions that we term
geometric harmonics.

This chapter is organized as follows: we start by reviewing the notion of semi-de�nite
positive kernels and their interpretation as projectors on a reproducing kernel Hilbert space.
We then give the de�nition of the geometric harmonics and list two of their main proper-
ties. We use these properties to design a simple extension algorithm for empirical functions
de�ned on the data set Γ and we illustrate this technique with some examples. We then
investigate the subject of bi-Lipschitz parametrization of data sets and how geometric har-
monics o�er a simple approximate solution to this problem. Last, we describe the interplay
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of the intrinsic and extrinsic geometry and we show that the geometric harmonics allow to
perform multiscale extensions of empirical functions on the data set.

Throughout this chapter, Γ is a compact subset of Rn, and is endowed with a �nite
positive measure µ. Capital letters are reserved for functions of one variable de�ned on Ω
and constants, while lower case letters denote functions de�ned on Γ.

3.1 Positive kernels and associated reproducing kernel Hilbert
spaces

This section quickly reviews some very basic notions about reproducing kernel spaces, and
a more detailed description of the subject can be found in [2]. Let Ω be a subset of Rn

containing Γ and let k be a positive semi-de�nite kernel de�ned on Ω× Ω. Remember that
this means that for any m ≥ 1 and any choice of real numbers α1, ..., αm and points x1, ..., xm

in Ω,
m∑

i=1

m∑

j=1

αiαjk(xi, xj) ≥ 0 .

As shown in [6], this condition can be replaced by
∫

Ω

∫

Ω
α(x)α(y)k(x, y)dxdy ≥ 0 .

It is a classical result (see [2]) that one can associate to k a Hilbert space H of functions
de�ned on Ω, in which k de�nes the inner product:

• for dx-almost every x ∈ Ω, k(x, ·) belongs to H,

• for dx-almost every x ∈ Ω, 〈f, k(x, ·)〉Ω = f(x) where 〈·, ·〉Ω de�nes the inner product
on H.

The construction of the space H is described in [2]. In short, one has to consider �nite
linear combinations of the kernels and take the completion. H is called a reproducing kernel
Hilbert space, and k is said to be a reproducing kernel satisfying the identity

〈k(x, ·), k(y, ·)〉Ω = k(x, y) .

Conversely, it is easy to see that any reproducing kernel is positive semi-de�nite. Therefore
the two notions are identical.

For example, let k(x, y) = h(x − y) and Ω = Rn. Then by Bochner's theorem, h is the
inverse Fourier transform of a �nite positive measure, and suppose for simplicity that this
measure is of the form ĥ(ξ)dξ. The space H is the inverse Fourier transform of

{
f̂ such that

∫

ĥ(ξ)>0
|f̂(ξ)|2 dξ

ĥ(ξ)
< +∞ and where f̂(ξ) = 0 if ĥ(ξ) = 0

}
.

Thus H is the inverse Fourier transform of a weighted L2 space and since ĥ is integrable,
the weight penalizes high frequencies and elements of H are smooth functions. Equivalently,
f is equal to the convolution ρ ∗ h of a signed measure ρ with h so that

∫

Rn

∫

Rn

h(x− y)dρ(y)dρ(x) < +∞ .

Two cases are particularly interesting:
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• for the Gaussian kernel kt(x, y) = e−
‖x−y‖2

t , the corresponding space is the set of all
temperature distributions at time t,

• when ĥ is the indicator function of some bounded Borel set B, the space H is a set of
bandlimited functions. In the case when B is a ball, the corresponding kernel will be
referred to as Bessel kernel (see appendix A).

To summarize, one can say that to each positive semi-de�nite kernel k there corresponds
a Hilbert space H of smooth functions de�ned on Ω, and that in this space

〈k(x, ·), f〉Ω = f(x) .

3.2 De�nition of the geometric harmonics
We now de�ne the geometric harmonics. Let k be a symmetric positive semi-de�nite kernel
on Ω× Ω, and consider the operator K : L2(Γ, dµ) −→ H de�ned by

Kf(x) =
∫

Γ
k(x, y)f(y)dµ(y)

where x ∈ Ω. Then we have the following lemma

Lemma 13. The adjoint K∗ : H −→ L2(Γ, dµ) is the restriction operator onto the set Γ:

K∗g(y) = g(y) if y ∈ Γ and g ∈ H .

Furthermore, if k is bounded then the operator K∗K : L2(Γ, dµ) → L2(Γ, dµ) is compact.

Proof. It can be checked that K∗g(y) = 〈k(y, ·), g〉Ω and the �rst assertion is a straightfor-
ward equivalence from the reproducing kernel identity. Now we have

K∗Kf(x) =
∫

Γ
k(x, y)f(y)dµ(y) , x ∈ Γ

to prove the compactness of K∗K, we prove that this operator is Hilbert-Schmidt, i.e. that
∫

Γ

∫

Γ
k(x, y)2dµ(y)dµ(x) < +∞ .

The Cauchy-Schwarz inequality in H implies that

k(x, y) = 〈k(x, ·), k(·, y)〉Ω ≤
√

k(x, x)
√

k(y, y)

and this entails that
∫

Γ

∫

Γ
k(x, y)2dµ(y)dµ(x) ≤

(∫

Γ
k(x, x)dµ(x)

)2

≤
(

µ(Γ) sup
x∈Γ

k(x, x)
)2

which concludes the proof.
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The operator K∗K is self-adjoint and positive, and since it is also compact, it admits a
discrete set of eigenfunctions {ψj} and non-negative eigenvalues {λj}. Furthermore, since
the operator K∗ is the restriction operator to Γ, the eigenfunctions and eigenvalues are
obtained by diagonalizing the kernel k on Γ:

∫

Γ
k(x, y)ψj(y)dµ(y) = λjψj(x) if x ∈ Γ

So far, we have arrived at a basis {ψj} of functions de�ned on Γ. We now describe how
these functions can be extended to the whole Ω. The idea is to use a technique known as
the Nyström method ([21], 18.1): if λj > 0 and x ∈ Ω, de�ne Ψj(x) by

Ψj(x) =
1
λj

∫

Γ
k(x, y)ψj(y)dµ(y) (3.1)

Clearly, Ψj and ψj agree on Γ, and as a consequence, Ψj is an extension of ψj . The
eigenfunction is extended on Ω as an average of its values on the set Γ, and therefore the
extension Ψj is termed geometric harmonic.

Numerically, the extension procedure can be very ill-conditioned as one is dividing by
the singular values of a compact operator. As a consequence, for any δ > 0, we introduce
the following notations:

Sδ = {j such that λj > δλ0}
L2

δ(Γ, dµ) = span{ψj such that j ∈ Sδ}
Hδ = span{Ψj such that j ∈ Sδ}

With these notations, the extension operation has condition number 1
δ .

In the following sections, we will make use of the algebraic identities relating the exten-
sions and restrictions:

Restriction: K∗Ψj = ψj ,

Extension: Kψj = λjΨj .

We conclude this section with two remarks. First, an important class of positive kernels
is generated by covariance kernels, i.e. kernels of the form

k(x, y) =
∫

ξ∈I
eξ(x)eξ(y)p(ξ)dξ

where {eξ}ξ∈I is a family of functions de�ned on Ω, and p(ξ) ≥ 0. In this setting, each
function eξ restricted to Γ is interpreted as a vector whose coordinates are indexed by x,
and the kernel k represents the covariance information of the cloud of points generated by
the mass distribution p(ξ)dξ. Finding the eigenfunctions and eigenvalues associated with
this kernel is equivalent to computing the axes and moments of inertia of the could of points,
which is also referred to as Principal Component Analysis.

The other remark concerns a variational interpretation of the diagonalization of k. Let
B represent the orthogonal projector on H, de�ned by Bf(x) = 〈k(x, ·), f〉Ω and let D be
restriction projector de�ned by Df(x) = f(x) if x ∈ Γ and Df(x) = 0 otherwise. Then it
can be checked that K = BD and that if x ∈ Γ

K∗Kf(x) = DBDf(x) .

This decomposition of K∗K as a product of orthogonal projections leads to a variational
interpretation of the eigenfunctions that motivated Slepian et al. to introduce the prolate
functions (see [28]).
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3.3 Two properties of the geometric harmonics
The geometric harmonics feature two interesting properties: they are orthogonal both on Γ
and Ω, and they have maximum concentration on Γ among all functions of H.
Property 1 (double orthogonality). The system {Ψj}j∈Sδ

forms an orthogonal basis of
Hδ and their restriction {ψj}j∈Sδ

to Γ forms an orthogonal basis of L2
δ(Γ, dµ).

Proof. By de�nition, the ψj 's on Γ are the eigenfunctions of a self-adjoint compact operator,
and thus are orthogonal on Γ. In addition, if 〈·, ·〉Γ denote the inner product on Γ:

〈Ψi,Ψj〉Ω =
1
λj
〈Ψi,KK∗Ψj〉Ω

=
1
λj
〈K∗Ψi,K∗Ψj〉Ω

=
1
λj
〈ψi, ψj〉Γ

For a function F ∈ H with restriction f on Γ, we de�ne the concentration of F to be
the Rayleigh quotient

‖f‖Γ

‖F‖Ω
.

The geometric harmonics are also the functions of H that have maximum concentration on
the set Γ:
Property 2 (variational optimality). The geometric harmonic Ψj is a solution of the
problem

max
F∈H

‖f‖Γ

‖F‖Ω

under the constraint that F ⊥ {Ψ0, ...,Ψj−1} (f = K∗F represents the restriction of F to
Γ). In particular, Ψ0 is the element of H that is the most concentrated on Γ.
Proof. By homogeneity of the ratio to be maximized, we see that we can restrict our attention
to all F of norm 1. Thus we need to maximize

〈f, f〉Γ = 〈K∗F,K∗F 〉Γ = 〈F,KK∗F 〉Ω
under the constraints

〈F, F 〉Ω = 1 and 〈F, Ψ0〉Ω = ... = 〈F, Ψj−1〉Ω = 0

Using the Lagrange multipliers technique, we see that there exist numbers λ and α0, ..., αj−1

such that
KK∗F = λF + α0Ψ0 + ... + αj−1Ψj−1

Taking the inner product with Ψi, for i = 0, ..., j − 1 and using the constraints and the
orthogonality of the geometric harmonic yields

αi = 〈KK∗F, Ψi〉Ω = 〈F,KK∗Ψi〉Ω = λi〈F, Ψi〉Ω = 0

As a consequence, F is a geometric harmonic associated with the eigenvalue λ, and the
functional that we wish to maximize takes the form

〈f, f〉Γ = λ .

The maximum is therefore achieved for F = Ψj .
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3.4 Extension algorithm
Property 1 allows us to describe a simple extension procedure for any empirical function f
de�ned on the set Γ:

• project f onto the space L2
δ(Γ, dµ) spanned by the orthogonal system {ψj}λj>δ as

f ' Pδf =
∑

j∈Sδ

〈f, ψj〉Γψj ,

• use the extension Ψj of ψj to extend the projection Pδf as a function F de�ned on
the set Ω:

F (x) =
∑

j∈Sδ

〈f, ψj〉ΓΨj(x)

with x ∈ Ω.

Using a terminology from linear algebra, our algorithm merely computes a truncated
pseudo-inverse of K∗. This algorithm is easily seen to be consistent, that is, the restriction
of F to Γ is again extended as F , and this feature has some practical importance.

Two points need to be discussed here:

• It is clear that this technique does not provide an extension for f but rather for a
�ltered version of it, namely its orthogonal projection onto L2

δ(Γ, dµ). This set is
precisely the space of functions that can (safely) be extended to Ω. Indeed, as already
mentioned, the condition number of the extension operation on L2

δ(Γ, dµ) is 1
δ , that is

the number of digits lost in the extension of such a function, namely log 1
δ , is under

control. Moreover, a general empirical function f on Γ can be extended if the residual
‖f −Pδf‖ is smaller than a prescribed error.

• Applied to f ∈ L2
δ(Γ, dµ), the algorithm will output a real extension that is an element

of H. As we shall see in the examples of the next section, there is in general no unique
way to extend f as a function of H, because elements of H might not be determined by
their restrictions to Γ. However, Property 2 allows us to give an interpretation to the
extension picked up by the algorithm: among all possible extensions of f as a function
of H, the algorithm will output that with maximum concentration, or equivalently,
with the minimal energy on Ω. In some sense, this means that the algorithm provides
the best extension given the information at our disposal.

De�nition 1. A function f de�ned on Γ is said to be (η, δ)-extendable if for a given couple
(η, δ) of positive numbers,

∑

j∈Sδ

|〈ψj , f〉Γ|2 ≥ (1− η)‖f‖2
Γ .

As a consequence, if j ∈ Sδ, then ψj is (η, δ)-extendable for all η > 0. This de�nition
means that a function will be extendable if most of its energy is concentrated in the projection
over the geometric harmonics whose extensions make numerical sense.

This extension operator is also a valuable tool for the study of the relation between the
extrinsic and intrinsic geometries of the set Γ. When Γ is a submanifold of a Euclidean
space Rn, we know that an intrinsic Fourier analysis can be performed on functions via
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the eigenfunctions of the Laplace-Beltrami operator. Moreover, the di�usion semigroup
allows a multiscale decomposition of any function on the set. On the other hand, all these
tools already exist in the ambient space Rn, and the relation between extrinsic and intrinsic
concepts such as frequency can be investigate with the help of the extension operator. But
this is left to Section 3.7, and for now we move on to examples of geometric harmonics.

3.5 Examples of geometric harmonics
In these section, we consider speci�c instances of positive kernels and the associated exten-
sion scheme.

3.5.1 The prolate spheroidal wave functions - Bandlimited extension
In [28] and [19], Slepian et al. introduce the prolate spheroidal wave functions as the solution
to the problem of �nding functions optimally concentrated in time and frequency. The
prolates are bandlimited functions of unit energy that have maximum energy within an
interval in the time domain. They also generalize their results to higher dimensions (see
[29]), and to do so, they de�ne Hc to be the space of functions of L2(Rn) whose Fourier
transforms are compactly supported in the ball centered at the origin and of radius c

2 . In
other words, Hc is the space of bandlimited functions of �nite energy, with bandwidth c

2 .
This space is a reproducing kernel Hilbert space with kernel 1 (see appendix A)

kc(x, y) =
( c

2

)n
2

Jn
2

(πc‖x− y‖)
‖x− y‖n

2

where Jν is the Bessel function of the �rst kind and of order ν. We refer to kc as the Bessel
kernel in dimension n. The bandwidth parameter c also plays the role of a scaling parameter.

The prolate spheroidal wave functions are then de�ned as the eigenfunctions of the oper-
ator with kernel kc. It can be useful to think of these functions as the principal components
of the set of functions generated by the complex exponentials with frequency less than c

2 , all
of which being equiprobable. In the prolate setting, the set Γ (in the time domain) is non-
singular in Ω = Rn, and as a consequence, functions of Hc are determined by their values
on Γ. On the contrary, we are mainly interested in the case when Γ is singular in Rn; in this
situation there are in�nitely many ways to construct bandlimited extensions of functions
de�ned on Γ, as two such extensions di�er by a bandlimited function that vanishes on Γ.
Our procedure simply �nds the bandlimited extension F that maximizes the concentration

‖f‖Γ

‖F‖Ω

of F on Γ, or equivalently, it �nds the bandlimited extension F with minimal energy on
Rn. From now on, we will refer to EB as the extension operator using the Bessel kernel
with bandlimit equal to B (for a given preset accuracy δ). Therefore, EB computes the
bandlimited extension of band B that has the minimal energy on Rn. In Section 3.7, we
investigate the relation between the eigenfunctions and eigenvalues of EB for di�erent values
of B.

1Note that in the case when n is odd, the expression of kc can be further simpli�ed as a sum of derivatives
of sinc functions, as shown in appendix A.
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In high dimension, all these kernel act similarly as it can be proven that they tend to the
Gaussian kernel (appendix B). Finally, in [30], Slepian constructs discrete prolate functions
by considering periodic functions generated by the �rst exponentials {e2iπjx}|j|≤q that they
restrict to Γ = [−a

2 ; a
2 ] where 0 < a < 1. In this case the associated kernel is

kq(x, y) =
∑

|j|≤q

e2iπj(x−y) =
sin (π(2q − 1)(x− y))

sinπ(x− y)
,

which is often referred to us as the Dirichlet kernel. The eigenfunctions of the associated
operator form a set of geometric harmonics for periodic functions of the real line.

3.5.2 Harmonic extension
Another example of importance comes from potential theory. Consider the single layer
Newtonian potential in Ω = Rn:

k(x, y) =

{
− log(‖x− y‖) if n = 2,

1
‖x−y‖n−2 if n ≥ 3.

This kernel is, by de�nition, the Green's function for the Laplace operator on Rn. Since the
Laplace operator is positive, so is the Newtonian potential. For the sake of convenience,
assume that n = 3 and Ω = R3. Then the space H is the set of potentials

F (x) =
∫

R3

dρ(y)
‖x− y‖

where ρ is a signed measure on R3 representing a distribution of charges giving rise to the
electrostatic potential F . Observe that in H, the inner product between two potentials F1

and F2 generated by two sets of charges ρ1 and ρ2 is given by the electrostatic energy of
interaction between these charges:

〈F1, F2〉Ω =
∫

R3

∫

R3

dρ1dρ2

‖x− y‖
Now if Γ is a Lipschitz surface of R3, then a distribution of charges with a single layer density
f on Γ will induce a potential

F (x) =
∫

Γ

f(y)dσ(y)
‖x− y‖

that is a harmonic function in R3\Γ. Computing the eigenfunctions of the operator associ-
ated to the single layer potential kernel amounts to minimizing the electrostatic self-energy:

∫

Γ

∫

Γ

f(x)f(y)
‖x− y‖ dσ(x)dσ(y)

under the constraint that ∫

Γ
|f(x)|2dσ(x) = 1

These eigenfunction provide a way to extend empirical functions de�ned on Γ as harmonic
functions2.

2A related type of harmonic extension is obtained by considering the double layer potential

k(x, y) =
∂

∂ν
k(x, y)

where ν is normal to Γ at x
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3.5.3 Wavelet extension
Wavelet spaces allow to generate geometric harmonic extensions. Let {Vj}j∈Z be a multires-
olution analysis in Rn and set H to be the space of scaling functions Vj . By construction,
the geometric harmonics corresponding to this space provide a way to extend empirical func-
tions at a given scale. They also de�ne scaling functions adapted to the set Γ. Likewise,
one could work on a wavelet space Wj to construct a wavelet extension of a function, and
de�ne wavelets adapted to the set Γ.

Let's illustrate this type of construction in the context of the Haar multiresolution. Let
Φ be the indicator function of the unit cube in R2, and let Γ be a �nite length curve in the
plane. Let H = Vj for some j, then the reproducing kernel is

∑

k∈Z2

2−jΦ(x− 2jk)Φ(y − 2jk)

One restricts this kernel to the curve Γ, to obtain

k(x, y) =
∑

k∈QΓ

2−jΦ(x− 2jk)Φ(y − 2jk)

where QΓ is the set of indices k ∈ Z2 associated with cubes of unit area intersecting Γ. Now
it is clear that the geometric harmonics are the indicator of the cubes Q intersecting Γ, and
it can be checked that the eigenvalues are the ratios 2−j |Q ∩ Γ| where |Q ∩ Γ| is the length
of the piece of curve Q ∩ Γ (see Figure 3.1 for an example).

The same procedure can be followed for more general scaling functions, as well as for
each space Wj .

3.6 Bi-Lipschitz parametrization of sets
In the previous chapter, we explained that the eigenfunctions of di�usion operators provide
us with a system of coordinates and that in the corresponding embedding space, the Eu-
clidean distance is equal to the di�usion metric on the set Γ. We also noted that it could be
useful to obtain a parametrization Ψ of the data that is bi-Lipschitz with a small distortion.
Recall that the distortion of a map Ψ between two metric spaces (X , dX ) and (Y, dY) is
de�ned as

dist(Ψ) =

(
sup

u6=v∈X
dY(Ψ(u), Ψ(v))

dX (u, v)

)(
sup

u6=v∈X
dX (u, v)

dY(Ψ(u), Ψ(v))

)

In particular, we are interested in �nding mappings Ψ that achieve substantial reduction of
the dimension while keeping their distortion as close to 1 as possible:

1 ≤ dist(Ψ) ≤ 1 + δ (3.2)

However, in many applications, one merely needs that the above identity hold locally, i.e.
for the local distortion:

distR(Ψ) =

(
sup

dX (u,v)<R

dY(Ψ(u), Ψ(v))
dX (u, v)

)(
sup

dX (u,v)<R

dX (u, v)
dY(Ψ(u), Ψ(v))

)
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Figure 3.1: Extension of the function f(θ) = θ on the circle using Haar scaling functions at
di�erent scales.
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where R > 0. We refer to this problem as the relaxed distortion problem. The bene�t of
the relaxation is a signi�cant reduction of dimension. Experimentally, we observed that the
geometric harmonics provide a simple solution to the relaxed problem, in the sense that it
is always possible to �nd a selection of these coordinates that embed large subsets of the
data into a lower dimensional space, such that the local distortion remains close to 1. In
this new space, the processing of the data points is usually easier, and a major remaining
question concerns the way to extrapolate the inverse of the mapping outside the data set.

3.6.1 Constructing the parametrization
Consider a rotation invariant kernel

kε(x, y) = h

(‖x− y‖2

ε

)

where h is normalized so that h(0) = 1. In addition we suppose that for r > 0,

h(r) = 1− αr + r2g(r)

where g is bounded on R+. This is the case for instance with the Gaussian and Bessel
kernels. In addition, note that by positivity of kε, the quantity kε(x, y) is maximum when
x = y. Consequently, α ≥ 0. We will now assume that α 6= 0. Let k

(m)
ε be the kernel of the

mth power of the operator with kernel kε. In what follows, we assume that Γ is a compact
submanifold of dimension d.

We suppose that Γ is a C∞ submanifold of dimension d. Let

Ψ∞(x) =




λ
1
2
0 ψ0(x)

λ
1
2
1 ψ1(x)

...




be the mapping that consists in taking all geometric harmonics as coordinates.
By de�nition,

‖Ψ∞(x)−Ψ∞(y)‖2 = 2h(0)− 2h

(‖x− y‖2

ε

)
= 2α

‖x− y‖2

ε
− 2

‖x− y‖4

ε2
g

(‖x− y‖2

ε

)

Equivalently,

‖Ψ∞(x)−Ψ∞(y)‖2

‖x− y‖2
=

2α

ε

(
1− ‖x− y‖2

αε
g

(‖x− y‖2

ε

))

Thus, clearly, if ‖x − y‖2 ≤ δ α
‖g‖∞ ε then we have Lipschitz bounds with ratio

√
1+δ
1−δ . This

proves that

distRε(Ψ∞) ≤
√

1 + δ

1− δ

with
Rε =

√
δ

α

‖g‖∞ ε
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The size Rε of the balls for which the bi-Lipschitz identity holds is optimal since if
‖x − y‖ > CRε, then ‖Ψ∞(x) − Ψ∞(y)‖ ' 2. In fact this says that ‖Ψ∞(x) − Ψ∞(y)‖ is
equivalent to ‖x−y‖

ε+‖x−y‖ .
But of course Ψ∞ does not permit to reduce the dimensionality as it employs all coor-

dinate maps. In order to reduce the number of geometric harmonics, it su�ces to consider
powers k

(m)
ε of the operator with kernel kε. The eigenvalues are then raised to same power

and decay faster. In fact, the decay of the eigenvalues of k
(m)
ε is directly related to the size

of this kernel. More precisely, in the asymptotic δ → 0, the number of eigenvalues λm
j that

are above the threshold δ is proportional to
(

1
m

log
(

1
δ

))d

This estimate, the analog of Weyl's asymptotic law, corresponds to the minimum number
of bumps of the form kε(x, .) necessary to approximately cover Γ. If in addition Γ veri�es a
chord-arc condition, then Euclidean balls can be used to cover the set.

As an illustration, we consider a homemade subset of points in R2 called "MOUSE". We
compute a collection of bi-Lipschitz maps (an atlas) acting on this data set by the following
elementary algorithm:

Atlas Computation

1. At each point x of the data set, de�ne a neighborhood Nx by
considering the k-nearest neighbors or Euclidean balls.

2. Find a subset of eigenfunctions for which the bi-Lipschitz identity
holds on Nx, i.e. such that the local distortion is bounded by some
reasonable constant (5 in our example). One way to do so is to
follow the algorithm Eigenfunction selection described below.

3. Agglomerate all neighborhoods corresponding to the same choice
of geometric harmonics.

To �nd a small set of eigenfunctions that form a bi-Lipschitz parametrization of the
neighborhood Nx, we used the following elementary greedy approach:

Eigenfunction selection

1. Given two �xed integers nc and dm, and a bound B > 1 on the
bi-Lipschitz distortion.

2. For all i between 1 and dm, {
for all tuples (j1, ..., ji) of integers between 1 and nc, {

if the bi-Lipschitz distortion of (ψj1 , ..., ψji) is less than B,
then return (j1, ..., ji).

}
}

3. return -1
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The integer nc is the maximal value of the indices of the eigenfunctions one considers in
the search, and dm is the maximal dimensionality of the set. In the case when the function
returns −1, it means that the algorithm was unable to �nd a bi-Lipschitz parametrization
with distortion less than B within all tuples of eigenfunctions in the range considered. In
this case, one has to allows bigger values of B, nc or dm. For the MOUSE set, we chose
B = 5, nc = 20 and dm = 4.

The result is shown on Figure 3.2. The body and the ear of the mouse are divided into
6 regions, each of which is parameterized by 2 coordinates. The tail of the mouse appears
divided into 6 domains, each of them being parameterized by 1 geometric harmonic. Thus
the correct dimension is detected. To illustrate the robustness to noise perturbation, we
also plotted the output of the algorithm on versions of the MOUSE perturbed by additive
random noise.

3.6.2 Inverting the parametrization
The reduction of dimension provided by any embedding Ψ : Rn −→ Rm described above
makes it possible to apply some algorithms that are untractable in high dimension. The
idea is to reduce the dimension of the data by employing the embedding Ψ, and to apply the
treatment of our choice to the data in the embedding space Rm. After this step, it is often
necessary to get back to the original space, that is to invert the embedding. In addition,
the data at our disposal is generally �nite, and we need to invert the embedding at points
that are outside the data set. In the following, we assume that the dimension m of the
embedding space is fairly small, typically m ≤ 3.

Let's give a formal statement of the problem. Let {x1, ..., xp} be our data points in Rn.
These points can be thought of as being distributed on a submanifold Γ. We compute the
embedding Ψ that maps the data into Rm, where m < n. In reality, this means that we
form the p × p matrix whose (i, j)-th entry is given by aε(xi, xj), and that we compute its
�rst m eigenfunctions. Thus, we merely have the knowledge of the points Ψ(x1), ...,Ψ(xp)
in Rm. If the density of points is su�ciently high, then these points are approximately those
that we would obtain by computing the actual embedding on the continuous submanifold
Γ. As a consequence, we can assume that Ψ(x1), ...,Ψ(xp) are approximately the samples of
the actual heat embedding of Γ at the points x1, ..., xp. Equivalently, we have the samples
of Ψ−1 at the points Ψ(x1), ...,Ψ(xp) in the embedding space.

The mapping Ψ−1 is a parametrization of Γ de�ned on Ψ(Γ), and to be able to extend
it is of crucial importance in several applications. The main virtue of the mapping Ψ is that
it provides a dimension reduction and an organization of the points.

3.7 Relation between the intrinsic and extrinsic geometries
Suppose that Γ is a smooth submanifold of Rn. Two di�erent Fourier (or Littlewood-Paley)
analyses can be performed on a function f de�ned on Γ. The �rst one is purely intrinsic
and can be obtained using the Fourier basis on Γ, that is to say the eigenfunctions of the
Laplace-Beltrami operator. The other one is the classical Fourier analysis of the ambient
space Rn, that one can apply to extensions of f to the whole space.

In this section, we investigate the relation between the two analyzes via the action of
the operators of restriction and extension. This approach is equivalent to the question of
whether the intrinsic di�usion of heat is equivalent to an extrinsic di�usion.
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Figure 3.2: Top: the MOUSE set and its decomposition in local patches, each of which
having bi-Lipschitz coordinates. The numbers in the legend are the indices of the selected
geometric harmonics. To illustrate the robustness to noise, we also present the output of
the algorithm on a version of the MOUSE set perturbed by additive Gaussian noise.
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3.7.1 Restriction operator
Since the set Γ is a smooth submanifold, the restriction of a function F to Γ is a well-behaved
operation, in the sense that if F is smooth, then so is its restriction f .

We can give a precise meaning of this statement using a space characterization of smooth-
ness: suppose that F is di�erentiable with a bounded derivative, then f is obviously di�er-
entiable as a map from Γ into R, and its (intrinsic) gradient at a point x ∈ Γ is nothing else
but the orthogonal projection of gradient of F onto the tangent plane at that same point x.

The same idea can be characterized by a frequency argument. Consider plane waves in
Rn:

Fξ(x) = e2iπ〈ξ,x〉

Let ∆ be the Laplace-Beltrami operator on Γ that we can assume to be a curve for the sake
of simplicity. To relate the extrinsic frequency ξ to the intrinsic frequency νj corresponding
to the eigenfunction φj of ∆:

∆φj = ν2
j φj ,

we have the following result:

Proposition 14. Suppose that the curvature of Γ is bounded by a number M > 0.
Then if ‖ξ‖ > M

π ,

|〈φj , fξ〉| ≤
√

µ(Γ)

(
4π2‖ξ‖2

ν2
j

)m

for all m ≥ 0. As a conclusion, a function with only low extrinsic frequencies is also a
function with low intrinsic frequencies when restricted to Γ.

Proof. Locally, on the curve around x ∈ Γ, the function Fξ has the form

fξ(x) = Fξ(x) = exp(2iπ(〈ξ, x〉+ uξT + a(x)u2ξN )

where u is the local coordinate in the tangent plane of the point y, a(x) is the scalar curvature
at x, and ξT and ξN are the tangent and normal projections of ξ in the osculatory plane at
x. A Taylor expansion yields:

fξ(x) = e2iπ〈ξ,x〉 (1 + 2iπξT u + 2iπ(a(x)ξN + iπξ2
T )u2 + ...

)
.
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Now by using Lemma 6 of Section 2.3.2, we identify

∆fξ(x) = 4iπ(a(x)ξN + iπξ2
T )fξ(x) .

Therefore, if the curvature is bounded by M > 0, we have the trivial estimate for ‖ξ‖ > M
π ,

‖∆fξ‖Γ ≤ 4π2‖ξ‖2‖fξ‖Γ .

In fact it is easily seen that for all m ≥ 0,

‖∆mfξ‖Γ ≤
(
4π2‖ξ‖2

)m ‖fξ‖Γ .

Since
∆mfξ(x) =

∑

j≥0

ν2m
j 〈φj , f〉φj(x)

and
‖fξ‖2

Γ ≤ µ(Γ) ,

we must have, by Parseval,
∑

j≥0

ν4m
j |〈φj , fξ〉|2 ≤ µ(Γ)

(
4π2‖ξ‖2

)2m
.

In particular,

|〈φj , fξ〉| ≤
√

µ(Γ)

(
4π2‖ξ‖2

ν2
j

)m

for all m ≥ 0. Therefore the coe�cients of expansions in the eigenfunctions of the Laplace-
Beltrami operator are negligible, except for �nitely many, namely those for which the eigen-
value ν2

j is less than 4π2‖ξ‖2.

3.7.2 Extension operator
The extension algorithm described in Section 3.4 is a two-step procedure

• the function f on the data is �rst pre-�ltered by a projection on the geometric har-
monics that numerically admit an extension,

• then the extension is computed.

Of course, most functions f on the data set Γ cannot be extended, but checking whether
this is the case of not is relatively simple. Indeed, one just needs to verify that not too much
energy of f is lost by the projection operation, in which case one can conclude that, up
to a small residual, f belongs to the space L2

δ(Γ, dµ) spanned by the geometric harmonics
that can be extended with a prescribed condition number 1

δ . In other words, to use the
terminology introduced earlier, the relevant concept is that of (η, δ)-extendable functions.

For the study of the restriction operator, we looked at the restriction of the �Fourier
basis� in Rn. For the extension problem, it is natural to extend the Fourier basis on Γ,
i.e. the set of eigenfunctions of the Laplace-Beltrami operator on Γ. In order to relate the
intrinsic frequencies that these functions represent to the extrinsic spectrum (provided by
the Fourier analysis in Rn), it can be instructive to compute how many of these functions
admit a bandlimited extension, with a given bandwidth, or a Gaussian extension, with a
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given scale. More precisely, one can compute the maximal value of the index j such that it
is possible to extend φj using a Gaussian of �xed variance ε. Similarly, for an eigenfunction
φj of the Laplace-Beltrami operator on Γ, one can compute the largest scale that allows to
extend this function, that is to say how far φj can be extended away from the set. Last,
since this procedure is global on the set Γ, it is desirable to multiply φj by a window to
localize the analysis. Therefore we consider the following intrinsic wave packets:

wj,t
x (y) = wx,t(y)φj(y)

where wx,t is a window function centered at x and of width
√

t. For instance,

wx,t(y) = exp
(
−D̃2

t (x, y)
)

is a Gaussian window in the di�usion space. The distance D̃t(x, y) = CtDt(x, y) is a multiple
of the di�usion distance, normalized so that its maximum value is 1 (therefore Ct is an
increasing exponential).

In some sense, wj,t
x de�nes an intrinsic local cosine waveform: x represents the time

location parameter, j is the intrinsic frequency location, and
√

t is the time-width.
For instance consider the set shown on Figure 3.4. This curve has low frequencies on the

left part, but has wild variations on the right part. We have plotted the domains of the plane
where the 10th eigenfunction of the Laplace-Beltrami operator can be locally extended. In
other words, we have used the local cosine wave packet describe above with j = 10. These
domains re�ect the relation between the intrinsic and extrinsic frequencies.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.4: Original set and domains of extension for φ10.
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This simple example shows that extending a function o� the set Γ can result into an
ill-conditioned operation if the set is complicated. In the following proposition, we show
that a function f with intrinsic bandlimit B on Γ admits an approximate extension that is a
bandlimited function with band CB where C is some universal constant that depends on the
geometry of Γ. In order to adopt a broader point of view, instead of considering the eigen-
functions of the Laplace-Beltrami operator ∆, we will study the extension of eigenfunctions
of the following elliptic operator:

∆∆ = ∆ + E ,

where E is a bounded potential function. We have seen in the previous chapter, Sections
2.3.2, 2.3.3 and 2.3.4, that this type of di�erential operator arises naturally as the limit
of several families of operators. We keep the same notations for the eigenfunctions and
eigenvalues, namely,

∆∆φj = ν2
j φj .

Proposition 15. Let δ > 0 be a preset accuracy. There exists a constant C > 0 such that
for all j ≥ 0, one can construct a function Fj de�ned on Rn satisfying:

• Fj is an extension of φj, i.e.,

Fj(x) = φj(x) for all x ∈ Γ ,

• Fj can be approximated to relative precision δ by a bandlimited function Bj of band
Cνj: (∫

Rn |Fj(x)−Bj(x)|2 dx
) 1

2

(∫
Rn |Fj(x)|2 dx

) 1
2

≤ δ .

The constant C depends on the precision δ and on the geometry of Γ. More precisely,
if the di�usion metric on Γ is comparable to the Euclidean metric of Rn, then C can be
controlled. For instance, in the example of �gure 3.4, C can be quite large because of the
oscillations of the curve.

Proof. For any x ∈ Rn, let x′ ∈ Γ be such that

‖x− x′‖ = inf
y∈Γ

‖x− y‖ .

De�ne Fj by
Fj(x) = e−ν2

j ‖x−x′‖2φj(x′) .

The function Fj is an extension of φj to Rn. To estimate the decay of its spectrum, we need
to bound its gradient ∇mFj(x) (tensor of order m). The Leibnitz formula yields:

‖∇mFj(x)‖ ≤
m∑

i=0

(
m

i

)
‖∇i(e−ν2

j ‖x−x′‖2)‖.‖∇m−i(φj(x′))‖ .

The triangular inequality in L2(Rn) gives
(∫

Rn

‖∇mFj(x)‖2dx

) 1
2

≤
m∑

i=0

(
m

i

)(∫

Rn

‖∇i(e−ν2
j ‖x−x′‖2)‖2.‖∇m−i(φj(x′))‖2dx

) 1
2

.

To evaluate each term of the right-hand side, we make use of the following lemma:
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Lemma 16. Let fν be a function on Rn of the form

fν(x) = g(ν‖x− x′‖)hν(x′) ,

where g has an exponential decay. Again, let M > 0 be a bound on the curvature of Γ. Then,
if ν > 4M , ∫

Rn

|f(x)|dx ³ ν−(n−d)

∫ +∞

0
|g(r)|rn−ddr

∫

Γ
|hν(u)|du .

Because of the decay of g, up to exponentially small terms, this integral can be computed
on the set Ων of all points at distance less than or equal to 1

ν . We can associate to any x ∈ Rn

a pair (u, t) where x′ = u is the closest point to x ∈ Ων and t = x − u. Conversely, to any
u ∈ Γ and t normal to Γ at u, we can associate the point x = u + t. Let J(u, t) denote the
Jacobian of the change of variable (u, t) 7→ x. The lemma follows from the fact that J is
bounded from below and above for all x ∈ Ων . Indeed, �rst, a variation dt of t entails the
same variation of x. Second, a variation du in the tangent plane at u entails a variation of x
of order (1+2α(u)|‖t‖)du in the tangent direction, where |α(u)| ≤ M , and of order ‖t‖du2 in
the normal direction. To conclude, since ‖t‖ < 1

ν < 1
4M , we obtain that 1−2α(u)‖t‖ > 1− 1

2
and 1 + 2α(u)‖t‖ < 1 + 1

2 . Finally,

1
2

< J(u, t) <
3
2

.

Therefore, with the same constants,
∫

Rn

|fν(x)|dx ³
∫

Γ
|hν(u)|du

∫

Rn−d

g(ν‖t‖)dt ,

which ends the proof of the lemma.
Going back to the proof of the proposition, the lemma implies that

(∫

Rn

‖∇mFj(x)‖2dx

) 1
2

≤
m∑

i=0

(
m

i

)
Kiν

i−n−d
2

j

(∫

Γ
‖∇m−iφj(u)‖du

) 1
2

, (3.3)

where Ki is a constant of the order of magnitude of the L2 norm of the ith derivative of the
univariate Gaussian at scale 1. What remains to be done is to bound the L2(Γ)-norm of the
derivatives of φj . To do so, we need the following result:

Lemma 17. For all s ≥ 0, there exists C ′
s such that

‖φj‖s =


 ∑

|α|≤s

∫

Γ
|∂αφj(u)|2du




1
2

≤ C ′
sν

i
j .

This lemma follows from the classical theory of elliptic operators, which says that since
we can bound the norm of ∆∆kφj , we have a bound on all derivatives of order less than or
equal to 2k.

Let
CE = sup

u∈Γ
|E(u)| .
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For i = 0, the lemma is trivial, and for i = 1, it results from an integration by parts as

‖∇φj‖2
Γ = 〈∆φj , φj〉Γ by the Stokes formula,

= 〈∆∆φj , φj〉Γ − 〈Eφj , φj〉Γ ,

≤ ν2
j + CE ,

and therefore
‖φj‖2

1 = ‖φj‖2
Γ + ‖∇φj‖2

Γ = 1 + ν2
j + CE ≤ C ′2

1 ν2
j .

In [12], p 262, it is shown that if L is an elliptic operator of order k, then for all i ≥ k
and all f de�ned on Γ, we have:

‖f‖i ≤ C ′(‖Lf‖i−k + ‖f‖i−1) . (3.4)

We can now proceed by induction:

• for i = 2s and L = ∆∆s, identity (3.4) yields

‖φj‖2s ≤ C ′(‖∆∆sφj‖Γ + ‖φj‖2s−1)
≤ C ′(ν2s

j + C ′
2s−1ν

2s−1
j )

≤ C ′
2sν

2s
j ,

• for i = 2s + 1 and L = ∆∆s, identity (3.4) becomes

‖φj‖2s+1 ≤ C ′(‖∆∆sφj‖1 + ‖φj‖2s) .

We have

‖∆∆sφj‖2
1 = ‖∆∆sφj‖2

Γ + ‖∇∆∆sφj‖2
Γ by de�nition,

= ν4s
j + 〈∆∆∆sφj ,∆∆sφj〉Γ by the Stokes formula,

= ν4s
j + 〈∆∆s+1φj ,∆∆sφj〉Γ − 〈E∆∆sφj ,∆∆sφj〉Γ ,

≤ ν4s
j + ν

2(2s+1)
j + CEν4s

j ,

and �nally,

‖φj‖2s+1 ≤ C ′
(√

(1 + CE)ν4s
j + ν

2(2s+1)
j + C ′

2sν
2s
j

)
≤ C ′

2s+1ν
2s+1
j .

The lemma is now proven, and it allows us to �nish the proof of the proposition as from
equation (3.3), we can conclude that

(∫

Rn

‖∇mFj(x)‖2dx

) 1
2

≤ Cmν
m−n−d

2
j .

Now for a �xed value of m, de�ne

B̂j(ξ) =
{

F̂j(ξ) if ‖ξ‖ < Cνj ,
0 otherwise,
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then, by the Parseval identity, we have
∫

Rn

|Fj(x)−Bj(x)|2 dx =
∫

‖ξ‖>Cνj

|F̂j(ξ)|2dξ ,

≤
∫

‖ξ‖>Cνj

|F̂j(ξ)|2 ‖ξ‖2m

(Cνj)2m
dξ ,

≤ 1
(Cνj)2m

∫

Rn

‖∇mFj(x)‖2dx ,

≤ C2
m

C2m
ν
−(n−d)
j .

Form lemma 16, we have ∫

Rn

|Fj(x)|2dx ≥ K2ν
−(n−d)
j

for some K > 0, and we merely have to pick C so that

C
1
m
m

KC
< δ .

Recall that EB is the bandlimited extension operator corresponding to band B. From
now on, we set B = Cνj . The consequence of this proposition is that, because of its optimal
property, the extension provided by EB must have an energy on Rn that is less than or
equal to that of the extension that we constructed in the proof above. This means that the
numerical support of EBφj will be included in a tube of radius 1

νj
around Γ. Theoretically,

it could be much thinner, but because of the Heisenberg principle, then the support cannot
really be smaller:

Lemma 18. The standard deviation of the extension EBφj along any normal direction to
Γ is at least equal to C′

νj
for some C ′ > 0 independent of νj.

Proof. Let f be the restriction of EBφj on a line that is normal to Γ. Then f is a univariate
bandlimited function of band Cνj . Let

Var(f) =

∫
R(x− x)2|f(x)|2dx∫

R |f(x)|2dx

and
Var(f̂) =

∫
R(ξ − ξ)2|f̂(ξ)|2dξ∫

R |f̂(ξ)|2dξ

be the variances of f in the space and frequency domains, x and ξ being the corresponding
means. Then since f is bandlimited,

∫

R
ξ2|f̂(ξ)|2dξ ≤ (Cνj)2

∫

R
|f̂(ξ)|2dξ ,

and consequently, Var(f̂) ≤ (Cνj)2 (the variance is always smaller than the second moment).
The Heisenberg uncertainty principle implies that Var(f) ≥ C ′2ν−2

j .
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As a conclusion, the extension operation satis�es a certain version of the Heisenberg
principle relating the spectrum of the operator ∆∆ to the space and frequency localizations
of the extensions of its eigenfunctions φj . This principle says that if ∆∆φj = ν2

j φj , then the
operator EB extends φj to a bandlimited function of band O(νj) and localized in a tube of
radius O( 1

νj
) around Γ.

It is worthy to mention that similar results can be obtained for, say, Gaussian kernels.
Let's �nish by an illustration, in the Gaussian case, as the calculations are easy. Let Γ
be the unit circle in the plane, and let's look at the Gaussian extensions. In this case,
the Fourier basis {ψj(x) = 1√

2π
eijθ} constitutes the set of eigenfunctions of any rotation

invariant operator (such as ∆ + E). For x ∈ R2 with polar coordinates (r, α), and y ∈ Γ of
polar coordinates (1, β), we have ‖x− y‖2 = r2 + 1− 2r cos(α− β) and thus

KBψj(x) =
1√
2π

∫ 2π

0
e−B2(r2+1−2r cos(α−β))eijβdβ ,

=
1√
2π

eijαe−B2(r2+1)

∫ 2π

0
e2B2r cos β cos(jβ)dβ ,

= ψj(
x

‖x‖)e−B2(r2+1)2πijJj(2iB2r2) ,

where the last equality comes from 9.1.21 in [1]. Therefore taking r = 1 allows to identify
λj = 2πije−2B2

Jj(2iB2), which means that the eigenvalues decay roughly like Bjj−j by
9.3.1 in [1]. We deduce that the extension of ψj has the form

Ψj(x) = EBψj(x) =
eijα

√
2π

Jj(2iB2r2)
Jj(2iB2)

e−B2(r2−1) ,

which implies that each extension Ψj decays approximately like a Gaussian at scale 1
B .

3.7.3 Multiscale extension
For a given B′ > 0, let KB′ be the integral operator with Bessel kernel of band B′ acting
on functions de�ned on Γ. In other words, to obtain the geometric harmonics of band B′,
we need to diagonalize KB′ on the set Γ. As we have explained, from these geometric
harmonics, we can de�ne an extension operator EB′ that will extend functions from the set
Γ as bandlimited functions of band B′ on Rn

In the previous chapter, Section 2.3.2, Proposition 7 shows that

KB′φj(x) = C1B
′−d

[(
1− C2

2

ν2
j

B′2

)
φj(x) +O

(
1

B′ 3
2

)]
for x ∈ Γ , (3.5)

where C1 and C2 are constants that can be computed from the moments of the Bessel
kernel. This identity establishes the relation between the eigenvalues and eigenfunctions of
the di�erent operators KB′ for B′ > 0. In particular, it asserts that if B′ À νj , then the
eigenfunction φj of ∆∆ is an approximate eigenfunction of KB′ with eigenvalue B′−d(1 −
C2

2

ν2
j

B′2 ):

λj(B′) ≈ λ0(B′)

(
1− C2

2

ν2
j

B′2

)
.
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Consequently, as soon as
B′ >

C2νj√
1− δ

,

φj belongs to the set L2
δ(Γ, dµ) of functions that can be extended with condition number δ.

More generally, we know that KtB′2
B′ φj(x) ≈ C3e

−C2
2 tν2

j and therefore C2
2ν2

j ≈ B′2 log(λ0(B′)
λi(B′)

).
Equation (3.5) also says that the �rst few eigenfunctions of KB′ converge rapidly to their
limit values as B′ → +∞, and as a consequence, the �rst eigenfunctions of KB1 and KB2

are approximately the same if B1 and B2 are su�ciently large.
On another hand, from the result of the previous section, we also know that by setting

B = Cνj , for some constant C, the operator EB extends φj to a distance of the order of
1
νj

to the set Γ. All these simple observations give rise to a natural multiscale extension
scheme:

Multiscale extension scheme

1. Fix a condition number δ and the �nest scale 2−I . Let C > 0 be
larger than the constant in Proposition 15 and satisfying

(
1− 1

C2

)
> δ .

De�ne BI = C2I and compute the geometric harmonics at the
�nest scale

KBI
ψj(x) = λj(BI)ψj(x) .

Also, de�ne

νj =
BI

C2

√
log

(
λ0(BI)
λj(BI)

)
.

2. Group the νj 's in dyadic packets: for i ≤ I, de�ne

Si = {j such that 2i−1 ≤ νj < 2i} ,

and de�ne Bi = C2i. If j ∈ Si, then ψj can be extended at scale
2−i as a bandlimited function of band Bi by:

Ψj = EBiψj .

3. For any function f de�ned on Γ, compute its expansion in {ψj}:

f ≈
∑

λJ≥δλ0

cjψj .

4. Extend f as

F =
∑

i≤I

∑

j∈Si

cjΨj =
∑

i≤I

∑

j∈Si

cjEBiψj .

Let's justify the steps of the algorithm. First, if the smallest scale is su�ciently �ne, i.e,
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if I is large enough, then the condition
(

1− 1
C2

)
> δ

ensures that λj(Bi) > δλ0(Bi) and all extensions are well-de�ned. Second, the expression
of νj entails that νj ≈ νj for small values of j (�rst eigenfunctions). Last, the scale Bi is
picked up so that we extend ψj , j ∈ Si, to an optimal distance (≈ 2−i) given the frequency
band 2i of this function (here, optimality refers to the Heisenberg principle explained in the
previous section).

Note that this algorithm can be adapted to the eigenfunctions of the Laplace-Beltrami
operator: f is developed onto the eigenfunctions of ∆, each of which being extended to
the corresponding distance. Also, there is no reason to work on the global level, and it is
possible to localize functions using windows.
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Figure 3.5: Top: the distribution of λj

λ0
(left) and of νj (right). The groups of frequencies

are indicated by the horizontal lines. Middle and bottom, clockwise: extensions of φ1(s) =
cos(2πs), φ7(s) = cos(8πs), φ15(s) = cos(16πs) and φ31(s) = cos(32πs) from the unit circle
to the plane.
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Conclusion and future work

Di�usion processes provide a uni�ed framework for addressing the problem of �nding relevant
geometric descriptions of data sets. It is possible to design a speci�c di�usion matrix that
will locally preserve some speci�c metric or exhibit a particular behavior, and the di�usion
maps that it de�nes will produce a global representation of the data that aggregates the local
information. However, a certain number of questions still need to be answered. For instance
it would be interesting to know how to extend the di�erent normalizations presented in this
thesis to fractal sets. The point here is that on those sets, it might be di�cult to directly
de�ne a Laplacian, whereas constructing a relevant di�usion kernel might be possible as this
object is very regular. How would the points be embedded? Another range of applications
concerns di�erential equations and dynamical systems. As we have shown, eigenfunctions
of di�usion matrices allow to integrate, compare and organize trajectories of a di�erential
system. This is really the �rst step towards a generalization of di�erential calculus in terms
of di�usion processes.

By their capacity to perform out-of-sample extension of functions de�ned on a data
set, the geometric harmonics are a valuable tool for statistical learning. The fact they also
provide a low distortion embedding of the data underlines the potential interest in visual-
ization applications. The properties of the associated restriction and extension operators
provide a simple way to investigate the relation between the intrinsic and extrinsic geome-
tries. In particular, the geometric harmonics allow to de�ne a multiscale extension scheme,
and their ability to transpose signal processing concepts to manifolds opens the door to the
construction of a sampling theory for sets.

Last, practical concerns as well as the need for a better understanding of the geometry
of data sets in high dimension motivate the development of fast and e�cient methods for
the computation of the eigendecomposition of all these kernels.
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Appendix A

Expression of the Bessel kernels

In what follows, we derive the form of the kernel corresponding to functions whose Fourier
transform is the indicator function of the ball of radius c

2 centered at the origin, namely:

kc(x, y) =
∫

‖ξ‖< c
2

e2iπ〈ξ,x−y〉dξ =
( c

2

)n
2

Jn
2
(πc‖x− y‖)
‖x− y‖n

2

,

where Jν is the Bessel function of the �rst kind of order ν. This kernel will be termed "Bessel
kernel".

Since the kernel is really a function of ‖x−y‖, we are looking for the form of the Fourier
transform of the indicator of the unit ball in dimension n. To do so, we make use of a result
known under the name of the Bochner-Coifman-Howe periodicity relations:

Lemma 19. Let f be a radial function, and let Fnf(ξ) = hn(‖ξ‖2) be its Fourier transform
in dimension n.

Then the Fourier transforms of f in dimension n and n + 2 are related in the following
manner:

hn+2(u) = − 1
π

h′n(u) .

In other words, to compute the Fourier transform hn+2(‖ξ‖2) of f in Rn+2, one can start
from the Fourier transform hn(‖ξ‖2) in dimension n, view this function as a function of ‖ξ‖2

and compute its derivative in this variable.

Proof. Since any radial function or tempered distribution can be approximated as a sum of
Gaussians, one merely needs to verify the relation for f(x) = e−αr2 . In this case,

Fnf(ξ) =
(π

α

)n
2

e−
π2ξ2

α .

Thus
hn(u) =

(π

α

)n
2

e−
π2u

α ,

and the identity is satis�ed.

Using this lemma we can now conclude:
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Proposition 20. In dimension n, the Bessel kernel has the following form:

kc(x, y) =
( c

2

)n
2

Jn
2
(πc‖x− y‖)
‖x− y‖n

2

.

Moreover, if n is odd, then the simpler formula can be used:

kc(x, y) = Mc

(
1
r

d

dr

)n−1
2

sinc(cr) ,

where r = ‖x− y‖ and
Mc =

( c

2

)n
2
√

2c(−1)
n−1

2 .

Proof. By a trivial scaling argument, we may assume that c = 2.
Then if n = 1, then

k(x, y) =
∫ 1

−1
e2iξπ(x−y)dξ = 2sinc(2‖x− y‖) =

J 1
2
(2π‖x− y‖)
‖x− y‖ 1

2

,

where the third equality is obtained using 10.1.1 and 10.1.11 in [1].
If n = 2, then in polar coordinates (ρ, θ):

∫

‖ξ‖<1
e2iπ〈ξ,x−y〉dξ =

∫ 1

0

∫ 2π

0
e2iπrρ cos θdθρdρ ,

= 2π

∫ 1

0
J0(2πrρ)ρdρ by 9.1.21 in [1],

=
1

2πr2

∫ 2πr

0
uJ0(u)du ,

= −1
r
J ′0(2πr) since by 9.1 in [1] (uJ0(u))′ = −uJ0(u) ,

=
J1(2πr)

r
by 9.1.28 in [1].

For higher orders we proceed by induction on n, noting that if

h(u) =
Jn−2

2
(2π

√
u)

u
n−2

4

,

then

h′(u) =
J ′n−2

2

(2π
√

(u)) π√
(u)

u
n−2

4 − Jn−2
2

(2π
√

u)n−2
4 u

n−2
4
−1

u
n−2

2

,

=
2π
√

uJ ′n−2
2

(2π
√

u)− n−2
2 Jn−2

2
(2π

√
u)

2u
n−2

4
+1

,

= −
π
√

uJn
2
(2π

√
u)

u
n−2

4
+1

according 9.1.27 in [1] ,

= −
πJn

2
(2π

√
u)

u
n
2

.
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Now invoking lemma 19 yields the result. Finally, to obtain a formula in terms of the variable
r instead of r2, notice that d(r2) = rdr, and this implies that for odd values of n

k(x, y) = 2(−1)
n−1

2

(
1
r

d

dr

)n−1
2

sinc(2r) .
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Appendix B

Bessel kernels in high dimension

In high dimension n, the Bessel kernels rescaled by a factor √n converge to a Gaussian
function. This fact was pointed out by von Neumann, and a detailed proof was given by
Schoenberg [26]. For the sake of completeness, we reproduce his proof here. For a positive
real number z, let z! denote the number

Γ(z + 1) =
∫ +∞

0
e−ttzdt

Proposition 21. For n ∈ N\{0} and r ≥ 0, let

Kn(r) =
Jn

2
(2πr)

r
n
2

.

Then
lim

n→+∞
Kn(

√
2nr)

Kn(0)
= e−2πr2

uniformly for all r ≥ 0. Moreover,

Kn(0) =
π

n
2(

n
2

)
!

is equal to the volume Vn of the unit ball in Rn.

Proof. The Bessel functions of the �rst type are analytic on the real line, and their power
series expansion is [1]:

Jν(2πr) =
∑

l≥0

(−1)l

22l+ν l!(ν + l)!
(2πr)2l+ν .

Consequently,

Kn(
√

2nr) =
∑

l≥0

(−1)l(2π)2l+n
2

22l+n
2 l!

(
n
2 + l

)
!
2lnlr2l ,

=
π

n
2(

n
2

)
!

∑

l≥0

(
n
2

)l

(
n
2 + 1

)
...

(
n
2 + l

) (−4π2)l

l!
r2l . (B.1)
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Since for each value of l ≥ 0,

lim
n→+∞

(
n
2

)l

(
n
2 + 1

)
...

(
n
2 + l

) = 1 ,

and for all l ≥ 0 and n > 0
(

n
2

)l

(
n
2 + 1

)
...

(
n
2 + l

) ≤ 1 ,

it can easily be checked that

lim
n→+∞

1
π

n
2

(n

2

)
!Kn(

√
2nr) = e−2πr2

uniformly for r in a bounded interval.
To prove the uniform convergence for all r ≥ 0, it su�ces to bound 2

n
2

(
n
2

)
!Kn(

√
2nr)

for all n by the same function tending to zero at +∞.
By de�nition,

Kn(r) =
∫

‖ξ‖<1
e2iπr〈u,ξ〉dξ ,

where u is any unit vector. Notice that from (B.1),

Kn(0) =
π

n
2(

n
2

)
!
,

and in particular the volume Vn of the unit ball in dimension n is equal to this number. By
decomposing the unit ball in Rn into (n− 1)−dimensional balls, we obtain

Kn(r) =
∫ 1

−1
e2iπrρ

(√
1− ρ2

)n−1
Vn−1dρ = 2Vn−1

∫ 1

0
cos(2πrρ)

(√
1− ρ2

)n−1
dρ ,

It follows that

Kn(0) = 2Vn−1

∫ 1

0

(√
1− ρ2

)n−1
dρ ,

thus

Kn(
√

2nr)
Kn(0)

=
∫ 1

0
cos(2π

√
2nrρ)

(
1− ρ2

)n−1
2

∫ 1
0 (1− s2)

n−1
2 ds

dρ .

For ρ ∈ [0, 1], de�ne the variable t ∈ [0, 1] by

t =
∫ ρ

0

(
1− t2

)n−1
2

∫ 1
0 (1− s2)

n−1
2 ds

dt ,
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It can be veri�ed that since log(1− s2) ≥ −s2 − s4

2 ,

ρ′(t) ≥
∫ 1

0
(1− s2)

n−1
2 ds ,

≥
∫ 1

0
e−

n−1
2

(s2+ s4

2
)ds ,

≥
∫ 1

0
e−ns2

ds ,

≥ 1√
n

∫ √
n

0
e−s2

ds ,

≥ C√
n

.

Therefore

Kn(
√

2nr)
Kn(0)

=
∫ 1

0
cos(2π

√
2nrρ(t))dt ,

=
∫ 1

0

1
2π
√

2nrρ′(t)
cos(2π

√
2nrρ(t))2π

√
2nrρ′(t)dt ,

≤ C ′

r

∫ 1

0
cos(2π

√
2nrρ(t))2π

√
2nrρ′(t)dt ,

≤ C ′

r
.

since ρ(0) = 0 and ρ(1) = 1.
Finally, it has been proven that for all n ≥ 1,

Kn(
√

2nr)
Kn(0)

≤ C ′

r
,

and the uniform convergence follows.
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