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Abstract. We present a new algorithm for manifold learning and nonlinear dimensionality
reduction. Based on a set of unorganized data points sampled with noise from a parameterized man-
ifold, the local geometry of the manifold is learned by constructing an approximation for the tangent
space at each data point, and those tangent spaces are then aligned to give the global coordinates
of the data points with respect to the underlying manifold. We also present an error analysis of
our algorithm showing that reconstruction errors can be quite small in some cases. We illustrate
our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimensional
Euclidean spaces. We also address several theoretical and algorithmic issues for further research and
improvements.
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1. Introduction. Many high-dimensional data sets in real-world applications
can be modeled as sets of points or vectors lying close to a low-dimensional nonlinear
manifold. Discovering the structure of the manifold from such a sample of data
points represents a very challenging unsupervised learning problem [13]. Example
low-dimensional manifolds embedded in high-dimensional input spaces include image
vectors representing the same 3D objects under different camera views and lighting
conditions. Another example is a set of document vectors in a text corpus dealing
with a specific topic. The key observation is that the dimensions of the embedding
spaces can be very high (e.g., the number of pixels for each images in the image
collection or the number of words or phrases in the vocabulary of the text corpus),
the intrinsic dimension of the data points, however, is rather limited due to factors
such as physical constraints and linguistic correlations. Traditional dimensionality
reduction techniques such as principal component analysis (using eigendecomposition
of the sample covariance matrix ) and factor analysis usually work well when the data
points lie close to a linear (affine) subspace in the input space. They, however, tend
to fail to detect nonlinear structures in the data points.

Recently, there has been considerable interest in developing efficient algorithms
for constructing nonlinear low-dimensional manifolds from sample data points in high-
dimensional spaces, emphasizing simple algorithmic implementation and avoiding op-
timization problems prone to local minima [17, 21]. Two lines of research of mani-
fold learning and nonlinear dimensionality reduction have emerged: one is exempli-
fied by [21, 7] where pairwise geodesic distances of the data points with respect to
the underlying manifold are estimated, and the classical multi-dimensional scaling
is used to project the data points into a low-dimensional space that best preserves
the geodesic distances. Another line of research follows the long tradition starting
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with self-organizing maps (SOM) [13], principal curves/surfaces [11] and topology-
preserving networks [14]. The key idea is that the information about the global
structure of a nonlinear manifold can be obtained from a careful analysis of the inter-
actions of the overlapping local structures. In particular, the local linear embedding
(LLE) method constructs a local geometric structure that is invariant to translations
and orthogonal transformations in a neighborhood of each data point and seeks to
project the data points into a low-dimensional space that best preserves those local
geometries [17, 18]. (A related method using Hessian matrices is presented in [8]).

Our approach draws inspiration from and extends the pioneering work in [17, 18]
which opens up new directions in nonlinear manifold learning with many fundamental
problems required to be further investigated. Our starting point is not to consider
nonlinear dimensionality reduction in isolation as merely constructing a nonlinear
projection, but rather to combine it with the process of reconstruction of the nonlinear
manifold, and we argue that the two processes interact with each other in a mutually
reinforcing way. We address two inter-related objectives of nonlinear structure finding:
1) to construct the so-called principal manifold [11] that goes through “the middle”
of the data points; and 2) to find the global coordinate system that characterizes the
set of data points in a low-dimensional space. The basic idea of our approach is to use
the tangent space in the neighborhood of a data point to represent the local geometry,
and then align those tangent spaces to construct the global coordinate system for the
nonlinear manifold.

The rest of the paper is organized as follows: in Section 2, we formulate the
problem of manifold learning and dimensionality reduction in more precise terms,
and illustrate the intricacy of the problem using the linear case as an example. In
Section 3, we discuss the issue of learning local geometry using tangent spaces, and
in Section 4 we show how to align those tangent spaces in order to learn the global
coordinate system of the underlying manifold. Section 5 discusses how to construct
the manifold once the global coordinate system is available. We call the new algo-
rithm local tangent space alignment (LTSA) algorithm. In Section 6, we present an
error analysis of LTSA, especially illustrating the interactions among curvature infor-
mation embedded in the Hessian matrices, local sampling density and noise level, and
the regularity of the Jacobi matrix. In Section 7, we show how the partial eigende-
composition used in global coordinate construction can be efficiently computed. We
then present a collection of numerical experiments in Section 8. Section 9 concludes
the paper and addresses several theoretical and algorithmic issues for further research
and improvements.

Notation. We use ‖ ·‖2 to denote the 2-norm of a vector or matrix, and ‖A‖F =
(

∑

i,j a2
ij

)1/2

the Frobenius norm of a matrix. We will also use ‖ · ‖ to denote a

generic vector or matrix norm.

2. Manifold Learning and Dimensionality Reduction. The general theory
of manifold learning can be cast in the framework of Riemannian geometry, but to
avoid unnecessary abstraction, we consider the special case of parameterized manifolds
represented as hypersurfaces of arbitrary co-dimension in Euclidean spaces [15].

Definition. Let d < m, and Ω open in Rd. Let f : Ω→Rm. The set F ≡ f(Ω)
together with the mapping f is called a parameterized manifold of dimension d.

Additionally, to avoid some of the complications discussed in Section 8, we further
assume that the manifold is regular, i.e., the Jacobi matrix of f is of full rank at every
point of the manifold and the manifold is not self-intersecting. Assume further that
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we are given a set of data points x1, · · · , xN , where xi ∈ Rm are sampled possibly
with noise from the manifold, i.e.,

xi = f(τi) + ǫi, i = 1, . . . , N,

where ǫi represent noise. We use the term dimensionality reduction to mean the es-
timation of the unknown lower dimensional feature vectors τi’s from the xi’s, i.e.,
the xi’s which are data points in Rm are (nonlinearly) projected to the τi’s which
are points in Rd. Since we assume that d < m, we therefore realize the objective
of dimensionality reduction of the data points. By manifold learning we mean the
reconstruction of f from the xi’s, i.e., for an arbitrary test point τ ∈ Ω ⊂ Rd, we can
provide an estimate of f(τ). These two problems are inter-related, and a solution of
one leads to a solution of the other. In some situations, dimensionality reduction can
be the means to an end by itself, and it is not necessary to learn the manifold. In this
paper, however, we promote the notion that both problems are really the two sides
of the same coin, and the best approach is not to consider each in isolation. Before
we tackle the algorithmic details, we first want to point out that the key difficulty in
manifold learning and nonlinear dimensionality reduction from a sample of data points
is that the data points are unorganized, i.e., no adjacency relationships among them
are known beforehand. Otherwise, the learning problem becomes the well-researched
nonlinear regression problem (for a more detailed discussion, see [9] where techniques
from computational geometry were used to solve error-free manifold learning prob-
lems). To ease discussion, in what follows we will call the high-dimensional space
where the data points live the input space, and the low-dimensional space into which
the data points are projected the feature space.

To illustrate the concepts and problems we have introduced, we give a brief re-
view of linear manifold learning and linear dimensionality reduction, also known in
statistics as the principal component analysis (PCA) [11]. We assume that the set of
data points are sampled from a d-dimensional affine subspace, ie.,

xi = c + Uτi + ǫi, i = 1, . . . , N,

where c ∈ Rm, τi ∈ Rd, and ǫi ∈ Rm represent noise. U ∈ Rm×d is a matrix forming
an orthonormal basis of the affine subspace. Let

X = [x1, · · · , xN ], T = [τ1, · · · , τN ], E = [ǫ1, · · · , ǫN ].

Then in matrix form, the data-generation model can be written as

X = c eT + UT + E,

here e is an N -dimensional column vector of all ones. The problem of linear manifold
learning is that we seek c, U and T to minimize the reconstruction error, i.e,

min ‖E‖ = min
c,U,T

‖X − (c eT + UT )‖F ,

where ‖ · ‖F stands for the Frobenius norm of a matrix. This problem can be easily
solved by singular value decomposition (SVD) based upon the following two observa-
tions:

1) The norm of the error matrix E can be reduced by centering the columns of E
and hence one can assume that the optimal E has zero mean. This requirement can
be fulfilled if c is chosen as the mean of X , i.e, c = Xe/N ≡ x̄.
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2) The low-rank matrix UT is the optimal rank-d approximation to the centered
data matrix X− x̄eT . Hence the the optimal solution is given by the SVD of X− x̄eT ,

X − x̄eT = QΣV T , P ∈ Rm×m, Σ ∈ Rm×N , V ∈ RN×N ,

i.e., UT = QdΣdV
T
d , where Σd = diag(σ1, · · · , σd) with the d largest singular values

of X − x̄eT , Qd and Vd are the matrices of the corresponding left and right singular
vectors, respectively. The optimal U∗ is then given by Qd and the learned linear
manifold is represented by the linear function

f(τ) = x̄ + U∗τ.

In this model, the coordinate matrix T corresponding to the data matrix X is given
by

T = (U∗)T (X − x̄eT ) = diag(σ1, . . . , σd)V
T
d .(2.1)

Ideally, the dimension d of the learned linear manifold should be chosen such that
σd+1 ≪ σd.

The function f is not unique in the sense that it can be reparameterized, i.e, the
coordinate can be replaced by τ̃ with a global affine transformation τ = P τ̃ , if we
change the basis matrix U∗ to U∗P . But it is easy to see that the parameterization
given in (2.1) leads to an isometric embedding, i.e.,

‖xi − xj‖2 = ‖τi − τj‖2, i, j = 1, . . . , N.

For the linear case we just discussed, the problem of dimensionality reduction is solved
by computing the right singular vectors Vd, and this can be done without the help of
the linear function f . Similarly, the construction of the linear function f is done by
computing U∗ which is just the matrix of the d largest left singular vectors of X−x̄eT .

The case for nonlinear manifolds is more complicated. In general, the global non-
linear structure will have to come from local linear analysis and alignment [17, 20]. In
[17], local linear structure of the sample data points are extracted by representing each
point xi as a weighted linear combination of its neighbors, and the local weight vectors
are preserved as much as possible in the feature space in order to obtain a global coor-
dinate system. In [20], a linear alignment strategy was proposed for aligning a general
set of local linear structures. The type of local geometric information we propose to
use is the tangent space at a given point which is constructed from a neighborhood
of the given point (independent of our work, Brand in [5] also proposed a similar
approach using tangent spaces formulated using probabilistic modeling terms). The
tangent space at each sample point provides a low-dimensional linear approximation
of the local geometric structure of the nonlinear manifold. What we want to preserve
are the local coordinates of the data points in the neighborhood with respect to the
tangent space. Those local tangent coordinates will be aligned in the low-dimensional
space by different local affine transformations to obtain a global coordinate system.
Our alignment method is similar in spirit to that proposed in [20] (see also related
alignment approaches in [23, 24]). In the next section we will discuss preservation of
local geometry using the tangent spaces and their global alignment which will then
be applied to data points sampled with noise in Section 4.

3. Tangent Space and Its Global Alignment. We assume that F = f(Ω) is a
parameterized manifold with f : Ω ⊂ Rd →Rm as defined in section 2. The objective
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as we mentioned before for nonlinear dimensionality reduction is to reconstruct the
underlying coordinate τ from the corresponding function value f(τ) without explicitly
constructing f . Assume that the function f is smooth enough, using first-order Taylor
expansion at a fixed τ , we have that for a neighbor τ̄ of the fixed τ ,

f(τ̄ ) = f(τ) + Jf (τ) · (τ̄ − τ) + O(‖τ̄ − τ‖2),(3.2)

where Jf (τ) ∈ Rm×d is the Jacobi matrix of f at τ . If we write the m components of
f(τ) as (τ = [τ1, . . . , τd]

T ),

f(τ) =







f1(τ)
...

fm(τ)






, then Jf (τ) =







∂f1/∂τ1 · · · ∂f1/∂τd

...
...

...
∂fm/∂τ1 · · · ∂fm/∂τd






.

The tangent space Tτ of f at τ is spanned by the d column vectors of Jf (τ) and is
therefore of dimension at most d, i.e., Tτ = span(Jf (τ)). The vector τ̄ − τ gives the
local coordinate of the first-order approximation of f(τ̄ ) corresponding to the affine
subspace f(τ) + Tτ . Without knowing the function f , we can not explicitly compute
the Jacobi matrix Jf (τ). However, the tangent space at f(τ) can be approximated
using points in a neighbor set, say {f(τ̄) | τ̄ ∈ Ωτ }, of f(τ) in the high-dimensional
input space, where Ωτ denotes a neighbor set of τ in the low-dimensional feature
space. Let Qτ be an orthonormal basis matrix of Tτ and θ∗τ (τ̄ ) the local coordinate
of τ̄ corresponding to the basis Qτ . Then

Jf (τ)(τ̄ − τ) = Qτθ∗τ (τ̄ ).

The local coordinate θ∗τ (τ̄ ) also depends on the local centroid τ . Our purpose is to
retrieve the global coordinate τ using the local coordinates θ∗τ by a certain global
alignment technique proposed below. To this end, denote Pτ = QT

τ Jf (τ). We have

θ∗τ (τ̄ ) = QT
τ Jf (τ)(τ̄ − τ) ≡ Pτ (τ̄ − τ).

The unknown matrix Pτ represents a local affine transformation from the global
τ -coordinate-system to the local θ∗τ -coordinate-system. Note that θ∗τ (τ̄ ) is the local
representation of the linear part of f(τ̄ )−f(τ). It can be approximated by θ(τ̄ ) which
is defined to be the local coordinate of the orthogonal projection of f(τ̄) − f(τ) onto
Tτ ,

θ(τ̄ ) ≡ QT
τ (f(τ̄)− f(τ)) = θ∗τ (τ̄ ) + O(‖τ̄ − τ‖2).(3.3)

(θ(τ̄ ) also depends on τ .) Ignoring the second-order term, the global coordinate τ
satisfies

∫

Ω

(

∫

Ω(τ)

‖Pτ (τ̄ − τ)− θ(τ̄ )‖2dτ̄
/

∫

Ω(τ)

dτ̄
)

dτ ≈ 0.

Therefore, a natural way to approximate the global coordinate is to find a global
coordinate τ and a local affine transformation Pτ that minimize the error function

∫

Ω

(

∫

Ω(τ)

‖Pτ (τ̄ − τ)− θ(τ̄ )‖2dτ̄
/

∫

Ω(τ)

dτ̄
)

dτ(3.4)

over all possible Pτ . The above idea leads to an optimal embedding using nonlinear

alignment for the manifold learning and dimensionality reduction problems. This idea
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will be picked up partially at the end of section 4, and a full discussion will be given
in a forthcoming paper

This paper will focus on a linear alignment approach that can be devised as
follows. Since Jf (τ) is of full column rank, the matrix Pτ should be non-singular and
we can represent τ in terms of θτ with the inverse matrix Lτ of Pτ ,

τ̄ − τ ≈ P−1
τ θ(τ̄ ) = Lτθ(τ̄ ).

The above equation shows that the affine transformation Lτ should align this local
coordinate θ to the global coordinate τ for f(τ). Naturally we should seek to find a
global coordinate τ and a local affine transformation Lτ to minimize

∫

Ω

(

∫

Ω(τ)

‖τ̄ − τ − Lτθ(τ̄ )‖dτ̄
/

∫

Ω(τ)

dτ̄
)

dτ(3.5)

over all possible nonsingular Lτ .
Under certain conditions, we can have a clearer idea of the global minimizer of

(3.5): let f be a locally isometric mapping i.e., Jf (τ)T Jf (τ) = I, and Ω is connected,
then Pτ is orthogonal. So we have τ̄ − τ = PT

τ θ∗τ (τ̄ ). By (3.3),

‖τ̄ − τ − PT
τ θ(τ̄ )‖ = O(‖τ̄ − τ‖2).

If the Hessian of f is bonded over Ω, then there is a constant C determined by the
Hessian of f such that ‖τ̄ − τ − PT

τ θ(τ̄ )‖ ≤ C‖τ̄ − τ‖2, and

∫

Ω

(

∫

Ω(τ)

‖τ̄ − τ − PT
τ θ(τ̄ )‖dτ̄

/

∫

Ω(τ)

dτ̄
)

dτ

≤
∫

Ω

(

∫

Ω(τ)

C‖τ̄ − τ‖2dτ̄
/

∫

Ω(τ)

dτ̄
)

dτ

≤
∫

Ω

Cr2(Ωτ )dτ ≤ C|Ω| sup
τ

r2(Ωτ ),

where r(Ωτ ) = supτ̄∈Ωτ
‖τ̄ − τ‖ denotes the radius of the neighbor set Ωτ , and |Ω| =

∫

Ω
dτ denotes the size of Ω. It implies that

∫

Ω

(

∫

Ω(τ)
‖τ̄−τ−PT

τ θ(τ̄ )‖dτ̄
/

∫

Ω(τ)
dτ̄

)

dτ →
0 as supτ r(Ωτ )→ 0. Therefore we proved the following

Theorem 3.1. Assume the f : Ω ⊂ Rd → Rm is locally isometric and Ω is

connected and bounded. Denote ρ = supτ r(Ωτ ). Then

lim
ρ→0

min
f(Ω)=M, Lτ

∫

Ω

(

∫

Ω(τ)

‖τ̄ − τ − Lτθ(τ̄ )‖dτ̄
/

∫

Ω(τ)

dτ̄
)

dτ = 0.

The above theorem shows that under the condition supτ r(Ωτ )→ 0 the minimiza-
tion problem (3.5) achieves its global minimum of zero if f is locally isometric.

As we will see later, the linear approach in (3.5) is more readily amendable to
computation than the nonlinear one in (3.4). The discrete version of optimization
problem can be solved by the computation of an eigenvalue problem. Obviously, if
the manifold F is not regular, i.e., the Jacobi matrix Jf is not of full column rank at
some points τ ∈ Ω, then the linear approach may result in local geometric distortion.
In this case, the two minimization problems (3.4) and (3.5) may lead to quite different
solutions.
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As discussed in the linear case, the low-dimensional feature vector τ is not uniquely
determined by the manifold F . We can reparameterize F using f(g(τ)) where g(·)
is a smooth 1-to-1 onto mapping of Ω to itself. As we will see in the next section,
the actual parameterization of F computed is closely related to the normalization
conditions imposed on the low-dimensional coordinates.

4. Feature Extraction through Alignment. Now we consider how to con-
struct the global coordinates and local affine transformation when we are given a data
set X = [x1, . . . , xN ] sampled with noise from an underlying nonlinear manifold,

xi = f(τi) + ǫi, i = 1, . . . , N,

where τi ∈ Rd, xi ∈ Rm with d < m.1 For each xi, let Xi = [xi1 , . . . , xik
] be a

matrix consisting of its k-nearest neighbors including xi, say in terms of the Euclidean
distance.2 Consider computing the best d-dimensional affine subspace approximation
for the data points in Xi,

min
x,Θ,Q

k
∑

j=1

∥

∥xij
− (x + Qθj)

∥

∥

2

2
= min

x,Θ,Q

∥

∥Xi − (xeT + QΘ)
∥

∥

2

2
,

where Q is of d columns and is orthonormal, and Θ = [θ1, . . . , θk]. As discussed in
Section 2, the optimal x is given by x̄i, the mean of all the xij

’s and the optimal Q is
given by Qi, the matrix of d left singular vectors of Xi(I − eeT /k) corresponding to
its d largest singular values, and Θ is given by Θi defined as

Θi = QT
i Xi(I −

1

k
eeT ) = [θ

(i)
1 , · · · , θ(i)

k ], θ
(i)
j = QT

i (xij
− x̄i).(4.6)

Therefore we have

xij
= x̄i + Qiθ

(i)
j + ξ

(i)
j ,(4.7)

where ξ
(i)
j = (I −QiQ

T
i )(xij

− x̄i) denotes the reconstruction error.
We now consider constructing the global coordinates τi, i = 1, . . . , N , in the low-

dimensional feature space based on the local coordinates θ
(i)
j which represents the

local geometry. Specifically, we want τij
to satisfy the following set of equations, i.e.,

the global coordinates should respect the local geometry determined by the θ
(i)
j ,

τij
= τ̄i + Liθ

(i)
j + ǫ

(i)
j , j = 1, . . . , k, i = 1, . . . , N,(4.8)

where τ̄i is the mean of τij
’s, Li is a local affine transformation matrix that needs to

be determined,3 and ǫ
(i)
j the local reconstruction error. Denoting Ti = [τi1 , . . . , τik

]

1 We are being vague about the distributions of τi and ǫi. An asymptotic convergence analysis
of our proposed algorithm in the style of [2] even in the isometric case will involve analysis of the
interactions of the distributions in the feature space, the curvature of the manifold, and distributions
in the input space.

2 Discovering the local geometry using a homogeneous Euclidean metric as we do here is not
necessarily the best approach: for one thing, k needs to be chosen adaptively to reflect the local
geometry and sampling density; A case can also be made to select the neighbors that lie close to a
linear subspace, see the discussion towards the end of Section 8.

3 It seems to be more natural to require that Li be orthogonal since Qi in (4.7) is orthonormal.
This restriction leads to a more complicated optimization problem which will be addressed in the
Appendix.
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and Ei = [ǫ
(i)
1 , · · · , ǫ

(i)
k ], we have

Ti =
1

k
Tiee

T + LiΘi + Ei,

and the local reconstruction error matrix Ei has the form

Ei = Ti(I −
1

k
eeT )− LiΘi.(4.9)

To preserve as much of the local geometry in the low-dimensional feature space, we

seek to find τi and Li to minimize the reconstruction errors ǫ
(i)
j , i.e.,

∑

i

‖Ei‖22 ≡
∑

i

‖Ti(I −
1

k
eeT )− LiΘi‖22 = min .4(4.10)

Obviously, the optimal alignment matrix Li that minimizes the local reconstruction
error ‖Ei‖F for a fixed Ti, is given by

Li = Ti(I −
1

k
eeT )Θ+

i = TiΘ
+
i , and therefore Ei = Ti(I −

1

k
eeT )(I −Θ+

i Θi),

where Θ+
i is the Moore-Penrose generalized inverse of Θi.

Let T = [τ1, . . . , τN ] and Si be the 0-1 selection matrix such that TSi = Ti,. We
then need to find T to minimize the overall reconstruction error

∑

i

‖Ei‖2F = ‖TSW‖2F ,

where S = [S1, · · · , SN ], and W = diag(W1, · · · , WN ) with

Wi = (I − 1

k
eeT )(I −Θ+

i Θi).(4.11)

To uniquely determine T , we will impose the constraints TT T = Id, it turns out that
the vector e of all ones is an eigenvector of

B ≡ SWWT ST(4.12)

corresponding to a zero eigenvalue. Therefore the optimal T is given by the d eigen-
vectors of B corresponding to the 2nd to d+1st smallest eigenvalues. We call the
above algorithm, Local Tangent Space Alignment (LTSA).

Several numerical computation issues still need to be considered. We will present
the relevant discussions and the details of our LTSA algorithm in section 7. As a
preview of the effectiveness of LTSA, we plot in Figure 1 the computed coordinates
τi vs. the centered arc-length coordinates τ∗

i for some 1D manifold parameterized by
the arc-length, i.e., x = f(τ), τ is the arc-length of the 1D manifold. We also assume
the data points are sampled without noise.

Remark. The minimization problem (4.10) needs certain constraints (i.e., nor-
malization conditions) to be well-posed, otherwise, one can just choose both Ti and
Li to be zero. However, there are more than one way to impose the normalization

4 If k is chosen adaptively and is dependent on i, i.e., k = ki, it seems to be more appropriate to
minimize the weighted error

∑

i

1
ki

‖Ei‖
2
2.
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Fig. 1. Sampled data points with no noise from various 1-D manifolds (top) and computed coordi-
nates τi vs. centered arc-length coordinates τ∗

i
(bottom).

conditions. The one we have selected, i.e., TT T = Id, is just one of the possibilities.
To illustrate the issue we look the following minimization problem,

min
X, Y
‖X − Y A‖F .

The approach we have taken amounts to substitute Y = XA+, and minimize ‖X(I−
A+A)‖F with the normalization condition XXT = I. However,

‖X − Y A‖F =

∥

∥

∥

∥

[X, Y ]

[

I
−A

]∥

∥

∥

∥

F

,

and we can minimize the above by imposing the normalization condition [X, Y ][X, Y ]T =
I. This nonuniqueness issue is closely related to to nonuniqueness of the parameteri-
zation of the nonlinear manifold f(τ), which can be reparameterized as f(τ(η)) with
a 1-to-1 mapping τ(η).

Remark. We now briefly discuss the nonlinear alignment idea mentioned in (3.4).
In particular, in a neighborhood Xi = [xi1 , . . . , xik

] of a data point xi, by first-order
Taylor expansion, we have

Xi(I −
1

k
eeT ) ≈ Jf (xi)Ti(I −

1

k
eeT ),

where Jf (xi) is the Jacobi matrix of f at xi. Let Si be the neighborhood selection
matrix as defined before, we seek to find a sequence of Ji ∈ Rm×d and T ∈ Rd×N to
minimize

EX(J, T ) ≡
N

∑

i=1

‖(X − JiT )Si(I −
1

k
eeT )‖2F ,

where J = {J1, . . . , JN}. Or similarly, we seek to find a sequence of Pi ∈ Rd×d and
T ∈ Rd×N to minimize

EΘ(P, T ) ≡
N

∑

i=1

‖(Θi − PiTi)(I −
1

k
eeT )‖2F .
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(P = {P1, . . . , PN}.) The LTSA algorithm can be considered as an approach to find
an approximate solution to the above minimization problem. We can, however, seek
to find the optimal solution of EΘ(P, T ) using an alternating least squares approach:
fix P minimize with respect to T , and fix T minimize with respect to P , and so on.
As an initial value to start the alternating least squares, we can use the T obtained
from the LTSA algorithm. The details of the algorithm will be presented in a separate
paper.

5. Constructing Principal Manifolds. Once the global coordinates τi are
computed for each of the data points xi, we can apply some non-parametric regression
methods such as local polynomial regression to {(τi, xi)}Ni=1 to construct the principal
manifold underlying the set of points xi. Here each of the component functions
fj(τ), j = 1, . . . , m can be constructed separately; for example, we have used the
simple loess function [22] in some of our experiments for generating the principal
manifolds.

In general, when the low-dimensional coordinates τi are available, we can con-
struct a mapping from τ -space (feature space) to x-space (input space) as follows.

1. For each fixed τ , let τi be the nearest neighbor (i.e., ‖τ − τi‖ ≤ ‖τ − τj‖, for
j 6= i) Define

θ = L−1
i (τ − τ̄i),

where τ̄i be the mean of the feature vectors in a neighbor to which τi belong.
2. Back in the input space, we define

x = x̄i + Qiθ

Let us define by g : τ → x the resulted mapping,

g(τ) = x̄i + QiL
−1
i (τ − τ̄i).(5.13)

To distinguish the computed coordinates τi from the generating ones, in the rest of
this paper, we denote by τ∗

i the generating coordinate, i.e.,

xi = f(τ∗
i ) + ǫ∗i .(5.14)

Obviously, the errors of the reconstructed manifold represented by g depend on the

sample errors ǫ∗i , the tangent subspace reconstruction errors ξ
(i)
j , and the alignment

errors ǫ
(i)
j . The following result show that this dependence is linear.

Theorem 5.1. Let ǫ∗i = xi − f(τ∗
i ), ξ

(i)
j = (I − QiQ

T
i )(xi − x̄i), and ǫi =

τi − τ̄i − LiQ
T
i (xi − x̄i). Then

‖g(τi)− f(τ∗
i )‖2 ≤ ‖ǫ∗i ‖2 + ‖ξi‖2 + ‖L−1

i ǫi‖2.

Proof. Substituting L−1
i (τi − τ̄i) = L−1

i ǫi + QT
i (xi − x̄i) into (5.13) gives

g(τi) = x̄i + QiL
−1
i (τi − τ̄i)

= x̄i + QiQ
T
i (xi − x̄i) + QiL

−1
i ǫ

(i)
1 .

Because QiQ
T
i (xi − x̄i) = xi − x̄i − ξ

(i)
j , we obtain that

g(τi) = xi − ξ
(i)
j + QiL

−1
i ǫ

(i)
1

= f(τ∗
i ) + ǫ∗i − ξ

(i)
j + QiL

−1
i ǫ

(i)
1 .
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Therefore we have

‖g(τi)− f(τ∗
i )‖2 ≤ ‖ǫ∗i ‖2 + ‖ξi‖2 + ‖L−1

i ǫi‖2,

completing the proof.
In the next section, we will give a detail error analysis to estimate the errors of

alignment and tangent subspace approximation in terms of the noise and the geometric
properties of the generating function f and the density of the generating coordinates
τ∗
i . Note that ǫi is the first column of Ei and ξi the first column of (I −QiQ

T
i )Xi(I−

1
k eeT ).

6. Error Analysis. As mentioned in the previous section, we assume that that
the data points are generated by

xi = f(τ∗
i ) + ǫ∗i , i = 1, . . . , N.

For each xi, let Xi = [xi1 , . . . , xik
] be a matrix consisting of its k-nearest neighbors

including xi in terms of the Euclidean distance. Similar to Ei defined in (4.9), we
denote by E∗

i the corresponding local noise matrix, E∗
i = [ǫ∗i1 , . . . , ǫ

∗
ik

]. The low-
dimensional embedding coordinate matrix computed by the LTSA algorithm is de-
noted by T = [τ1, . . . , τN ]. We first present a result that bounds ‖Ei‖ in terms of
‖E∗

i ‖.
Theorem 6.1. Assume T ∗ = [τ∗

1 , . . . , τ∗
N ] satisfies (T ∗)T T ∗ = Ud. Let τ̄i be the

mean of τi1 , · · · , τik
, Denote Pi = QT

i Jf (τ̄∗
i ) and Hfℓ

(τ̄∗
i ) the Hessian matrix of the

ℓ-th component function of f . If the Pi’s are nonsingular, then

‖Ei‖F ≤ ‖P−1
i ‖F (δi + ‖E∗

i ‖F ),

where δi is defined by

δ2
i =

m
∑

ℓ=1

k
∑

j=1

‖Hfℓ
(τ̄∗

i )‖22 ‖τ∗
ij
− τ̄∗

i ‖42

Furthermore, if each neighborhood is of size O(η). Then ‖E‖ ≤ ‖P−1
i ‖F ‖E∗‖+O(η2)

Proof. First by definition (4.9), we have

Ei = Ti(I −
1

k
eeT )− LiΘi = (Ti − LiQ

T
i Xi)(I −

1

k
eeT ).(6.15)

To represent Xi in terms of the Jacobi matrix of f , we assume that f is smooth
enough and use Taylor expansion at τ̄∗

i , the mean of the k neighbors of τ∗
i ,

xij
= f(τ̄∗

i ) + Ji(τ
∗
ij
− τ̄∗

i ) + δ
(i)
j + ǫij

,

where Ji = Jf (τ̄∗
i ) and δ

(i)
j represents the remainder term beyond the first-order

expansion, in particular, its ℓ-th components can be approximately written as (using
second order approximation),

δ
(i)
ℓ,j ≈

1

2
(τ∗

ij
− τ̄∗

i )T Hfℓ
(τ̄∗

i )(τ∗
ij
− τ̄∗

i )

with the Hessian matrix Hfℓ
(τ̄∗

i ) of the ℓ-th component function fℓ of f at τ̄∗
i . We

have in matrix form,

Xi = f(τ̄∗
i )eT + JiT

∗
i (I − 1

k
eeT ) + ∆i + E∗

i
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with ∆i = [δ
(i)
1 , · · · , δ(i)

k ]. Multiplying by the centering matrix I − 1
keeT gives

Xi(I −
1

k
eeT ) = (JiT

∗
i + ∆i + E∗

i )(I − 1

k
eeT ).(6.16)

Substituting (6.16) into (6.15) and denoting Pi = QT
i Ji, we obtain that

Ei = (Ti − LiPiT
∗
i − LiQ

T
i (∆i + E∗

i ))(I − 1

k
eeT )(6.17)

For any T̃ satisfying the orthogonal condition T̃ T̃ T = Id and any L̃i, we also have the
similar expression of (6.17) for T̃i and L̃i. Note that T and Li, i = 1, · · · , N , minimize
the overall reconstruction error, ‖E‖F ≤ ‖Ẽ‖F . Setting T̃ = T ∗ and L̃i = P−1

i , we
obtain the upper bound

‖Ei‖F ≤ ‖P−1
i ‖2(‖∆i‖F + ‖E∗

i ‖F ).

We estimate the norm ‖∆i‖F by ignoring the higher order terms, and obtain that

‖∆i‖2F ≤
m

∑

ℓ=1

k
∑

j=1

‖Hfℓ
(τ̄∗

i )‖22 ‖τ∗
ij
− τ̄∗

i ‖42 = δ2,

completing the proof.
The non-singularity of the matrix Pi requires that the Jacobi matrix Ji be of full

column rank and the two subspaces span(Ji) and the d largest left singular vector space
span(Qi) are not orthogonal to each other. We now give a quantitative measurement
of the non-singularity of Pi.

Theorem 6.2. Let σd(J̃i) be the d-th singular value of J̃i ≡ JiT
∗
i (I− 1

k eeT ), and

denote αi = 4(‖E∗
i ‖F + δi) with δi defined in Theorem 6.1. Then

‖P−1
i ‖F ≤ (1 + α2

i )
1/2‖Ji‖F .

Proof. The proof is simple. Let J̃i = UJΣJV T
J be the SVD of the matrix J̃i.

By (6.16) and perturbation bounds for singular subspaces [10, Theorem 8.6.5], the
singular vector matrix Qi can be expressed as

Qi = (UJ + U⊥
J H)(I + HT

i Hi)
−1/2(6.18)

with

‖Hi‖F ≤
4

σd(J̃i)

(

‖E∗‖F + ‖∆i‖F )
)

≤ αi,

where σd(J̃i) is the d-largest singular value of J̃i On the other hand, from the SVD
of J̃i, we have JiT

∗
i VJ = UJΣJ , which gives

Ji = UJΣJ

(

T ∗
i VJ

)−1
.

It follows that

Pi = QT
i Ji = (I + HT

i Hi)
−1/2ΣJ

(

T ∗
i VJ

)−1
= (I + HT

i Hi)
−1/2UT

J Ji.
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Therefore we have

‖P−1
i ‖F ≤ (1 + ‖Hi‖2F )1/2‖J+

i ‖F ,

completing the proof.
The degree of non-singularity of Ji is determined by the curvature of the manifold.

On the other hand, the rotation of the singular subspace is mainly affected by the
noise values ǫj and the neighborhood structure of xi’s The above error bounds clearly
show that reconstruction accuracy might suffer if the manifold underlying the data
set has singular or near-singular points. This phenomenon will be illustrated in the
numerical examples in section 8. Finally, we give an error upper for the tangent
subspace approximation.

Theorem 6.3. Let cond(J̃i) = σ1(J̃i)/σd(J̃i) be the spectrum condition number

of the d-column matrix J̃i Then

‖(I −QiQ
T
i )X(I − 1

k
eeT )‖F ≤

(

1 + 4(1 + α2
i )cond(J̃i)

)

αi/4.

Proof. By (6.16), we write

(I −QiQ
T
i )X(I − 1

k
eeT ) = (I −QiQ

T
i )J̃i + ∆̃i,

with ‖∆̃i‖F ≤ ‖E∗
i ‖F + δi To estimate ‖(I−QiQ

T
i )J̃i‖F , we use the expression (6.18)

to obtain

(I −QiQ
T
i )J̃i = U

((

I
O

)

−
(

I
Hi

)

(I + HT
i Hi)

−1

)

ΣJV T
J

= U

(

HT
i

−I

)

Hi(I + HT
i Hi)

−1ΣJV T
J .

Taking norms gives that

‖(I −QiQ
T
i )J̃i‖F ≤ (1 + ‖Hi‖22)‖Hi‖F ‖J̃i‖2 ≤ 4(1 + α2

i )(‖E∗
i ‖F + δi)cond(J̃i).

The result required follows.
The above results show that the accurate determination of the tangent space is de-

pendent on several factors: curvature information embedded in the Hessian matrices,
local sampling density and noise level, and the regularity of the Jacobi matrix.

7. Numerical Computation Issues. The major computational cost of LTSA
involves the computation of the smallest eigenvectors of the symmetric positive semi-
defined matrix B defined in (4.12). B in general will be quite sparse because of the
local nature of the construction of the neighborhoods [18]. Algorithms for computing
a subset of the eigenvectors for large and/or sparse matrices are based on computing
projections of B onto a sequence of Krylov subspaces of the form

Kp(B, v0) = span{v0, Bv0, B
2v0, . . . , B

p−1v0},

for some initial vectors v0 [10]. Hence the computation of matrix-vector multiplica-
tions Bx need to be done efficiently. Because of the special nature of B, Bx can be
computed neighborhood by neighborhood without explicitly forming B,

Bx = S1W1W
T
1 ST

1 x + · · ·+ SNWNWT
NST

Nx,
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where as defined in (4.11),

Wi = (I − 1

k
eeT )(I −Θ+

i Θi).

Each term in the above summation only involves the xi’s in one neighborhood.
The matrix Θ+

i Θi in the right factor of Wi is the orthogonal projector onto the
subspace spanned by the columns of ΘT

i . It can be easily obtained by computing the
d largest right singular vectors g1, . . . , gd of Θi [10]. By the definition (4.6) of Θi,
g1, . . . , gd are also the d largest right singular vectors of X(I− 1

keeT ), or equivalently
the unit eigenvectors corresponding to the d largest eigenvalues of (I− 1

k eeT )XT X(I−
1
k eeT ). It is easy to verify that with Gi = [e/

√
k, g1, . . . , gd]

Wi = I −GiG
T
i .

spanned by the rows of Θi and eT /
√

k. Therefore the matrix-vector product y =
S1W1W

T
1 ST

1 x can be easily computed as follows: denote by Ii = {i1, · · · , ik} the set
of indices for the k nearest-neighbors of xi, then yj = 0 for j /∈ Ii and

y(Ii) = Ti(I −GiG
T
i )T T

i x(Ii).

Here y(Ii) = [yi1 , · · · , yik
]T denotes the section of y determined by the neighborhood

index set Ii.
If one likes to compute the d smallest eigenvectors that are orthogonal to e by

applying some eigen-solver, the matrix B should be constructed first. The matrix B
can be computed by partially (locally) summing as following

B(Ii, Ii) ← B(Ii, Ii) + I −GiG
T
i , i = 1, · · · , N(7.19)

with initial B = 0. Clearly the computation cost is linear with respect to N .
Now we are ready to present our LTSA algorithm.

Algorithm LTSA (Local Tangent Space Alignment). Given N m-
dimensional points sampled possibly with noise from an underlying d-
dimensional manifold, this algorithm produces N d-dimensional coor-
dinates T ∈ Rd×N for the manifold constructed from k local nearest
neighbors.

Step 1. [Extracting local information.] For each i = 1, · · · , N ,
1.1 Determine k nearest neighbors xij

of xi, j = 1, . . . , k.
1.2 Compute the d largest unit eigenvectors g1, . . . , gd of the

correlation matrix (Xi − x̄ie
T )T (Xi − x̄ie

T ), and set

Gi = [e/
√

k, g1, . . . , gd].

Step 2. [Constructing alignment matrix.] Form the matrix B by locally
summing (7.19) if a direct eigen-solver will be used. Otherwise
implement a routine that computes matrix-vector multiplication
Bu for an arbitrary vector u.

Step 3. [Aligning global coordinates.] Compute the d+1 smallest eigen-
vectors of B and pick up the eigenvector matrix [u2, · · · , ud+1]
corresponding to the 2nd to d+1st smallest eigenvalues, and set
T = [u2, · · · , ud+1]

T .
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Fig. 2. Sampled data points with noise from various 1-D manifolds (top) and computed coordinates
τi vs. centered arc-length coordinates τ∗

i
(bottom).

Remark. We should point out that the first step of the algorithm involves
k-nearest-neighbor search which can be very expensive especially when N is large.
Spatial indexing structures such as K-d trees have been used for efficient computa-
tion of the neighbors [3]. There are also several methods proposed for computing
approximate nearest neighbors, see [4] for a review.

8. Experimental Results. In this section, we present several numerical exam-
ples to illustrate the performance of the LTSA algorithm. The test data sets include
curves in 2D/3D Euclidean spaces and surfaces in 3D Euclidean spaces. Especially,
we take a closer look at the effects of singular points of a manifold and the interac-
tion of noise levels and sample density. To show that our algorithm can also handle
data points in high-dimensional spaces, we also consider curves and surfaces in Eu-
clidean spaces with dimension equal to 100 and a face image data set For some of
the benchmark data sets in [17], we also compare the projection results of LTSA and
LLE.

First we test LTSA for 1D manifolds (curves) in both 2D and 3D. Each set of
sample points is generated from a function x = g(t) as follows: A uniformly sampled
coordinates t1, · · · , tN in a fixed interval, say [α, β], are generated. Then we repa-
rameterize the manifold as x = f(τ) with the centered arc length τ = τ(t) defined
as,

τ(t) =

∫ t

t0

‖Jg(t)‖2dt

for a constant t0 ∈ [α, β] such that τ(β) = −τ(α), here Jg(t) is the Jacobian of g at
the point t. We add Gaussian noise to obtain the data set {xi} as,

xi = g(ti) + η randn(m, 1),

where m = 2, 3 is the dimension of the input space, randn is Matlab’s standard
Gaussian distribution, and η controls the level of noise. Denoting τ∗

i = τ(ti), the
sample points can be represented as

xi = f(τ∗
i ) + η randn(m, 1).
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Fig. 3. 1-D manifolds with singular points (top) and computed coordinates τi vs. centered arc-length
coordinates τ∗

i
(bottom).

Notice that, {τ∗
i } is not necessarily uniformly distributed in the corresponding τ -

interval.
In the top row of Figure 2 from left to right, we plot the color-coded sample data

of N = 400 points corresponding to the following three generating functions,

g(t) = (10t, 10t3 + 2t2 − 10t)T , t ∈ [−1, 1], η = 0.1,
g(t) = (t cos(t), t sin(t))T , t ∈ [0, 4π], η = 0.2,
g(t) = (3 cos(t), 3 sin(t), 3t)T , t ∈ [0, 4π], η = 0.1.

In the bottom row, we plot the centered arc length τ∗
i vs the computed τi by LTSA

with k = 15 for each function. Ideally, the (τ∗
i , τi) should form a straight line LTSA

recovers the true arc-length coordinates.
As we have shown in the error analysis in section 6, it will be difficult to align

the locale tangent information Θi if some of the Pi’s defined in Section 3 are close to
be singular. One effect of this is that the computed coordinates τi and its neighbors
may be compressed together. To clearly demonstrate this phenomenon, we consider
the following generating function,

g(t) = [cos3(t), sin3(t)]T , t ∈ [0, π].

The Jacobi matrix (now a single vector since d = 1) given by

Jg(t) = 1.5 sin(2t)[− cos(t), sin(t)]T

is equal to zero at t = π/2. Note that for the arc-length-parameterized form f(τ), if
t 6= π/2,

Jf (τ(t)) = Jg(t)/‖Jg(t)‖2 = sign(sin(2t))[− cos(t), sin(t)]T .

Obviously near the singular point t = π/2, it is difficult to approximate the tangent
space in the presence of noise. In that case the θ-vector Θi defined in (4.6) will be
computed poorly. Usually the corresponding Θi will be small which also results in
small τi and the neighbors of τi will also be small. In the first column of Figure 3,
we plot the computed results for this 1D curve. We see clearly near t = π/2 the
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Fig. 4. 1-D manifolds with different noise levels (top) and computed coordinates τi vs. centered
arc-length τ∗

i
(bottom).

computed τi’s become very small, all compressed to a small interval around zero. In
the right three columns of Figure 3, we examine another 1D curve generated by

g(t) = [10 cos(t), sin(t)]T , t ∈ [π/2, 3π/2]

with different noise levels η,

xi = g(ti) + ηǫi,

where ǫi are standard Gaussian, and η = 0.01, 0.05, 0.1, respectively. (N = 400,
k = 15 for both examples.) We notice that similar phenomenon also occurs near the
point t = π where the curvature of the curve is relatively large, the computed τi’s also
become very small and cluster around zero, especially in the presence of large noise

Next we look at the issues of the interaction of sampling density and noise levels.
If there are large noises around f(τi) relative to the sampling density near f(τi), the
resulting centered local data matrix Xi(I − 1

k eeT ) will not be able to provide a good
tangent space approximation, i.e, Xi(I − 1

k eeT ) will have singular values σd and σd+1

that are close to each other. This will result in a nearly singular matrix Pi = QT
i Ji, and

when plotting τ∗
i against τi, we will see the phenomenon of the computed coordinates

τi getting compressed, similar to the case when the generating function g(τ) has
singular and/or near-singular points. However, in this case, the result can usually be
improved by increasing the number of neighbors used for producing the shifted matrix
Xi(I − 1

k eeT ). In Figure 4, we plot the computed results for the generating function

g(t) = [10t, 3t3 + 2t2 − 2t]T , t ∈ [−1.1, 1].

The data set is generated by adding noise in a multiplicative fashion,

xi = g(ti)(1 + ηǫi)

with standard Gaussian ǫi. The first three columns in Figure 4 correspond to the
noise levels η = 0.01, η = 0.03, and η = 0.05, respectively. For the three data sets,
we use the same number of neighbors, k = 10. The quality of the computed τi’s can
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Fig. 5. S-curve (top left) and computed 2D coordinates by LLE with various neighborhood size k.

be improved if we increase the number of neighbors as shown on the column (d) in
Figure 4 with k = 20 used.

As we have shown in Figure 4 (column (d)), different neighborhood size k will
produce different embedding results. In general, k should be chosen to match the
sampling density, noise level and the curvature at each data points so as to extract an
accurate tangent space. Too few neighbors used may result a rank-deficient tangent
space and leads to over-fitting, while too large a neighborhood will introduce too
much bias and the computed tangent space will not match the local geometry well.
It is therefore worthy of considering variable number of neighbors that are adaptively
chosen at each data point. Fortunately, LTSA seems to be less sensitive to the choice
of k than LLE does as will be demonstrated below.

We applied both LTSA and LLE to the S-curve data set uniformly sampled with-
out noise generated as follows,

t = (3*rand(1,N)-1)*pi;

s = 5*rand(1,N);

X = [cos(t); s; (sin(t)-1).*sign(pi/2-t)];

with N = 2000 and different number of neighbors. For d = 2, and k which is chosen
from k = 6 to k = 30. There are little geometric deformations in the coordinates
generated by LTSA, see Figure 6. In Figure 5, we plot the results for LLE, the
deformations (stretching and compression) in the generated coordinates are quite
prominent. Similar results are plotted for the swissroll data set [21],

t = (3*pi/2)*(1+2*rand(1,N));

s = 21*rand(1,N);

X = [t.*cos(t); s; t.*sin(t)];

with N = 2000 in Figure 7 (LLE) and Figure 8 (LTSA). Both of these two sur-
faces have zero Gaussian curvature, and therefore they can be flattened without any
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Fig. 6. Generating coordinates of the S-curve (left) and computed coordinates by LTSA with various
neighborhood size k.

geometric deformation, i.e., the two surfaces are isometric to a 2D plane.
We now apply LTSA to a 2D manifold embedded in a 100 dimensional space. The

data points are generated as follows. First we generate N = 5000 3D points,

yi = (ti, si, h(ti, si))
T + 0.01ηi

with ti and si uniformly distributed in the interval [−1, 1], the ηi’s are standard
Gaussian. The h(t, s) is a peak function defined by

h(t, s) = 0.3(1− t)2e−t2−(s+1)2 − (0.2t− t3 − s5)e−t2−s2 − 0.1e−(t+1)2−s2

.

This function is plotted in the left of Figure 9. Then we linearly transform the 3D
points to 100D points; two kinds of such 100D data points xQ

i and xH
i are generated

as follows.

xQ
i = Qyi, xH

i = Hyi,

where Q ∈ R100×3 is a random orthonormal matrix resulting in an orthogonal trans-
formation and H ∈ R100×3 a matrix with its singular values uniformly distributed
in (0, 1) resulting in an affine transformation. Figure 9 plots the coordinates for xQ

i

(middle) and xH
i (right).

For estimating the dimension of the manifold, we consider examining the distri-
bution of the singular values of the data matrix Xi consisting of the data points in
the neighborhood of each data point xi. (The reader is also referred to [6, 12, 18] for
alternative approaches). If the manifold is of dimension d, then Xi will be close to

a rank-d matrix. We illustrate this point below. The data points are xQ
i of the 2D

peak manifold embedded into the 100D space. For each local data matrix Xi, let σj,i

be the j-the singular value of the centered matrix Xi(I − 1
k eeT ). Define the ratios

ρ
(j)
i =

σj+1,i

σj,i
.
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Fig. 7. Computed 2D coordinates of the swissroll by LLE with various neighborhood size k.

In Figure 10, we plot the ratios ρ
(1)
i and ρ

(2)
i . It clearly shows the feature space should

be 2-dimensional.

Next, we discuss the issue of how to use the global coordinates τi’s as a means for
clustering the data points xi’s. The situation is illustrated by Figure 11. The data set
consists of three bivariate Gaussians with covariance matrices 0.2I2 and mean vectors
located at [1, 1], [1,−1], [−1, 0]. There are 100 sample points from each Gaussian.
The thick curve on the right panel represents the principal curve computed by LTSA
and the thin curve by LLE. It is seen that the thick curve goes through each of the
Gaussians in turn, and the corresponding global coordinates (plotted in the middle
panel) clearly separate the three Gaussians. LLE did not perform as well, mixing two
of the Gaussians.

The selection of the set of points to estimate the tangent space is very crucial to
the success of the algorithm. Ideally, we want this set of points to be close to the
tangent space. However, with noise and/or at the points where the curvature of the
manifold is large, this is not an easy task. One line of ideas is to do some preprocessing
of the data points to construct some restricted local neighborhoods. For example, one
can first compute the minimum Euclidean spanning tree for the data set, and restrict
the neighbors of each point to those that are linked by the branches of the spanning
tree. This idea has been applied in self-organizing map [13]. Another idea is to
use iterative-refinement, combining the computed τi’s with the xi’s for neighborhood
construction in another round of nonlinear projection. The rationale is that τi’s as
the computed global coordinates of the nonlinear manifold may give a better measure
of the local geometry. An example using iterative-refinement is shown in Figure 12,
the data points are sampled from the left half of a very flat ellipse (the long axis is
the x-axis), one iterative-refinement gave a much better result.

Finally, we look at the results of applying LTSA to the face image data set
[21]. The data set consists of a sequence of 698 64-by-64 pixel images of a face
rendered under various pose and lighting conditions. Each image is converted to
an m = 4096 dimensional image vector. We apply LTSA with k = 12 neighbors
and d = 2. The constructed coordinates are plotted in the middle of Figure 13 We
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Fig. 8. Computed coordinates of the swissroll by LTSA with various neighborhood size k.
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Fig. 9. 2D manifold in a 100D space generated by 3D peak function: (a) 3D peak curve, (b)
coordinates for orthogonal transformed manifold, (c) coordinates for affine transformed manifold.

also extracted four paths along the boundaries of the set of the 2D coordinates, and
display the corresponding images along each path. It can be seen that the computed
2D coordinates do capture very well the pose and lighting variations in a continuous
way.

9. Conclusions and Further Work. In this paper, we proposed a new algo-
rithm (LTSA) for nonlinear manifold learning and nonlinear dimensionality reduction.
The key techniques we used are the construction of approximations of tangent spaces
to represent local geometry of the manifold and the global alignment of the tangent
spaces to obtain the global coordinate system. We provide some error analysis to
exhibit the interplay of approximation accuracy, sampling density, noise level and
curvature structure of the manifold. In the following, we list several issues that de-
serve further investigation.

1. To better understand the properties of algorithms such as LTSA (and similarly
LEE and Isomap) we need to investigate the issue of optimal embedding, i.e., dimen-
sionality reduction will result in certain amount of geometric distortion, but we seek
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to minimize this distortion under certain criterion. This line of ideas will explore the
nonlinear alignment approach we discussed in section 3.

2. To make LTSA (similarly LLE) more robust against noise, we need to resolve
cases where several of the smallest eigenvalues of B defined by (4.12) are roughly the
same magnitude. This problem can be clearly seen when the manifold itself consists
of several disjoint components. If this is the case, one needs to apply LTSA to each of
the disjoint components. That is equivalent to break the matrix B into several diag-
onal blocks and compute several smallest eigenvectors of each block. However, with
noise, the situation becomes far more complicated; several eigenvectors corresponding
to near-zero eigenvalues can mix together. The information for the global coordinates
seems to be contained in the eigen-subspace, but how to unscramble the eigenvectors
to extract the global coordinate information needs more careful analysis of the eigen-
vector matrix of B and various models of the noise. Some preliminary results on this
problem have been presented in [16]. Another approach, as was pointed out by one of
the referees, is to partition the k-nearest-neighbor graph into several pieces, and then
apply LTSA on each piece. This in some sense is equivalent to finding a block diago-
nal approximation of the matrix B which can be computed using a spectral clustering
approach such as [19, 25].

3. We also plan to investigate the case where the manifold can be self-intersecting
and the case where several manifolds possibly intersect each other. In the first case,
we need to build several tangent spaces at some sample points. In the second case,
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we need to find a way to group the samples to each of the manifold they belong.
This problem can be formulated as a mixture of manifolds model, and an EM-style
algorithm coupled with LTSA can be used for estimation.

4. From a statistical point of view, it is also of great interest to investigate
more precise formulation of the error model and the associated consistency issues and
convergence rate as the sample size goes to infinity. The learnability of the nonlinear
manifold also depends on the sampling density of the data points. Some of the results
in non-parametric regression and statistical learning theory will be helpful to pursue
this line of research.

5. In section 8, we briefly looked at the issue of estimating the dimension d
of the manifold using the singular value distribution of the k-nearest-neighbor set.
More sophisticated algorithms have been proposed: Kegl considered an approach
using packing numbers [12], and Costa and Hero considered asymptotically consistent
estimates of d using geodesic minimal spanning trees [6]. Certainly more research is
needed for this problem
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A. Alignment Preserving Orthogonality. Notice that the coordinates in the
Θi’s in (4.6) are obtained with respect to an orthonormal basis, therefore it seems
quite natural to preserve this orthogonality in the low-dimensional feature space as
well. To this end, we consider orthogonal transformation for alignment, i.e., we restrict
the matrices Li’s in (4.8) to be orthogonal,

τij
= τ̄i + Giθ

(i)
j + ǫ

(i)
j , GT

i Gi = Id,(1.20)

and minimize the alignment error

‖E‖2F ≡ min
T, {Gi}

∑

i

‖Ti(I −
1

k
eeT )−GiΘi‖2F .(1.21)

Note that here we do not impose the orthogonality constraints on T . Clearly for any
fixed T = T ∗, we have

‖E‖2F ≤ min
{Gi}

∑

i

‖T ∗
i (I − 1

k
eeT )−GiΘi‖2F ,

giving an upper bound for the minimum. To obtain a tighter upper bound on ‖E‖2F ,
we need the following lemma [10].

Lemma A.1. Let ABT = UΣV T be the SVD of ABT with

Σ = diag(σ1(ABT ), · · · , σd(ABT )).

Then the optimal orthogonal matrix G that minimizes ‖A − GB‖F is given by G =
UV T . Furthermore,

min
GT G=I

‖A−GB‖2F = ‖A‖2F + ‖B‖2F − 2
∑

j

σj(ABT ).

We now define T̂ ∗
i ≡ T ∗

i (I − 1
keeT ). Similar to (6.17), we have

T̂ ∗
i −GiΘi = T̂ ∗

i −GiPiT̂
∗
i −QT

i E∗
i (I − 1

k
eeT ) + O(‖T̂ ∗

i ‖2).(1.22)

By LemmaA.1 and the inequalities σi(AB) ≥ σi(A)/σmin(B), we have

min
GT

i
Gi=Id

‖T̂ ∗
i −GiPiT̂

∗
i ‖2F ≤ ‖T̂ ∗

i ‖2F + ‖PiT̂
∗
i ‖2F − 2

∑

j

σj(T̂
∗
i (PiT̂

∗
i )T )

≤
(

1 + σ2
max(Pi)− 2σ2

min(Pi))‖T̂ ∗
i ‖2F .

Therefore we obtain the following upper bound

‖E‖F ≤
∑

i

(

1 + σ2
max(Pi)− 2σ2

min(Pi))‖T̂ ∗
i ‖2F + O

(

(

∑

i

‖T̂ ∗
i ‖4F

)1/2
)

.

The optimization problem (1.21) can be solved iteratively alternating between
the following two steps.
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1. For fixed Ti, i = 1, . . . , N , minimize ‖Ti(I − 1
k eeT ) − GiΘi‖ to obtain an

optimal Gi. By Lemma A.1, Gi is given by Gi = UiV
T
i , where TiΘ

T
i =

UiΣiV
T
i .

2. For fixed Gi, i = 1, . . . , N , solve the optimization problem

min
T

∑

i

‖Ti(I −
1

k
eeT )−GiΘi‖2F

to obtain a new Ti. This is a LS problem.
It converges monotonically.


