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Abstract

We describe a method to recover the underlying parametrization of scattered data
(mi) lying on a manifold M embedded in high-dimensional Euclidean space. The method,
Hessian-based Locally Linear Embedding (HLLE), derives from a conceptual framework
of Local Isometry in which the manifold M , viewed as a Riemannian submanifold of
the ambient Euclidean space Rn, is locally isometric to an open, connected subset Θ of
Euclidean space Rd. Since Θ does not have to be convex, this framework is able to handle
a significantly wider class of situations than the original Isomap algorithm.

The theoretical framework revolves around a quadratic form H(f) =
∫
M ||Hf (m)||2F dm

defined on functions f : M 7→ R. Here Hf denotes the Hessian of f , and H(f) averages
the Frobenius norm of the Hessian over M . To define the Hessian, we use orthogonal
coordinates on the tangent planes of M .

The key observation is that, if M truly is locally isometric to an open connected subset
of Rd, then H(f) has a (d+1)-dimensional nullspace, consisting of the constant functions
and a d-dimensional space of functions spanned by the original isometric coordinates.
Hence, the isometric coordinates can be recovered up to a linear isometry.

Our method may be viewed as a modification of the Locally Linear Embedding and our
theoretical framework as a modification of the Laplacian Eigenmaps framework, where we
substitute a quadratic form based on the Hessian in place of one based on the Laplacian.
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1 Introduction

A recent article in Science [1] proposed to recover a low-dimensional parametrization of high-
dimensional data by assuming that the data lie on a manifold M which, viewed as a Riemannian
submanifold of the ambient Euclidean space, is globally isometric to a convex subset of a low-
dimensional Euclidean space. This bold assumption has been surprisingly fruitful, although
the extent to which it holds is not fully understood.

It is now known [4, 5] that there exist high-dimensional libraries of articulated images for
which the corresponding data manifold is indeed locally isometric to a subset of a Euclidean
space; however it is easy to see that in general, the assumption that the subset will be convex
is unduly restrictive. Convexity can fail in the setting of image libraries due to (i) exclusion
phenomena [4, 5], where certain regions of the parameter space would correspond to collisions of
objects in the image, or (ii) unsystematic data sampling, which investigates only a haphazardly
chosen region of the parameter space.

In this paper, we describe a method which works to recover a parametrization for data lying
on a manifold which is locally isometric to an open, connected subset Θ of Euclidean space
Rd. Since this subset need not be convex, while the original method proposed in [1] demands
convexity, the new proposal significantly expands of the class of cases which can be solved by
isometry principles.

Justification of our method follows from properties of a quadratic formH(f) =
∫

M
||Hf (m)||2Fdm

defined on functions f : M 7→ R. H(f) measures the average, over the data manifold M , of the
Frobenius norm of the Hessian of f . To define the Hessian, we use orthogonal coordinates on
the tangent planes of M .

The key observation is that, if M is locally isometric to an open connected subset of Rd, then
H(f) has a d+1 dimensional nullspace, consisting of the constant function and a d-dimensional
space of functions spanned by the original isometric coordinates. Hence, the isometric coordi-
nates can be recovered, up to a rigid motion, from the null space of H(f).

Our method may be viewed as variant of the Local Linear Embedding method of Roweis
and Saul [2]; and our conceptual framework may be viewed as a modification of the Laplacian
Eigenmaps framework of Belkin and Niyogi [3]. In these modifications, we substitute a quadratic
form based on the Hessian in place of the original ones based on the Laplacian. The point of
interest is that a linear function has everywhere vanishing Laplacian, but not every function
with everywhere vanishing Laplacian is linear, while a function is linear if and only if it has
everywhere vanishing Hessian. By substituting the Hessian for the Laplacian, we find a global
embedding which is nearly linear in every set of local tangent coordinates.

We describe an implementation of this procedure on sampled data and demonstrate that it
performs consistently with the theoretical predictions on a variant of the ‘Swiss Roll’ example,
where the data are not sampled from a convex region in parameter space.
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2 Notation and Motivation

Suppose we have a parameter space Θ ⊂ Rd and a smooth mapping ψ : Θ 7→ Rn, where the
embedding space Rn obeys d < n. We speak of the image M = ψ(Θ) as the manifold, although
of course from the viewpoint of manifold theory it is actually the very special case of a single
coordinate patch.

The vector θ can be thought of as some control parameters underlying a measuring device,
and the manifold as the enumeration m = ψ(θ) of all possible measurements as the parameters
vary. Thus the mapping ψ associates parameters to measurements.

In such a setting, we are interested in obtaining data examples mi, i = 1, ..., N showing (we
assume) the results of measurements with many different choices of control parameters (θi,
i = 1, ..., N .) We will speak of M as the data manifold, i.e. the manifold on which our data mi

must lie. In this paper, we consider only the situation where all data points mi lie exactly in
the manifold M .

There are several concrete situations related to image analysis and acoustics where this
abstract model may apply:

• Scene Variation – Pose variations, facial gesturing.

• Imaging Variations – Changes in the position of lighting sources and changes in the
spectral composition of lighting color.

• Acoustic Articulations – Changes in distance from source to receiver. Changes in position
of the speaker, or in the direction of the speaker’s mouth.

In all such situations, there is an underlying parameter controlling articulation of the scene;
here are two examples.

• Facial Expressions – The tonus of several facial muscles control facial expression; concep-
tually, a parameter vector θ records the contraction of each of those muscles.

• Pose Variations – Several joint angles (shoulder, elbow, wrist, ...) control the combined
pose of the elbow-wrist-finger system in combination.

We also speak of M as the articulation manifold.
In the above settings, and presumably many others, we can make measurements (mi), but

without having access to the corresponding articulation parameters (θi).
It would be interesting to be able to recover the underlying parameters θi from the observed

points mi on the articulation manifold. Thus we have the

Parametrization Recovery Problem: Given a collection of data points (mi) on an ar-
ticulation manifold M , recover the mapping ψ and the parameter points θi.

As stated, this is of course ill-posed, since if ψ is one solution, and φ : Rd 7→ Rd is a morphing
of the Euclidean space Rd, the combined mapping ψ ◦ φ is another solution. For this reason,
several extra assumptions must be made in order to uniquely determine solutions.
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3 Isomap

In an insightful article, Tenenbaum, de Silva, and Langford [1] proposed a method that, under
certain assumptions, could indeed recover the underlying parametrization of a data manifold.
The assumptions were:

(ISO1) Isometry. The mapping ψ preserves geodesic distances. That is, define a distance between
two points m and m′ on the manifold according to the distance travelled by a bug walking
along the manifold M according to the shortest path between m and m′. Then the
isometry assumption says that

G(m,m′) = |θ − θ′|, ∀m↔ θ,m′ ↔ θ′,

where | · | denotes Euclidean distance in Rd.

(ISO2) Convexity. The parameter space Θ is a convex subset of Rd. That is, if θ, θ′ is a pair of
points in Θ, then the entire line segment {(1− t)θ + tθ′ : t ∈ (0, 1)} lies in Θ.

Tenenbaum et al. [1] introduced a procedure, Isomap, which, under these assumptions,
recovered Θ up to rigid motion. That is, up to a choice of origin and a rotation and possible
mirror imaging about that origin, Isomap recovered Θ. In their paper, they gave an example
showing successful recovery of articulation parameters from an image database that showed
many views of a wrist rotating and a hand opening at various combinations of rotation/opening.

The stated assumptions lead to two associated questions:

(Q1) Whether interesting articulation manifolds have isometric structure; and

(Q2) Whether interesting parameter spaces are truly convex.

Donoho and Grimes [4, 5] studied these questions in the case of image libraries. Namely,
they modeled images m as continuous functions m(x, y) defined on the plane (x, y) ∈ R2, and
focused attention on images in special articulation families defined by certain mathematical
models. As one example, they considered images of a ball on a white background, where the
underlying articulation parameter is the position of the ball’s center. In this model, let Bθ

denotes the ball of radius 1 centered at θ ∈ R2, and define

mθ(x, y) = 1Bθ
(x, y).

This establishes a correspondence between θ ∈ R2 and mθ in L2(R2). After dealing with
technicalities associated with having L2(R2) as the ambient space in which M is embedded,
they derived expressions for the metric structure induced from L2(R2) and showed that indeed,
if Θ is a convex subset of R2, then isometry holds:

G(θ, θ′) = |θ − θ′|, ∀θ, θ′ ∈ Θ

They found that isometry held for a dozen examples of interesting image articulation families,
including cartoon faces with articulated eyes, lips, and brows. Hence (Q1) admits of positive
answers in a number of interesting cases.
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On the other hand, in their studies of image articulation families, Donoho and Grimes [4, 5]
noted that (Q2) can easily have a negative answer. A simple example occurs with images
showing two balls which articulate by translation, as in the single-ball case mentioned above,
but where the ball centers obey exclusion: the two balls never overlap. In this case, the
parameter space Θ ⊂ R4 becomes nonconvex; writing θ = (θ1, θ2) as a concatenation of the
parameters of the two ball centers, we see that it is missing a tube where |θ1 − θ2| ≤ 1.

The case of two balls moving independently and subject to exclusion is merely one in a series
of examples where the articulation manifold fails to obey (ISO1) and (ISO2), but instead obeys
something weaker:

(LocISO1) Local Isometry. In a small enough neighborhood of each point m, geodesic distances to
nearby points m′ in M are identical to Euclidean distances between the corresponding
parameter points θ and θ′.

(LocISO2) Connectedness. The parameter space Θ is a open connected subset of Rd.

In such settings, the original assumptions of Isomap are violated, and, as shown in [4, 6], the
method itself fails to recover the parameter space up to a linear mapping. Donoho and Grimes
[6] pointed out the possibility of recovering non-convex Θ by applying Isomap to a suitable
decomposition of M into overlapping geodesically convex pieces. However, a fully automatic
procedure based on a general principle would be preferable in solving this problem. In this
paper we propose such a procedure.

4 The H-Functional

We now set up notation to define the quadratic form H(f) referred to in the abstract and
introduction.

We suppose that M ⊂ Rn is a smooth manifold, and so the tangent space Tm(M) is well-
defined at each point m ∈ M . Thinking of the tangent space as a subspace of Rn, we can
associate to each such tangent space Tm(M) ⊂ Rn an orthonormal coordinate system using the
inner product inherited from Rn. (It will not matter in the least how this choice of coordinate
system varies from point to point in M).

Think momentarily of Tm(M) as an affine subspace of Rn which is tangent to M at m, with
the origin 0 ∈ Tm(M) identified with m ∈M . There is a neighborhood Nm of m such that each
point m′ ∈ Nm has a unique closest point V ′ ∈ Tm(M), and such that the implied mapping
m′ 7→ V ′ is smooth. The point in Tm(M) has coordinates given by our choice of orthonormal
coordinates for Tm(M). In this way, we obtain local coordinates for a neighborhood Nm of

m ∈ M . call them x
(tan,m)
1 , ... , x

(tan,m)
d , where we retain tan,m in the notation to remind us

that they depend on the way in which coordinates were defined on Tm(M).
We now use the local coordinates to define the Hessian of a function f : M 7→ R which is C2

near m. Suppose that m′ ∈ Nm has local coordinates x = x(tan,m). Then the rule g(x) = f(m′)
defines a function g : U 7→ R, where U is a neighborhood of 0 in Rd. Since the mapping m′ 7→ x
is smooth, the function g is C2 We define the Hessian of f at m in tangent coordinates as the
ordinary Hessian of g:

(H tan
f (m))i,j =

∂

∂xi

∂

∂xj

g(x)
∣∣∣
x=0

.
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In short, at each point m, we use the tangent coordinates and differentiate f in that coordinate
system. We call this construction the tangent Hessian for short.

We remark that, unfortunately, there is some ambiguity in this definition of the Hessian,
because the entries in the Hessian matrix Htan

f depend on the choice of coordinate system on the
underlying tangent space Tm(M). More properly, if we consider another choice of orthonormal
coordinates in Tm(M), we get another system of local coordinates in Nm, and for that set of
local coordinates, we get another Hessian matrix, which can be quite different.

Luckily, it is possible to extract invariant information about f . Comparing two different
Hessians, H and H ′, say, which could be obtained as a result of two different choices in the
local coordinate system, we have the relation

H ′ = UHUT , (1)

where U is the orthonormal matrix translating one set of coordinates into the other. Although
this says that H and H ′ can differ a great deal in their entries, it turns out that their sizes must
be similar. For a d by d matrix A, let ‖A‖F = (

∑
ij A

2
ij)

1/2 denote the usual Frobenius norm of
matrices; then for two matrices H and H ′ obeying (1), we have ‖H ′‖F = ‖H‖F . Consequently,

provided we always restrict attention just to the Frobenius norm of H
(tan)
f , our recipe gives a

well-defined quantity.
We now consider a quadratic form defined on C2 functions by

H(f) =

∫
M

||H(tan)
f (m)||2Fdm,

where dm stands for a probability measure on M which has strictly positive density everywhere
on the interior of M . H(f) measures the average ‘curviness’ of f over the manifold M .

Theorem 1 Suppose M = ψ(Θ) where Θ is an open connected subset of Rd, and ψ is a locally
isometric embedding of Θ into Rn. Then H(f) has a d+ 1 dimensional nullspace, consisting of
the constant function and a d-dimensional space of functions spanned by the original isometric
coordinates.

We give the proof in Appendix A.

Corollary 2 Under the same assumptions as Theorem 1, the original isometric coordinates θ
can be recovered, up to a rigid motion, by identifying a suitable basis for the null space of H(f).

We sketch the argument for the corollary. Fix a point m0 in M . Recall the orthogonal
coordinate system chosen for Tm0(M) gives us a local coordinate system – a set of d functions

x
(tan,m0)
1 , ..., x

(tan,m0)
d – defined on a neighborhood Nm0 ⊂ M . The nullspace of H is d + 1

dimensional; consider the subspace V ⊂ nullspace(H) consisting of those functions f orthogonal
to 1 in the L2(M,dm) inner product. Within V , we can find a linearly independent set of
functions ψ1,..., ψd making a basis for V , and such that, if x refers to local coordinates x(tan,m0)

in the vicinity of m0, then ψj(m) = xj(m) + o(dist(m,m0)
2). The functions ψj provide the

required basis of V . The vector function ψ(m) = (ψj(m))d
j=1 gives an inverse to φ, up to a rigid

motion, i.e. we have ψ(φ(θ)) = Uθ + τ, where the orthonormal matrix U effects orthogonal
rotation, and adding τ effects a location shift. Hence, this recovers the original coordinates up
to rigid motion under an exact isometric embedding ψ. 2
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5 Hessian LLE

We now consider the setting where we have sampled data (mi) lying on M , and we would like
to recover the underlying parametrization ψ and underlying parameter settings θi, at least up
to rigid motion. Theorem 1 and its Corollary suggest the following algorithm for attacking
this problem. We model our algorithm structure on the original Locally Linear Embedding
algorithm [2]

Hessian LLE Algorithm:

Input: (mi : i = 1, ..., N) a collection of N points in Rn.

Parameters: d, the dimension of the parameter space; k, the size of the neighborhoods for
fitting.

Constraints: min(k, n) > d.

Output: (wi : i = 1, ..., N) a collection of N points in Rd, the recovered parametrization.

Procedure:

• Identify Neighbors. For each data point mi, i = 1, ...n, identify the indices corresponding
to the k-nearest neighbors in Euclidean distance. Let Ni denote the collection of those
neighbors. For each neighborhood Ni, i = 1, . . . , N , form a k × n matrix M i whose rows
consist of the re-centered points mj − m̄i, j ∈ Ni, where m̄i = Ave{mj : j ∈ Ni}.

• Obtain Tangent Coordinates. Perform a singular value decomposition of M i, getting
matrices U ,D, and V ; U is k by min(k, n). The first d columns of U give the tangent
coordinates of points in Ni.

• Develop Hessian Estimator. Develop the infrastructure for least-squares estimation of the
Hessian. In essence, this is a matrix H i with the property that if f is a smooth function
f : M 7→ R, and f j = (f(mi)), then the vector vi whose entries are obtained from f by
extracting those entries corresponding to points in the neighborhood Ni, then, the matrix
vector product H ivi gives a d(d + 1)/2 vector whose entries approximate the entries of
the Hessian matrix, ( ∂f

∂Ui∂Uj
).

• Develop Quadratic Form. Build a symmetric matrix Hij having, in coordinate pair ij,
the entry

Hi,j =
∑

l

∑
r

((H l)r,i(H
l)r,j).

Here by H l we mean, again, the d(d + 1)/2 by k matrix associated with estimating the
Hessian over neighborhood Nl, where rows r correspond to specific entries in the Hessian
matrix and columns i correspond to specific points in the neighborhood.
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• Find Approximate Null Space. Perform an eigenanalysis of H, and identify the d + 1-
dimensional subspace corresponding to the d + 1 smallest eigenvalues. There will be an
eigenvalue 0 associated with the subspace of constant functions; and the next d eigenvalues
will correspond to eigenvectors spanning a d-dimensional space V̂d in which our embedding
coordinates are to be found.

• Find Basis for Null Space. Select a basis for V̂d which has the property that its restriction
to a specific fixed neighborhood N0 (the neighborhood may be chosen arbitrarily from
those used in the algorithm) provides an orthonormal basis. The given basis has basis
vectors w1, . . .wd; these are the embedding coordinates.

The algorithm is a straightforward implementation of the idea of estimating tangent coordi-
nates, the tangent hessian and the empirical version of the operator H.

Remarks.

• Coding Requirements. This can be implemented easily in MATLAB, Mathematica, S-
Plus, R, or similar quantitative programming environment; our Matlab implementation
is available at www-stat.stanford.edu/̃ carrie.

• Storage Requirements. This is a ‘spectral method’, and involves solving the eigenvalue
problem for an N by N matrix. Although it would appear to require O(N2) storage,
which can be prohibitive, the storage required is actually proportional to n ·N – i.e. the
storage of the data points; in fact this storage can be kept on disk; the remaining storage
is basically proportional to Nk. Note that the matrix H is a sparse matrix, with about
O(Nk) nonzero entries.

• Computational Complexity. In effect, the computational cost difference between a sparse
and a full matrix using the sparse eigenanalysis implementation in Matlab 6.1 (eigs.m:
uses Arnoldi methods) depends on the cost of computing a matrix-vector product using
the input matrix. For our sparse matrix, the cost of each product is about 2kN , while for
a full matrix the cost is something like 2N2, making the overall cost of the sparse version
O(kN2).

• Building the Hessian Estimator. Consider first the case d = 2. Form a matrix X i

consisting of the following columns:

X i =
[
1 U·,1 U·,2 (U2

·,1) (U2
·,2) (U·,1 × U·,2)

]
. (2)

In the general case d > 2, create a matrix with 1 + d + d(d + 1)/2 columns; the first
d + 1 of these consist of a vector of ones, and then the first d columns of U ; the last
d(d+ 1)/2 consist of the various cross-products and squares of those d columns. Perform
the usual Gram-Schmidt orthonormalization process on the matrix X i, yielding a matrix
X̃ i with orthonormal columns; then define H i by extracting the last d(d+ 1)/2 columns
and transposing:

(H i)r,l = (X̃ i)l,1+d+r.
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• Finding the Basis for the Null Space. Let V be the N by d matrix of eigenvectors built
from the nonconstant eigenvectors associated to the (d + 1) smallest eigenvalues, and
let Vl,r denote the l-th entry in the r-th eigenvector of H. Define the matrix (R)rs =∑

j∈N1
Vj,rVj,s. The desired N by d matrix of embedding coordinates is obtained from:

W = V ·R−1/2.

In Section 7, we apply this recipe to a canonical isometric example.

6 Comparison to LLE / Laplacian Eigenmaps

The algorithm we have described bears substantial resemblance to the LLE procedure proposed
by Roweis and Saul [2]. The theoretical framework we have described also bears substantial
resemblance to the Laplacian Eigenmap framework of Belkin and Niyogi [3] , only with the
Hessian replacing the Laplacian. The Laplacian Eigenmap setup goes as follows: Define the
Laplacian operator in tangent coordinates by ∆(tan)(f) =

∑d
i=1

∂2f
∂x2

i
, and define the functional

L(f) =
∫

M
(∆(tan)(f))2 dm. This functional computes the average of the Laplacian operator

over the manifold; Laplacian Eigenmap methods propose to solve embedding problems by
obtaining the d + 1 lowest eigenvalues of L, and using the corresponding eigenfunctions to
embed the data in low-dimensional space. The LLE method is an empirical implementation
of the same principle, defining a discrete Laplacian based on a hearest-neighbor graph and
embedding scattered n-dimensional data by using the first d nonconstant eigenvectors of the
graph Laplacian.

7 Data Example

In this example, we take a random sample (mi) on the Swiss Roll surface [2] in three dimensions.
The resulting surface is like a rolled-up sheet of paper, and so is exactly isometric to Euclidean
space (i.e. to a rectangular segment of R2). Successful results of LLE and Isomap on such
data have been previously published [1, 2]. However, here we consider a change in sampling
procedure. Instead of sampling parameters in a full rectangle, we sample from a rectangle with
a missing rectangular strip punched out of the center. The resulting Swiss Roll is then missing
the corresponding strip, and so is not convex (while still remaining connected).

Using this model, and the code provided for Isomap and LLE in [1] and [2], respectively,
we test the performance of all three algorithms on a random sample of 600 points in three
dimensions. The points were generated using the same code published by Roweis and Saul
[2]. The results, as seen in Figure 1, show the dramatic effect that non-convexity can have on
the resulting embeddings. Although the data manifold is still locally isometric to Euclidean
space, the effect of the missing sampling region is to, in the case of Locally Linear Embedding,
make the resulting embedding functions asymmetric and nonlinear with respect to the original
parametrization. In the case of Isomap, the non-convexity causes a strong dilation of the missing
region, warping the rest of the embedding. Hessian LLE, on the other hand, embeds the result
almost perfectly into two-dimensional space.

The computational demands of Locally Linear Embedding algorithms are very different than
those of the Isomap distance-processing step. LLE and HLLE are both capable of handling
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Figure 1: Top left: original data; Top right: LLE embedding (Roweis and Saul code, k=12);
Bottom Left: Hessian Eigenmaps (Donoho and Grimes code, k=12); Bottom right: Isomap
(Tenenbaum, et al. code, k=7). The underlying correct parameter space that generated the
data is a square with a central square removed, similar to what is obtained by the Hessian
approach, bottom left.

large N problems, since initial computations are performed only on smaller neighborhoods,
while Isomap has to compute a full matrix of graph distances for the initial distance processing
step. However, both LLE and HLLE are more sensitive to the dimensionality of the data space,
n, because they must estimate a local tangent space at each point. While we introduce an
orthogonalization step in HLLE that makes the local fits more robust to pathological neighbor-
hoods than LLE, HLLE still requires effectively a numerical second differencing at each point
that can be very noisy at low sampling density.

8 Discussion

We have derived a new Local Linear Embedding algorithm from a conceptual framework that
provably solves the problem of recovering a locally isometric parametrization of a manifold
M when such a parametrization is possible. The existing Isomap method can solve the same
problem in the special case where M admits a globally isometric parametrization. This special
case requires that M be geodesically convex, or equivalently that Θ be convex.

Note that in dealing with data points (mi) sampled from a naturally-occurring manifold
M , we can see no reason that the probability measure underlying the sampling must have
geodesically convex support. Hence our local isometry assumption seems much more likely to
hold in practice than the more restrictive global isometry assumption in Isomap.

Hessian LLE requires the solution of N separate k-by-k eigenproblems and, similar to Roweis
and Saul’s original LLE algorithm, a single N by N sparse eigenproblem. The sparsity of this
eigenproblem can confer a substantial advantage over the general nonsparse eigenproblem. This
is an important factor distinguishing LLE techniques from the Isomap technique, which poses
a completely dense N by N matrix for eigenanalysis. In our experience, if we budget an
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equal programming effort in the two implemntations, the implementation of Hessian LLE can
solve much larger-scale data analysis problems (much larger N) than Isomap. (We are aware
that there are modifications of the Isomap principle under development which attempt to take
advantage of sparse graph structure (i.e. Landmark Isomap); however, the original Isomap
principle discussed here is not posable as a sparse eigenproblem).

It is also interesting to contrast Hessian LLE with Roweis and Saul’s LLE and Belkin and
Niyogi’s Laplacian Eigenmaps. In our opinion, Theorem 1 establishes the fundamental correct-
ness of Hessian Eigenmaps in the setting of local isometry; it seems that no similar result can
be true for Laplacian Eigenmaps, nor has an alternate conceptual setting been proposed where
fundamental correctness has been proven. (I.e. we are not aware of a conceptual framework in
which we can agree that there is a ‘right answer’ – a correct underlying parametrization – and in
which it can be proven that Laplacian eigenmaps accurately recover that ‘right answer’ modulo
some linear transformations.) In other respects, the methodologies are similar, and in fact our
implementation owes its basic structure to the original Roweis and Saul implementation of LLE
[2]. Also as in LLE, the Hessian-based method can perform poorly if bad results are obtained
from a few of the tangent space coordinate fits.

A drawback of Hessian LLE versus the other methods just discussed is the Hessian approach
requires estimation of second derivatives, and this is known to be numerically noisy or difficult
in very high-dimensional data samples.

Our understanding of the phenomena involved in learning parametrizations is certainly not
complete, and we still have much to learn about the implementation of spectral methods for
particular types of data problems.

A Appendix: Proof of Theorem 1

Since the mapping ψ is a locally isometric embedding, the inverse mapping φ = ψ−1 : M 7→ Rd

provides a locally isometric coordinate system on M . Let θ1, . . . , θd denote the isometric
coordinates.

Let m be a fixed point in the interior of M and let f be a C2 function on M . Define the
pullback of f to Θ by g(θ) = f(ψ(θ)). Define the Hessian in isometric coordinates of f at m
by

(H iso
f )i,j(m) =

∂

∂θi

∂

∂θj

g(θ)
∣∣∣
θ=φ(m)

.

This definition postulates knowledge of the underlying isometry φ, so the result is definitely
not something we expect to be ‘learnable’ from knowledge of M alone. Nevertheless it provides
an important benchmark for comparison. Now define the quadratic form

Hiso(f) =

∫
M

‖H iso
f ‖2

Fdm.

This is similar to the quadratic form H, except that it is based on the Hessian in isometric
coordinates rather than the Hessian in tangent coordinates. We will explore the nullspace of
this quadratic form, and relate it to the nullspace of H.

By its very definition, Hiso has a natural pullback from L2(M,dm) to L2(Θ, dθ). Indeed,
letting g : Θ 7→ R be a function on Θ ⊂ Rd with open interior, letting θ be an interior point,
and letting Heuc

g (θ) denote the ordinary Hessian in Euclidean coordinates at θ, we have actually
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defined H iso by H iso
f ≡ Heuc

f∗ , where f ∗(θ) = f(ψ(θ)) is the pullback of f to Θ ⊂ Rd. Hence,
defining, for functions g : Θ 7→ R the quadratic form

Heuc(g) =

∫
Θ

‖Heuc
g ‖2

Fdθ

(where dθ and dm are densities in 1− 1 correspondence under the 1-1 correspondence θ ↔ m),
we have

Hiso(f) = Heuc(f ∗) ∀f ∈ C∞(M).

It follows that the nullspace of Hiso is in 1-1 correspondence with the nullspace of Heuc under
the pullback by ψ. Consider then the nullspace of Heuc.

Lemma 3 Let Θ ⊂ Rd be connected with open interior, and let dθ denote a strictly positive
density on the interior of Θ. Let W 2

2 (Θ) denote the usual Sobolev space of functions on Θ
which have finite L2 norm and whose first two distributional derivatives exist and belong to L2.
Then Heuc, viewed as a functional on the linear space W 2

2 (Θ), has a d+1-dimensional nullspace
consisting of the span of the constant function together with the d coordinate functions θ1, . . . ,
θd.

Proof of Lemma 3. It is of course obvious that the nullspace contains the span of the
constant function and all the coordinate functions, since this span is simply all linear functions
and since linear functions have everywhere vanishing Hessians. In the other direction, we show
that the nullspace contains only these functions. Consider any function g in C∞(Θ) which is
not exactly linear. Then there must be some second-order mixed derivative ∂g

∂θi1
∂θi2

and which

is non-vanishing on some ball: ‖ ∂g
∂θi1

∂θi2
‖L2(Θ,dθ) > 0. But

Heuc(g) =

∫
Θ

‖Hg‖2
Fdθ

=

∫
Θ

∑
i,j

(
∂g

∂θi1∂θi2

)2dθ =
∑
i,j

∫
Θ

(
∂g

∂θi1∂θi2

)2dθ

=
∑
i,j

‖ ∂g

∂θi1∂θi2

‖2
L2(Θ,dθ) ≥ ‖ ∂g

∂θi1∂θi2

‖2
L2(θ,θ0) > 0.

Hence no smooth nonlinear function can belong to the nullspace of Heuc. The openness of the
interior of Θ implies that C∞(Θ) is dense in W 2

2 (Θ), and so we can reach the same conclusion
for all g in W 2

2 (Θ). 2

By pullback, Lemma 3 immediately implies:

Corollary 4 Viewed as a functional on W 2
2 (M), Hiso has a d+ 1-dimensional nullspace, con-

sisting of the span of the constant functions and the d isometric coordinates θi(m) on M .

We now show the same for the object of our original interest: H. This follows immediately
from the following lemma:

Lemma 5 Let f be a function in C∞(M) and let ψ be a local isometry between Θ and M .
Then at every m ∈ interior(M),

‖H tan
f (m)‖F = ‖H iso

f (m)‖F .
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The lemma implies that
H(f) = Hiso(f) ∀f ∈ C∞(M)

and allows us to see that H and Hiso have the same nullspace. Theorem 1 follows.
Proof of Lemma 5. Recall that ‖H tan

f (m)‖F is unchanged by variations in the choice of
orthonormal basis for the tangent plane Tm(M). Recall that φ = ψ−1 is a local isometry, and
gives a coordinate system θ1, . . . , θd on M and therefore induces a choice of coordinate system
on Tm(M) that is orthonormal because φ is a local isometry. Therefore we may assume that our
choice of orthonormal basis for Tm(M) is exactly the same as the choice induced by φ. Once
this choice has been made, Lemma 5 follows if we can show that:

H tan
f (m) = H iso

f (m). (A1)

This will follow if we show that for every vector v ∈ Tm(M),

v′H tan
f (m)v = v′H iso

f (m)v. (A2)

Given a vector v ∈ Tm(M), let γv : [0, ε) 7→ M denote the unit-speed geodesic in M that
starts at m = γv(0) and that has v for its tangent d

dt
γv|t=0 = v. Consider the induced function

ggeo,v(t) = f(γv(t)). Notice that by definition of isometric coordinates

g′′geo,v(0) = v′H iso
f (m)v.

On the other hand, the tangent space Tm(M) provides another local coordinate system for
M . Let τm : Tm(M) 7→M denote the inverse, that maps from local coordinates back to M ; this
is the inverse of the mapping m′ 7→ (xtan,m

i (m′)). Consider the path δv : [0, ε) 7→ Tm(M) defined
by dv(t) = tv; this corresponds to a path in M defined by δv(t) = τm(dv(t)), i.e. projecting the
path in Tm(M) onto a neighborhood of m in M . Consider the induced function gtan,v = f(δv(t)).
Notice that by definition of Tangent coordinates

g′′tan,v(0) = v′H tan
f (m)v.

Hence, we have to show that
g′′tan,v(0) = g′′geo,v(0) (A3)

for all v ∈ Tm(M). This implies (A2) and hence (A1).
The key observation is that

|δv(t)− γv(t)| = o(t2), t→ 0. (A4)

It follows that for every Lipschitz f that

|gtan,v(t)− ggeo,v(t)| = |f(δv(t))− f(γv(t))| = o(t2), t→ 0,

which proves (A3). The key relation (A4) follows by combining two basic facts.

Lemma 6 Consider a geodesic γ : [0, ε) 7→ M of a Riemannian submanifold M of Rn, and
view it as a space curve in Rn. View Tm(M) as a subspace of Rn. The acceleration vector d2

dt2
γ

of this space curve at the point m = γ(0) is normal to Tm(M).

13



This lemma is a classic textbook fact about isometric embeddings; See Chapter 6 of [8]. Less
well-known is that the same fact is true of δv(t):

Lemma 7 Viewing t 7→ δv(t) as a space curve in Rn, its acceleration vector at t = 0 is normal
to Tm(M).

In short, the acceleration components of both δv and γv at 0 reflect merely the extrinsic
curvature of M as a curved submanifold of Rn; neither curve has an acceleration component
within Tm(M). As both curves by construction have the same tangent at 0, namely v, the key
relation (A4) holds, and Lemma 5 is proved. Lemma 7 does not seem to be so well-known as
Lemma 6, so we prove it here.
Proof of Lemma 7. Let c = n− d denote the codimension of M in Rn. We can model M in
the vicinity of m as the solution of a system of equations:

η1(x) = η2(x) = · · · = ηc(x) = 0.

Let t 7→ x(t) be a path in Rn that starts in M at t = 0 and stays in M . Without loss of
generality choose coordinates so x(0) = 0 ∈ Rn. Then

〈∇ηi, x(t)〉+
1

2
x(t)′Hηi

x(t) = o(t2), i = 1, . . . , c,

where ∇ηi denotes the gradient of ηi and Hηi
denotes the Hessian of ηi, both evaluated at x = 0.

Writing x(t) = tv + (t2/2)u+ o(t2), we conclude that

〈∇ηi, v〉 = 0, i = 1, . . . , c,

while
t2〈∇ηi, u〉+ t2v′Hηi

v = o(t2), i = 1, . . . , c.

In short,
〈∇ηi, u〉 = −v′Hηi

v i = 1, . . . , c. (A5)

As the ∇ηi span the normal space to M at m, it follows that u must have the specified
coordinates in the normal space.

Now, by definition, δv(t) is the closest point inM to the point in the tangent plane represented
by tv. But then, viewing v ∈ Tm(M) as a vector in Rn we must have that u ∈ Rn satisfies

min
u
|tv −

(
tv + (t2/2)u

)
| subject to (A5).

In short, u solves
min

u
|u| subject to (A5).

This minimum-norm problem has a unique solution, with u in the span of the vectors ∇ηi, i.e.
in the normal space perpendicular to Tm(M). Hence the space curve x(t) has no component of
acceleration in Tm(M). 2
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