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Abstract

Recently, the Isomap procedure [1] was proposed as a new way to recover a low-dimensional
parametrization of data lying on a low-dimensional submanifold in high-dimensional space.
The method assumes that the submanifold, viewed as a Riemannian submanifold of the
ambient high-dimensional space, is isometric to a convex subset of Euclidean space. This
naturally raises the question: what datasets can reasonably be modeled by this condition?
In this paper, we consider a special kind of image data: families of images generated by
articulation of one or several objects in a scene – for example, images of a black disk on
a white background with center placed at a range of locations. The collection of all im-
ages in such an articulation family, as the parameters of the articulation vary, makes up an
articulation manifold, a submanifold of L2. We study the properties of such articulation
manifolds, in particular, their lack of differentiability when the images have edges. Under
these conditions, we show that there exists a natural renormalization of geodesic distance
which yields a well-defined metric. We exhibit a list of articulation models where the corre-
sponding manifold equipped with this new metric is indeed isometric to a convex subset of
Euclidean space. Examples include translations of a symmetric object, rotations of a closed
set, articulations of a horizon, and expressions of a cartoon face.

The theoretical predictions from our study are borne out by empirical experiments with
published Isomap code. We also note that in the case where several components of the
image articulate independently, isometry may fail; for example, with several disks in an im-
age avoiding contact, the underlying Riemannian manifold is locally isometric to an open,
connected, but not convex subset of Euclidean space. Such a situation matches the assump-
tions of our recently-proposed Hessian Eigenmaps procedure, but not the original Isomap
procedure.
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1 Introduction

An object in the world can be imaged in various ways: it can be observed from various distances

and orientations; also the object itself can change appearance in pose and articulation; and
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finally the lighting can vary in spectral balance. The collection of all such images of an object,

as the parameters (locations, scale, pose, light color, etc.) vary, can be thought of as a manifold

in the high-dimensional space of all conceivable images; compare Nayar et al. [2], Belhumeur

and Kriegman [3].

Often one is given many digital images (Ii : i = 1, . . . , N) of the same object in a vari-

ety of articulations and poses, but the data are ‘unlabeled’ in the sense that the underlying

parametrization and the corresponding parameter values are unknown. The images are thus

thought to arise from a manifold M , without the manifold or the associated parametrization

being known. For concrete tasks in image understanding and image coding, it could be useful

to ‘learn’ the structure of such image articulation manifolds and to recover the underlying pa-

rameters (location, scale, etc.) from unlabeled data. This could be helpful for recognizing, for

example, articulated vehicles in target recognition or faces with different expressions in facial

recognition.

The general problem of learning the shape of a manifold from scattered observations has

been around for a long time; it has been the source of many multivariate techniques, including

principal components analysis, independent components analysis, multidimensional scaling, self-

organizing mappings, and other important methodological developments.

Recently, Tenenbaum et al. [1] proposed the Isomap procedure as a general tool for recovering

the unknown parametrization underlying a set of digital images, {Ii}, of faces in various attitudes

and articulations. The general principle of Isomap is to measure distance between images, not

using Euclidean distance (which obscures the intrinsic manifold structure), but using distance

according to the shortest path in a nearest neighbor graph; and to use this graph distance as

input to a classical “principal coordinates” multidimensional scaling procedure.

1.1 Validating Isomap

Tenenbaum et al. [1] published a few interesting examples, for example mapping out the param-

eters underlying a face seen from a variety of viewpoints. These empirical successes lead to the

...

Obvious Question: how “correct” is the Isomap procedure; does it really recover

the “true” underlying parametrization of families of articulated images?

This leads immediately to the ...

Obvious Approach: Test Isomap for synthetic data where we know a priori

“the natural” parametrizations and see if it can recover the parametrization of image
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manifolds.

In following the ‘obvious’ approach, we would construct synthetic datasets of artificial im-

ages undergoing standard articulations – translations, rotations, etc. – and ask if the Isomap

parametrization correctly discovers the (known) underlying parametrizations.

There are several reasons such a purely empirical investigation based on running Isomap on

artificial examples may not be enlightening.

• Sampling issues. Whether Isomap works or not might depend on how many model images

Ii are in the database. In some vague sense, it will be important for these images to

be well-distributed across the image manifold, but exactly what this means in a specific

instance is unclear. Consequently, if Isomap ‘fails’, this may be due to poor data sampling

rather than any intrinsic property of Isomap.

• Digitization issues. In some sense, the fact that images are discretized into pixels makes

them ‘noisy’ / ‘blocky’; this again causes some difficulty in interpreting ‘failure’ of Isomap

– is it due to the pixelization or is it intrinsic to the type of articulation?

• ‘Big Picture’ issues. Empirical work really doesn’t give us an intellectual framework that

we can leverage into other settings, at least not the kind of framework that might be

possible by a more theoretical approach.

For these and other reasons, we propose to develop an alternate framework for understanding

the behavior of Isomap on image manifolds. We think of an image as a function I(x) of a

continuous variable x ∈ R2. We consider articulations of a base image I0, producing a family of

images {Iθ : θ ∈ Θ}, where θ is the parameter of the articulation and Θ is the parameter space.

Examples we will consider include translation families, where Θ = R2 and Iθ(x) = I0(x− θ). In

this “continuum” viewpoint, neither sampling nor digitization can cause problems, and a clear

intellectual framework exists naturally.

We consider families of images as a subset of L2(R2) and, initially, measure distance between

images by µ(θ1, θ2) = ‖Iθ1 − Iθ2‖L2 . The subset M = {Iθ : θ ∈ Θ} becomes a metric space

(M,µ) and, one can check, a continuous submanifold of L2 = L2(R2).

Translating the isometry principle underlying Isomap into this continuum setting, we let

G(θ0, θ1) be the geodesic distance defined by taking the shortest path lying in M going from Iθ0

to Iθ1 . Then we ask if G(θ0, θ1) is proportional to Euclidean distance between θ0 and θ1, for all

pairs (θ0, θ1). In short, we ask if (Θ, G) is isometric to (Θ, ‖ · ‖) up to a constant scaling factor.

When the indicated isometry property holds, then it is possible to recover, from knowledge

3



of M alone, the parameter space Θ and the parametrization θ ↔ Iθ, modulo a rigid motion

and rescaling of the parameter space. We will therefore also say, when isometry holds, that

Continuum Isomap works.

Our approach provides a clear theoretical framework with crisply-stated problems that are

easily answered. There will, however, be a certain amount of technical detail required to develop

this view, having to do with the fact that when images have edges, the underlying ‘surface’

M ⊂ L2(R2) is typically not a differentiable manifold; indeed, the geodesic distance G will not

be finite. We will derive a renormalized geodesic distance δ, a rescaled limit of distances defined

on smoothed versions of M as the smoothing parameter tends to zero. Finally our criterion for

success in the continuum setting will be that (Θ, δ) is isometric to (Θ, ‖ · ‖).

1.2 Results

Our criterion for saying that ‘Continuum Isomap works’ is quite stringent, demanding exact

isometry of the underlying metric spaces, and therefore it may seem unlikely that it could ever

hold. As it turns out, in the image articulation setting that we describe, there are a number of

interesting image libraries where isometry really does hold. These cases include:

• Translation of simple black objects on a white background;

• Pivoting certain simple black objects on a white background around a fixed point;

• Morphing of boundaries of black objects on a white background;

• Articulation of ‘fingers’ of a digital ‘hand’;

• Articulation of a cartoon face by arranging its eyebrows, eyelids, and lips.

It also turns out that isometry holds for certain ‘movies’, i.e. for images articulating in time;

an example being a cartoon face gesturing in time according to a sufficiently rich and com-

plete inventory of gestures. Our theory predicts that from ‘watching’ sufficiently many movies

of a cartoon face gesturing in time, Isomap could in principle will correctly learn the correct

parametrization underlying the facial gesturing. Many such results are possible to state, but we

do not pursue them in this paper.

Our examples provide a theoretical framework, in the setting of image databases, which

validates the claim implicit in early uses of Isomap. However, we also point out examples of

image articulation manifolds where isometry fails. At one extreme, local isometry holds, but the

underlying parameter space is not convex; this is the case when there are several articulating
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objects which avoid each other – the exclusion requirement creates a nonconvex parameter space.

In other cases, even local isometry fails, for example, when objects occlude.

A special feature of our approach is the analysis framework we have developed. In this frame-

work we view images as defined on a continuum, and we translate an algorithm of interest into a

continuum version of the algorithm. We have applied the framework here to understanding the

Isomap procedure, but it could equally well be applied to understanding other manifold learning

procedures, such as Locally Linear Embedding (LLE) [4]. We in fact used this framework to un-

derstand LLE specifically, and what we learned from the effort led us to define a new procedure,

Hessian Eigenmaps [5], introduced in other work, that can solve the local isometry problem

defined here. Potentially, the ‘continuum framework’ could be applied usefully to additional

algorithms.

The article is organized as follows: Section 2 develops the mathematical foundations of

renormalized distance δ; Section 3 gives a few general ‘simple’ image families where δ can be

calculated; Section 4 tests the theoretical results against generated image data; Section 5 inter-

prets the methodology for more complex example image families (such as a horizon parametrized

by a basis function expansion, or composite articulations of more than one object). Section 6

discusses a more elaborate example: movies; Section 7 offers examples where isometry fails; and

further issues and discussion appear in Section 8.

2 Geodesic Distance Between Images

In this section, we develop a continuum setting for understanding the issues behind the Isomap

procedure. This involves a review of some basic geometric notions, such as arclength and

geodesic, showing the ill-posedness of the ‘obvious’ approach to Continuum Isomap, and defining

a special renormalized distance and formulas for computing it.

2.1 A Simple Manifold of Images over the Continuum

Consider the family of smooth functions f0 : R2 → R2 that are radially symmetric with unit

L2-norm. For a parameter θ ∈ R2, we then have the translation family

fθ(x1, x2) = f0(x− θ), (2.1)
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so that the ‘image’ is being shifted. A simple calculation shows that

‖fθ1 − fθ0‖L2 =
(∫

|fθ1(x)− fθ0(x)|2 dx
)1/2

= η(‖θ1 − θ0‖),
(2.2)

where η : R+ → R is a continuous nonlinear function satisfying η(0) = 0. Moreover, when

‖θ0 − θ1‖ is large, fθ0 and fθ1 are almost entirely separated and therefore η(∞) =
√

2.

Suppose Θ = {‖θ‖ ≤ 1}, and set M = {fθ : θ ∈ Θ}. M is a 2-dimensional subset of the

ambient space L2(R2).

Define the metric µ(θ0, θ1) = ‖fθ0 − fθ1‖L2(R2). The relation µ(θ0, θ1) = η(‖θ0 − θ1‖) means

that, while the topology of M is equivalent to the Euclidean topology, the submanifold is a

curved subset of L2.

2.2 Geodesic Distance

Let M be a submanifold of L2, and consider now a curve γ : [0, 1] → M . Suppose that γ is

C1-smooth when viewed as a curve [0, 1] → L2(R2). Thus for each t ∈ [0, 1] there exists a

derivative γ̇(t) : R2 → R that has finite L2-norm and that varies continuously in t. Then a first

definition of the length of γ is

L(γ) =
∫ 1

0

‖γ̇(t)‖L2 dt.

A more general definition of arclength, which agrees with the calculus definition when γ is

C1-smooth, sets

L(γ) = sup
n−1∑
i=0

‖γ(ti+1)− γ(ti)‖L2 ,

where the supremum is taken over all partitions of the unit interval with arbitrary breakpoints

0 = t0 < t1 < ... < tn = 1. This definition is valid even for merely continuous curves γ.

The geodesic distance between points θ0 and θ1 in the smooth manifold M is the length of

the shortest curve joining the two points, or

G(θ0, θ1;M) = inf{L(γ) : γ(0) = fθ0 , γ(1) = fθ1}.

We note that G is the distance between points in M , when it is viewed as a Riemannian sub-

manifold of the ambient space L2. As a simple example, suppose f0 is a smooth radial function
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on R2, such as the Gaussian f0(x) = e−
‖x‖2

2 , and fθ(x) = f0(x− θ). Then

G(θ1, θ0;M) = c‖θ1 − θ0‖2 (2.3)

where

c−1 = ‖ ∂

∂x1
f0‖L2(R2).

In short, up to a constant, geodesic distance agrees globally with Euclidean distance on the natural

parameter space. We can then conclude that M , viewed as a Riemannian submanifold of L2 is

isometric to (Θ, ‖ · ‖).

2.3 Recovering the Natural Parametrization

The idea behind Isomap [1] is that an isometry between M (viewed as a Riemannian subman-

ifold of an ambient space) and a subset of Rd allows one to recover the underlying isometric

parametrization. Isomap exploits the usual procedure of metric multidimensional scaling [6, 7].

Given a matrix of pairwise distances (di,j : 1 ≤ i, j ≤ n) between pairs of objects, and supposing

these are truly the Euclidean distances between points in a d-dimensional Euclidean space, this

procedure returns n points xi, say, obeying

‖xi − xj‖ = di,j .

The Isomap proposal is to use specially-derived empirical geodesic distances for the di,j .

Applying this idea in the continuum image setting, if we use true geodesic distances di,j =

G(θi, θj ;M) and the isometry property (2.3) holds, we would obtain a set of points (xi) obeying

xi = Uθi + b.

for some fixed orthogonal matrix U and vector b.

Definition 2.1 Suppose that the geodesic distance between points in M , viewed as a submanifold

of L2, is proportional to Euclidean distance in the parameter space Θ. Then we say that (Θ, G)

and (Θ, ‖ · ‖) are in isometry, and that Continuum Isomap works.

Of course, isometry allows recovery only up to a scaling and rigid motion. Summarizing the

above discussion, we have:
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Corollary 2.1 Suppose we have a parametrized family of ‘images’ fθ : R2 7→ R defined by

translation of a common prototype: fθ(x) = f0(x− θ), that f0 is radially symmetric, belongs to

L2 and is differentiable in L2. Then, for an appropriate c > 0, the geodesic distance between fθ0

and fθ1 has the form

G(θ0, θ1) = c · ‖θ0 − θ1‖.

Hence isometry holds and Continuum Isomap works.

For complete clarity, we also point out that, in these cases, using ordinary L2 distance rather

than geodesic distance would not recover the true parameter space. Indeed as we have seen

µ(θ0, θ1) = η(‖θ0 − θ1‖) where η(·) is nonlinear. Therefore, the properties of geodesic distance

make it uniquely successful in this setting.

2.4 Non-differentiable Image Manifolds

The above definitions rely on the implicit assumption that the submanifold M is differentiable,

with finite geodesic distances everywhere. Unfortunately, objects in the real world have edges,

and so a respectable model of images on the continuum has discontinuities at edges of the object

boundaries. This turns out to mean that the submanifold M is typically non-differentiable, and

that typically the geodesics do not have finite length.

Consider the indicator of the unit disk,

I0(x) = 1{|x|≤1},

and a family of translated images, θ ∈ Θ = R2, Iθ = I0(x − θ), θ ∈ Θ. Then let M = {Iθ}.

Now we can write µ(θ1, θ0;M) = ‖Iθ1 − Iθ0‖L2 = η(‖θ1 − θ0‖), for a new function η(·). Indeed,

‖Iθ1 − Iθ0‖ is just the square root of the area formed by the symmetric difference between the

support of Iθ1 and Iθ0 . This area depends on r = ‖θ1 − θ0‖ only. Also, we can calculate that η

is not differentiable at the origin: η(d) � d1/2. Indeed when r = ‖θ1 − θ0‖ the area Ar of the

symmetric difference supp(Iθ0)∆ supp(Iθ1) obeys Ar ∼ cr as r → 0. Hence its square root obeys
√
Ar ∼

√
cr as r → 0, which implies the asymptotic equivalence η(d) � d1/2.

We see immediately that every path in M has infinite length. Indeed, using the extended

notion of arclength discussed in Section 2.2, and setting rn = ‖I1/n − I0‖L2 ,

L(γ) ≥
n−1∑
k=0

‖I(k+1)/n − Ik/n‖ = n · η(rn) � n · η(c/n) ≈ n · n−1/2 = n1/2,
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which increases without bound as n → ∞. This means that the mapping θ 7→ Iθ cannot be

differentiable in L2.

More generally, we have:

Theorem 2.1 If M is the articulation manifold gotten by translating an image with edges, then

M is a continuous but not a differentiable manifold. Moreover paths in M do not have finite

length.

For the formal proof of this result, see [8]. In short, geodesic distance is typically not well-

defined on an image articulation manifold when the generating image has edges. Since any

reasonably interesting image has edges, this seems at first glance to be fatal to the notion of

using isometry to uncover parametrization in the continuum setting.

2.5 Renormalized Geodesic Distance

To rescue the notion of isometry in cases where the underlying image has edges, we introduce a

process of regularization and renormalization.

Consider again the case where I0 = 1{|x|≤1} is the indicator of the disk, and define the

regularized object Ih0 by Ih0 = I0 ? φh where φ is a smooth radial function of width h and ?

stands for convolution. Each image Ihθ = Ih0 (x−θ) is smooth, and if we let Mh denote the image

manifold generated by translations of Ihθ , with L2 metric µ(θ1, θ0;Mh) = ‖Ihθ − Ihθ0‖L2 , we get

that Mh is a smooth submanifold of L2. Obviously, Mh tends to M as h→ 0, and if we consider

a curve ϑ(t) in the common parameter space Θ of all the Mh and of M , then the lengths of the

induced paths on the respective manifolds Mh must converge to the lengths of the limit manifold

M . It follows that, if we let G(·, ·;Mh) denote the corresponding geodesic distance on Mh, we

have

lim
h→0

G(θ1, θ0;Mh) = ∞.

In short, regularization makes the geodesic distance finite, but this effect disappears as h→ 0.

To get a finite limiting result, we make the observation that, if τ0 and τ1 are two fixed

‘landmarks’, then the ratio
G(Ihθ0 , I

h
θ1

;Mh)
G(Ihτ0 , I

h
τ1 ;Mh)

need not diverge as h → 0. In effect, if we renormalize the distance so that τ0 and τ1 stay at

unit distance on Mh for all h > 0, we get a finite limiting ratio.

In our running example, let I0 be the indicator of the unit disk in R2 and let Iθ(x) = I(x−θ)

be translation by θ. For regularization, let φh denote the standard bivariate Gaussian density
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Figure 1: Correspondence between parameter space and smoothed manifold

with covariance matrix h2 · Id. Let the path ϑτ (t) be the line segment between τ0 = (0, 0) and

τ1 = (1, 0). The length of the corresponding path (the ‘landmark distance’), γhτ , on the smooth

manifold Mh generated by γhτ (t) = Ihϑ(τ) is given by

L(γhτ ) =
∫ 1

0

‖ ∂
∂t
γhτ (t)‖L2(R2)dt =

∫ 1

0

‖ ∂
∂t
Ihϑτ (t)‖L2(R2)dt. (2.4)

Now note that because of the translation invariance of the L2 norm, we can write, for a a constant

Ah,τ not depending on t,

‖ ∂
∂t
Ihϑτ (t)‖L2(R2) = ‖ ∂

∂t
Ihϑτ (t)‖L2(R2)|t=0 = Ah,τ ,

so L(γhτ ) = Ah,τ . Now for any other chosen parameter points θ0 and θ1 in R2, connected by a

line segment, consider the corresponding path γh01 in Mh between Ihθ0 and Ihθ1 . We can perform

the same calculation and see that

L(γh01) = Ah,τ · ‖θ0 − θ1‖.

Moreover γh01 is actually, as one might guess, the geodesic in Mh between Ihθ0 and Ihθ1 . Hence

G(Ihθ0 , I
h
θ1

;Mh)
L(γhτ ;Mh)

=
Ah‖θ0 − θ1‖

Ah
= ‖θ0 − θ1‖.
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Figure 2: The abstract manifold M

In short, the dependence on h vanishes, and the result is a stable, well-defined (and interpretable!)

quantity. The argument given above for translations of the indicator disk is specialized for this

particular example. However, in Appendix A we show that the conclusion that renormalization

works is valid in a more general context, and that the renormalized limit is finite and defines a

sensible metric in a broad range of cases.

3 The Abstract Manifold M

Inspired by the success of renormalization in the special case above, we propose the following

shift of viewpoint. We define an abstract manifold M which consists of a pair (Θ, δ), where Θ

is the parameter family underlying M , and δ is a notion of distance on Θ×Θ which is derived

from geodesic distance on the smoothed manifolds by the above limiting procedure.

Definition 3.1 Let ϑ(t) denote a path in both the abstract manifold M and in the parameter

space Θ. Construct a family Mh of smooth manifolds, where h is the smoothing parameter,

converging in L2 distance to M as h → 0. Let γh denote the corresponding path in Mh, and

let γhτ be the path in Mh induced from the line segment ϑ(τ) in Θ. Then define renormalized

length λϑ in M by

λ(ϑ;M) = lim
h→0

L(γh;Mh)
L(γhτ ;Mh)

.

How does this work in our running example of translating the disk? Fix landmarks τ0 = (0, 0)

and τ1 = (1, 0); consider for our path the line segment ϑ(t) = θ0 + t(θ1 − θ0) which runs from θ0

to θ1 according to a straight line. We find that

λ(ϑ;M) = ‖θ1 − θ0‖.

Definition 3.2 In referring to renormalized geodesic distance on M we intend the follow-
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ing: fix two landmarks τ0 and τ1, construct a sequence Mh of smooth manifolds, where h is the

smoothing parameter, and which converge in L2 distance to M as h→ 0. Then set

δ(θ0, θ1;M) = min{λ(ϑ(·);M) : ϑ(0) = θ0, ϑ(1) = θ1}.

Again, in our running example of translating the disk indicator, the length of every line

segment in the abstract manifold is the same as its Euclidean length. It follows that the geodesics

for δ will just be the Euclidean geodesics. We also propose the following interpretation of δ:

Definition 3.3 Suppose that, for a constant c > 0, the renormalized geodesic distance δ obeys

δ(θ1, θ2) = c‖θ1− θ2‖2, for all θ1, θ2 ∈ Θ. Then we say that (Θ, δ) and (Θ, ‖ · ‖) are in isometry.

In the rest of this paper, we will study only models of images with edges. We therefore will

abandon Definition 2.1, and the associated viewpoint, in favor of this new definition of isometry.

No longer do we think of the submanifold M of L2, instead we think of the abstract manifold

M modeled on Θ, with its own metric. When isometry holds under these definitions, we will

say that Continuum Isomap works.

The new definition really matches the original purpose of our study: applications of Isomap

to images. An object in a scene is rendered into a digital image by pixelization, and this process

provides a limited-resolution image much as φh ? I0 is a limited-resolution image. In some

sense applying Isomap to sufficiently fine but limited-resolution imagery gives geodesic distances

heuristically of the form G(·, ·;Mh). But, as we show in the proof of Theorem 3.1, those distances

obey

G(θ1, θ0;Mh) ∼ δ(θ1, θ0;M)h−
1
2 , h→ 0.

Obviously, the factor h−1/2 is completely transparent to all operations involved in metric multi-

dimensional scaling, and will not change the reconstruction of pointsets except for a homothetic

dilation that can easily be ‘standardized away’ by fixing the distance between landmark points.

This suggests that what really matters for Isomap is the leading coefficient: δ(·).

There are several things that might be checked about our definition of δ: first, the choice

of smoothing is not specified, and the definition might conceivably not be invariant to choice

of regularization, so that different regularizations might conceivably lead to different answers;

second, this might not define an actual distance; third, the manifold might not be continuous

or smooth according to this distance. While there are satisfactory general answers to these

questions, we prefer simply to say for now that in specific cases we have studied, these issues do

not arise. See also [8].
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Figure 3: Generic object undergoing a transformation by motion vector ν(b, t); n(b; θ) is the
boundary normal, ν(b, t) is the motion vector.

3.1 Calculation of λ, δ

We now give a formula for the length of paths through the image manifold deriving from a family

of articulated images. Our formula applies to a range of articulation types. In particular, we

will not assume a particular form (such as translation or rotation) for the articulations; merely

that they involve smooth transformations of the object in question.

In our model, we consider black-and-white images where the black region Bθ is a kind of ‘blob’

– a compact set in the plane, with simple closed curve for boundary. The images themselves are

indicator functions Iθ(x) = 1Bθ
(x), with white represented by 0 and black by 1. The boundary

∂Bθ is a smooth curve.

In defining the regularization procedure, we will use the 2-dimensional standard Gaussian

kernel φ(x1, x2) = exp{−(x2
1 + x2

2)/2}, and, with φh(x) = h−2φ(h−1x), define Ihθ = φh ? Iθ.

The set Bθ has an outward-pointing normal at each point b of the boundary, labeled n(b; θ).

Each boundary point also undergoes a motion with changing θ. We use the notation νi(b, θ) for

components of the ‘motion vector’: the rate of change of a specific boundary point with change

in the i-th component of the parameter vector θ. This is defined carefully in the Appendix.

We have the following results.

Theorem 3.1 Let (ϑ(t) : t ∈ [0, 1]) be a smooth curve in parameter space and, using the notation

above, set

ν(b, t) =
∑
i

dϑi
dt
νi(b, ϑ(t)).

Supposing that the boundary is smooth and that its motion is smooth, the length of the curve in

M is

λ(ϑ) = Cτ ·
∫ 1

0

[∫
∂Bθ

〈n(b), ν(b, t)〉2 db
]1/2

dt. (3.5)
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Here Cτ depends on the choice of landmark points, τ1 and τ2, used in defining the renormalized

length.

Theorem 3.2 Let (ϑ(t) : t ∈ [0, 1]) be a smooth curve in parameter space and, using the notation

above, set

gij(θ) =
∫
∂Bθ

〈n(b), νi(b; θ)〉 · 〈n(b), νj(b; θ)〉 db

Then gij defines a Riemannian structure on Θ and the renormalized length of the induced

curve in M is the same as the length of the curve in Θ with respect to this Riemannian structure:

λ(ϑ) = Cτ ·
∫ 1

0

√∑
ij

gij(θ)
dθi
dt

dθj
dt
dt. (3.6)

Here Cτ depends on the choice of landmark points used in defining the renormalized length.

We outline the proof for the first of these results in Appendix A; the other is proved similarly;

a complete discussion is given in [8]. To see how the results can be applied, consider again our

running example of translations of the disk. In this case, boundary points b can be parametrized

by the disk center θ and the arclength ω along the perimeter, and

b = θ + (cos(ω), sin(ω)),

while

n(b; θ) = (cos(ω), sin(ω)),

while

νi(b; θ) =

 (1, 0) i = 1,

(0, 1) i = 2.

Again, if we translate from θ0 to θ1, the linear path ϑ(t) = θ0 + t(θ1 − θ0), and so

ν(b, t) = (θ1 − θ0).

Plugging all these formulas into the inner integral in (3.5) gives

∫
∂Bθ

〈n(b), ν(b, t)〉2db = ‖θ1 − θ0‖2
∫ 2π

0

cos(ω)2dω = π · ‖θ1 − θ0‖2.

Hence we have, as expected:

λ(θ) = Cτ · ‖θ1 − θ0‖.

14



As far as the Riemannian structure goes, we have

g11(θ) =
∫ 2π

0

cos(ω)2dω = π,

and similarly g12 = g21 = 0, while g22 = π. Hence the Riemannian structure is simply Euclidean

and isometry holds.

3.2 Inferring Euclidean Structure

Below, we will see several examples where gij is constant and proportional to the identity. This

would seem to indicate that the abstract manifold is in fact isometric to a subset of Euclidean

space, and that therefore Isomap works. In order to make such an inference from local charac-

teristics to global ones, however, we need an extra element. In order to be globally Euclidean,

the local structure must be Euclidean and the space Θ must be convex. If it is not convex, then

shortest paths in Θ will not be dictated by the infinitesimal metric structure alone, but will in

some cases be dictated by the nonconvexity of the space, e.g. to avoid holes. Therefore, we will

sometimes emphasize the issue of convexity.

In some cases, one can demonstrate that isometry holds without computing either δ or g.

In fact, all that is necessary is that Θ be convex, and that, for every pair of points θi ∈ Θ, the

linear path in parameter space ϑ(t) = θ0 + t(θ1− θ0) has a length proportional to the Euclidean

distance ‖θ1 − θ0‖, where the constant of proportionality does not depend on θi.

4 Simple Examples

We now give a few simple examples of the preceding theory.

4.1 Translating a 4-fold symmetric object

We now generalize the problem of translating a disk, considering a broader class of symmetric

objects.

Definition 4.1 An object B0 has 4-fold symmetry if it is invariant under rotations about the

origin by 90, 180, and 270 degrees.

This class of objects includes `p balls for 0 < p <∞:

`p = {x : |x1|p + |x2|p ≤ 1},
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n(b;q)

v(b;q)

Figure 4: Translation of a 4-fold symmetric object

although for the cases p =∈ {1,∞} the boundaries are not smooth.

Theorem 4.1 For translations of 4-fold symmetric figures with smooth boundary, isometry

holds; the renormalized geodesic distance is proportional to the Euclidean distance in param-

eter space.

As `p balls for p = 2 are just disks, this contains our earlier result about translating disks

as a special case. However, this result is much more general than just to `p balls; it works for a

wide variety of nonconvex figures; see Figure 4.

Proof. Consider the integrand of (3.5):

∫
∂Bθ

〈n(b), ν(b, t)〉2db

Now for a translation family, and a path ϑ(t) = θ0 + t(θ1 − θ0), we have that ν(b, t) = θ1 − θ0;

this is a constant, v, say, independent of t and b. Hence the integral becomes:

∫
∂Bθ

〈n(b), v〉2 db

Now for a 4-fold symmetric object, let Qθ denote the northeast boundary (i.e. the intersection

of ∂Bθ with the positive orthant). Hence, we may write (taking b0 = b)

∫
∂Bθ

〈n(b), v〉2db =
∫
Qθ

3∑
k=0

〈n(bi), v〉2db

Now for every b ∈ Qθ,

• there are three corresponding boundary points b1, b2, b3 obtained by rotations through 90,
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180, and 270 degrees;

• we have antisymmetric pairs of normals at b, b2 and at b1, b3, in the sense that the respective

normals n(·) point in opposite directions at each member of the pair; and

• we have orthogonal pairs of normals at b, b1, and at b2, b3 in the sense each pair of normals

n(·) is mutually orthogonal.

Now letting n⊥(b) be perpendicular to n(b), we have

3∑
k=0

〈n(bi), v〉2 = 2(〈n(b), v〉2 + 〈n⊥(b), v〉2) = 2‖v‖2.

Hence, ∫
∂Bθ

〈n(b), v〉2db =
‖v‖2

2

∫
∂Bθ

db =
‖v‖2

2
L(∂B0)

In short, recalling the definition of v = θ1 − θ0:

λ(ϑ) =
√
L(∂B0)/2 · ‖θ1 − θ0‖.

This implies the proportionality of geodesic and Euclidean distance. 2

Vin de Silva explained to us that a more general result is true, in which 4-fold symmetry

is replaced by k-fold symmetry for any k ≥ 3. De Silva’s argument starts by noting that the

infinitesimal structure of the metric δ is quadratic, and so has ellipsoidal level sets. At the same

time, k-fold symmetry of B0 would impose k-fold symmetry of that ellipsoid, which, for k ≥ 3,

forces it to be circular, and hence makes the infinitesimal structure conformal. Isometry follows

by noting that the scale of the problem is translation-invariant.

4.2 Pivoting an Object

Consider an object B0 with smooth boundary ∂B0, and suppose that 0 ∈ ∂B0. Now consider

a family of articulations that pivot the object around zero. More formally, let Rθ denote the

rotation matrix

Rθ =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ,
let I0(x) = 1B0(x), and let

Iθ = I0(Rθx).
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Figure 5: Pivoting a disk around a boundary point

Theorem 4.2 In the Pivot model, isometry holds; for |θ0 − θ1| < π renormalized geodesic

distance is proportional to the Euclidean distance in parameter space.

Proof: One has merely to notice that g11(θ) is independent of θ. This is easy to see by

observing that the integrand in g11,

〈n(b), ν1(b; θ)〉2

is independent of θ. Indeed, for any value of θ, n(b; θ) points normal to ∂B, while ν1(b; θ) points

normal to the line segment joining 0 to b. The angle between these two vectors is the same

independent of θ (See Figure 5).

4.3 Extensions to Piecewise Smooth Boundaries

The results above can be generalized to the case of piecewise smooth boundary curves.

On the one hand, as a limiting case of Theorem 4.1, consider translations of an `p ball for

p = ∞, where B0 is the unit square in the plane. Extrapolating the above result from p <∞ to

p = ∞ suggests that it might also be true that isometry holds for translations of the square, and

indeed this is the case. To verify that, we need to know that (3.5) still works if ∂Bθ is merely

piecewise smooth. The demonstration of this appears in [8]. It is clear that the same extension

applies not only to squares, but to 4k-gons, for any k (squares are the case k = 1. It is also

clear that the same extension applies to the case of objects with piecewise smooth boundaries

and 4-fold symmetry. In all cases, isometry holds.

On the other hand, as a limiting case of Theorem 4.2, consider a ‘pie slice’ B0 outlined by

two radial line segments, {(r cos (+ω), r sin (+ω)) : 0 ≤ r < R} and {(r cos (−ω), r sin (−ω)) :
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0 ≤ r < R}; and an arc connecting them, {(R cos (ω′), R sinω′) : −ω ≤ ω′ ≤ ω}.

Articulate the structure by a pivoting it according to Rθ as in Section 4.2 above. Hence, with

I0 = 1B0 , set Iθ(x) = I0(Rθx).

This is a limiting case of Theorem 4.2 because the boundary is piecewise smooth rather than

smooth. However, because (3.5) extends to the case of objects with piecewise smooth boundaries,

the conclusion of Theorem 4.2 carries over to this case as well.

5 Empirical Results

In this section, we compare our theoretical results showing isometry in a continuum setting

against empirical results applying Isomap to families of digital images.

5.1 Rigid translation of a single disk

Consider our standing example where the image I0(x) = 1{|x|≤1} is the indicator of a unit disk,

and our articulation translates the center of the disk by a vector θ in R2. As indicated above,

isometry holds in the continuum setting. We expect that an empirical trial with a finite database

of digital imagery should show essentially ‘perfect’ recovery of the original parameter space.

Our test uses the publicly-available Isomap code ([1]), running with the nearest-neighbor

parameter k = 7, and a set of 100 black-on-white images at 64-by-64 pixels. The translation of the

prototype was performed by randomly selecting x, y-coordinates of the disk centers, restricting

the centers so that the disk stayed inside the borders of the image. The results of the unit disk

experiment are seen in Figure 6. The actual Isomap 2-dimensional embedding was optimally

rotated and scaled using a Procrustes rotation [7] to match it to the original parameter space

for graphical presentation. Isomap almost perfectly recovers the original spacing and relative

positioning of the disk centers. In fact, we note that the only noticeable deviations tend to occur

where the sampling was particularly sparse, such as in the upper left corner of the parameter

domain.

5.2 Pivoting of a Single Disk

Consider pivoting a rotating a unit disk around a fixed boundary point, which for convenience

is chosen as the origin of our coordinate system. The position of the center of the disk provides

a natural parametrization; as it lies on the unit circle, it can be measured in radians θ. The

19



−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
Original Parameter Space, Single Disk

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
2D Embedding, Single Disk

Figure 6: Left panel: Original Disk Centers, colored by polar angle. Right panel: 2-dimensional
embedding recovered by Isomap. The points in the right panel have been colored by original polar
angle (optimally rotated and scaled). Similarly-colored points are typically in similar positions
in the two panels.
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Embedded disk centers, scaled to original

Figure 7: Right Panel: Original disk centers. Left Panel: 2-dimensional embedding for single
disk pivots

renormalized length of a line segment [θ0, θ1] is given by (3.5) after some calculation as

λ(ϑ) ∝ π
1
2 × |dθ|

where the articulation is a pivoting through an angle dθ = |θ0 − θ1|. As in the previous ex-

periment, we create a database of 100 images of a black-on-white disk at 64-by-64 pixels, and

articulate the disk under pivoting through a randomly selected angle θ.

The resulting experiment, optimally rotated and scaled, shows a satisfactory match to the

original parameter space in Figure 7. (We plot the disk centers in two-dimensions for comparison

to the image field).
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y(u;q1)

y(u;q2)
B0

Bq

Figure 8: Horizon Articulation Model

6 Variations

In this section, we return to the continuum setting and give more complex examples of articula-

tion/object models exhibiting isometry.

6.1 Horizon Articulation

We consider first a variation in both the image index set and the articulation model. Now the

image I(u, v) will have domain 0 ≤ u ≤ 1 and −∞ < v < ∞, forming a vertical ‘strip’, and

the images of interest to us will be black and white images with the boundary between the two

colors being a horizon v = ψ(u). Hence

I(u, v;ψ) = 1{v≤ψ(u)}.

We are interested in families Iθ of articulated images where the horizon is generated by a

linear combination of basis elements ψj (an example of an articulation appears in Figure 8)

ψ(u; θ) =
∑
i

θiψi(u).

Hence θ is a vector of expansion coefficients governing the shape of the horizon. We assume the

basis functions are orthogonal for L2[0, 1]:

∫ 1

0

ψj(u)ψj′(u)du = 1{j=j′};

examples include orthonormal wavelets, and orthonormal sinusoids. We will assume that the
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basis functions are smooth: at least C2.

In defining the metric δ for this setting, we need to define image regularization. The natural

choice in this case is to smooth ‘vertically’. So let ϕ denote the 1-dimensional standard normal

density, and the smoothing operation

(ϕh ?v f)(u, v) =
∫ ∞

−∞
ϕh(w)f(u, v − w)dw;

define then the smoothed image Ih by

Ihθ = ϕh ?v Iθ.

For fixed h > 0, the collection of all Ihθ for all θ ∈ Θ defines a smooth image manifold Mh, and

so we can define renormalized length in a fashion similar to (3.5). In this setting, the normal

n(b) is no longer relevant; we define the motion vector

v(t, u) =
∑
j

dθj
dt
ψj(u);

and the formula for renormalized length is

λ(ϑ) = Cτ ·
∫ 1

0

[∫ 1

0

v(t, u)2du
]1/2

dt. (6.7)

When we do this, we find that, if we select a linear path in parameter space,

ϑ(t) = θ0 + t(θ1 − θ0)

then

λ(ϑ) = Cτ · ‖θ1 − θ0‖.

Since the length of every line segment is proportional to the Euclidean distance, it follows that

δ itself is proportional to Euclidean distance.

Also, the appropriate formula for the Riemannian metric is simply

gij(θ) = C2
τ ·

∫ 1

0

φi(u)φj(u)du = C2
τ · 1{i=j}.

which shows the same thing another way.
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y(u;q1)

y(u;q2)

Figure 9: Successful Composite Articulations: Multiple Ordered Disks, Horizon models, and
Bunny Ears

Theorem 6.1 In the Horizon Articulation model, if the parameter space Θ is convex, isometry

holds.

An interesting feature here is that there is no limit to the dimensionality of θ; in particular, we

can consider quite complex articulations of a horizon; in each case, the natural parametrization

will be recovered up to a rigid motion of parameter space.

6.2 Bunny Ears and Hands

We now consider multiple-object articulations. Restrictions on the joint behavior of the objects

will be essential in order to have isometry. For detailed discussion of the necessary conditions

and proofs of the results, see [8].

Consider a two-object ‘Bunny Ears’ composed of two wedges on a disk: Let θ = (θ1, θ2) denote

a pair of angles, and let Bθ be the unit disk with two ‘ears’ attached, with the inclination of the

‘ears’ controlled by the components of θ. Each ear is an annular wedge with angular opening 2ω.

Such a basic wedge is defined by boundary segments {(r cos (θ + ω), r sin (θ + ω)) : 1 ≤ r < 2}

and {(r cos (θ − ω), r sin (θ − ω)) : 1 ≤ r < 2}; and two arcs connecting them, along r = 1 and

r = 2. The first ear is a wedge centered at θ = θ1; the second ear is a wedge centered at θ = θ2.

The parameter space Θ is chosen so the ears don’t overlap:

Θ = {(θ1, θ2) : 2ω < θ1 − θ2 < 2π − 2ω}.

We can extend this to the Hands model, in which the unit disk has 5 ‘fingers’ attached, and

each ‘finger’ is again an annular wedge at specific angle θi, i = 1, . . . , 5.

Θ = {(θ1, θ2, . . . , θ5) : 2ω < θi − θi+1 < 2π − 2ω}.

As long as the condition that the mobile wedges cannot overlap is enforced, the demonstration
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can be given for any number of ‘fingers’.

Theorem 6.2 For the ‘Bunny Ears’ and ‘Hand’ Models, with the indicated convex parameter

spaces, isometry holds.

6.3 Translating Several Ordered Nonoverlapping Disks

Consider now continuum images containing n disks, each of radius one, with centers θi, i =

1, . . . , n. With I0 the indicator of the unit disk, and θ = (θ1, . . . , θn), put

Iθ(x) =
n∑
I=1

I0(x− θi).

In this section we constrain

‖θi − θj‖ > 1

so that no two terms in the sum overlap, and the image remains of the ‘black-and-white’ type

in previous sections. We will go further than merely constrain the disks to be nonoverlapping;

we do so in several ways, each defining a different parameter space Θ.

• Single File. Let Θ1 denote the set of θ where the disk centers lie along the x-axis, so that

θi,2 = 0 i = 1, . . . , n;

(here θi,j denotes the j-coordinate of θi); moreover the centers are ordered along the x-axis:

θ1,1 < θ2,1 < · · · < θn,1.

• Separated Columns. Let Θ2 = Θ2((ai)) denote the set of θ arising where the disk centers

can be distributed in the 2-dimensional plane relatively broadly, but are constrained to lie

in zones defined by regions of the x-axis. We fix cutpoints a0, a1, . . . , an, with ai > ai−1+2

and demand that

ai−1 + 1 < θi,1 < ai − 1 i = 1, . . . , n.

• Northeast/Southwest ordering. We let Θ3 denote the parameter space where the disks are

arranged so that the i-th one has all earlier disks lying to the southwest and all later disks

lying in the northeast quadrant.
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Each such constraint corresponds to a convex family Θ. Now we consider independent transla-

tions of the family of disks that maintain the assumed constraint, i.e. translations that preserve

membership in Θ.

In this setting, we can adapt arguments from the case of a single disk to see that, if θ(0) =

(θ10, . . . , θ
n
0 ) is a collection of disk centers and θ(1) = (θ11, . . . , θ

n
1 ) is another collection of disk

centers, then for ϑ(t) = θ(0) + t(θ(1) − θ(0)), we have the renormalized length:

λ(θ;M) = Cτ ·

√√√√ n∑
i=1

‖θi1 − θi0‖2

and a Riemannian structure which is in fact Euclidean:

g(θ) = Cτ · Id, ∀θ ∈ Θ.

Thus, in this setting, the shortest distance between pairs of images indeed goes by morphing the

centers along line segments.

Theorem 6.3 Isometry holds for the Ordered Nonoverlapping Disks model with any of the pa-

rameter spaces Θ1, Θ2, or Θ3.

The extension from Disks to 4-fold symmetry seems likely to hold as well.

6.4 Two Non-Crossing Horizons

Now consider a region which is white everywhere except between two horizons which are con-

strained never to cross. For example, suppose that, as in Figure 9, both horizons are touching

at the endpoints u = 0, 1, and that elsewhere ψ1(u) < ψ2(u). Suppose that the two horizons

are each parametrized as in Section 5.1, with respective parameter vectors θi, and that, with

θ = (θ1, θ2), we have

Iθ = 1{ψ(u;θ1)≤v≤ψ(u;θ2)}.

We let Θ be the subset of θ vectors where

ψ(u; θ1) ≤ ψ(u; θ2) u ∈ [0, 1],

so that the definition makes sense. Note that, for each fixed u, θ 7→ ψ(u; θ) is linear; therefore,

Θ is a convex parameter space.
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Figure 10: Examples of cartoon faces generated by horizon articulations

It is not hard to see that if θ(0) = (θ10, θ
2
0) is a collection of Horizon parameters in Θ and

θ(1) = (θ11, θ
2
1) is another collection of horizon parameters in Θ, then for ϑ(t) = θ(0)+t(θ(1)−θ(0))

a linear path we have the arclength

λ(ϑ;M) = Cτ ·

√√√√ 2∑
i=1

‖θi1 − θi0‖2

and a Riemannian structure which is in fact Euclidean:

g(θ) = C2
τ · Id, ∀θ ∈ Θ.

Thus, again in this setting, the shortest path between images defined by two horizons indeed

goes by following a linear path in parameter space.

Theorem 6.4 Isometry holds for the Two Non-Crossing Horizons model.

6.5 Cartoon Faces

Now consider a very simple model of a cartoon face undergoing various articulations.

A fixed oval region in the plane is called the ‘head’, and five regions inside it, called ‘brows’,

‘eyes’ and ‘mouth’ are defined. Each of the brows, eyes and mouth is a black region defined

by two articulating horizons. The eyes and mouth have horizons which, as in the previous

section, are joined at the ends, creating an almond shape. The brows have two horizons ending

in vertical line segments and having fixed widths. Examples of these faces appear in Figure 10.

The parameter space under this model is convex for the same reasons as the parameter space in

Section 6.4.

The underlying parameter vector θ = (θ1, ..., θ8); θ1 and θ2, give the upper and lower horizon

of the mouth (i.e. the lips), θ3 and θ4 give the upper and lower horizon of the left eye, (i.e. the

lids), etc. The parameter space Θ is constrained so that the upper and lower boundaries of an
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Figure 11: Movie model: sequence of articulated disks in time

object such as the right eye never cross, and so that the upper boundary of the right eye never

crosses the lower boundary of the right brow, etc.

We evaluate closeness of the images using L2(dx) as usual. Applying the same smoothing

recipe as in the single horizon case, we get a renormalized distance.

It is not hard to see that if θ(0) = (θ10, . . . , θ
8
0) is a collection of Horizon parameters in Θ

and θ(1) = (θ11, . . . , θ
8
1) is another collection of horizon parameters in Θ, then for a linear path

ϑ(t) = θ(0) + t(θ(1) − θ(0)) we have the arclength

λ(ϑ;M) = Cτ ·

√√√√ 8∑
i=1

‖θi1 − θi0‖2

and a Riemannian structure which is in fact Euclidean:

gij(θ) = C2
τ · Id, ∀ θ ∈ Θ.

Thus, again in this setting, the shortest path between images defined by two horizons indeed

goes by following a linear path in parameter space.

Theorem 6.5 Isometry holds for the Cartoon Face Model.

7 Movies

In this section only, we consider the case of ‘movies’, which are objects with an additional time

index: I(x, α) where x ∈ R2 and the time index α ∈ [0, 1]. Think of a (continuous) collection

of 2-D images I(·, α); instead of looking at the parameter space for one movie, we consider the

joint parameter space of an entire set of movies.

We consider two kinds of articulations under the movie model. For much more ambitious
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examples, see the technical report [9].

7.1 Motions of a Disk

Let I0 be a 2-dimensional image – the indicator function of a disk – and consider a movie showing

motion of the disk. Let in fact χ(α) be the center of the disk as a function of time and put

I(x, α) = I0(x− χ(α)).

For a simple example, consider a movie which shows linear motion of the disk. Then

χ(α) = ν · α.

The center of the disk is at (0, 0) at the movie’s beginning, at time α = 0, and it is at ν at the

movie’s end, at time α = 1.

For a more interesting class of motions, we consider the parametric family:

χ(α) = χ(α; θ) =
∑
j

θjψj(α)

where ψj are vector-valued and orthogonal in L2[0, 1].

Define now the family of articulated images Iθ(x) = I0(x − χ(α; θ)), and for regularization,

do 2-d smoothing within each frame:

Ihθ = φh ?(x,y) Iθ;

here φh is a 2-d smoothing kernel in (x, y) only (not in α). For a smooth path ϑ(·) in Θ we have

the following formula for arclength:

λ(ϑ) = Cτ

∫ 1

0

√∫
〈ν, n〉2dbdα dt

where b runs along the perimeter of the disk, ν = ν(b, α; t) is the motion vector of the boundary

element b at time α in the movie and at parameter t in the path, and n is the (x, y)-normal to

the surface of the disk at (b, α). Then we notice that, just as in the case of translating a 2-d

image, ∫
〈ν, n〉2db = C · ‖dχ

dα
‖22
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We conclude that

δ(θ0, θ1) = Cτ · ‖θ1 − θ0‖2.

Theorem 7.1 Isometry holds for movies of a translating disk.

For similar reasons, Continuum Isomap works for movies of several translating disks which

are ordered and nonoverlapping.

7.2 Gestures of a Hand

Consider the Hands model of the previous section, only relabel the parameter θ of that model by

ζ. Then ζ has several components, controlling the position of the various fingers. Now consider

a movie showing motion of the hand components. Let in fact ζ(α) be the parameters of the hand

as a function of time and put

I(x, α) = Iζ(α)(x).

For a simple example, consider a movie which shows uniform rotation of the fingers around

a common center. Then

ζ(α) = ζ0 + α(ζ1 − ζ0).

The hand is in configuration ζ0 at the movie’s beginning, at time α = 0, and it is at ζ1 at the

movie’s end, at time α = 1.

For a more interesting class of motions, we consider the parametric family:

ζ(α) = ζ(α; θ) =
∑
j

θjζj(α)

where ζj are vector-valued and orthogonal in L2[0, 1].

Define now the family of articulated images Iθ(x, α) = Iζ(α)(x). and for regularization, do

1-D smoothing angularly:

Ihθ = φh ?ω Iθ

here φh is a 1-D smoothing kernel acting convolutionally in r = constant. For a smooth path

ϑ(·) in Θ we have the following formula for arclength:

λ(ϑ) =
∫ 1

0

√∫
〈ν, n〉2db dα dt

where b runs across the perimeter of the hand within the two-dimensional image, ν(b, α; t) is the
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motion vector of the boundary element at time α in the movie and at parameter t in the path,

and n is the (x, y)-normal to the surface of the disk at (b, α). Then we notice that, just as in the

case of translating a two-dimensional image,

∫
〈ν, n〉2db = C · ‖ dζ

dα
‖22.

We conclude that

δ(θ0, θ1) = C · ‖θ1 − θ0‖2.

Theorem 7.2 Isometry holds for movies of Hand Gestures.

8 Failures

The conditions established for Continuum Isomap to ‘work’ can fail in two different ways. First,

the parameter space can be inherently non-convex. Second, the manifold can be essentially

curved.

8.1 Non-Convexity: Two Disks with Exclusion

Consider images of two black disks on a white background within a square image as in Figure

12. Suppose the disks are forbidden to occupy the same space at the same time. Partitioning the

parameter θ as (θ(1), θ(2)), with components denoting the positions of the image subcomponents,

the disks cannot overlap. At any given position of the first disk, the parameter space of the second

disk has a hole representing the parameter values leading to overlap with the first disk. As a

result, the parameter space is not convex. For further examples of non-convexity, see [9].

In this case, the Riemannian structure gij(θ) is proportional to the identity everywhere, but

the domain is not convex. We have local isometry but not isometry. As it turns out, local

isometry is sufficient to allow reconstruction of the parameter space, using one of the methods

described in [5].

8.2 Non-Flatness: Rectangles

We now turn to examples where the abstract manifold is not flat. Consider the ‘world’ of

rectangles of various volumes and aspect ratios and common centers. With α1 and α2 the

halflengths in the axial directions, and θ = (α1, α2), the image Iθ is the the indicator of the

region defined by |x| ≤ α1, |y| ≤ α2. Let Θ be the rectangle αi ∈ (1/2, 2).
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Figure 12: Failures: Rectangle Morphing, Ellipse Morphing, Race Track, Jointed FInger

Now consider a smooth path in Θ. Because at each point of ∂Bθ the normal vector is either

coincident with the motion vector or perpendicular to it, and because articulation in α1 alone

has an impact corresponding to the vertical profile of the rectangle,

g11 = Cτ ×
[∫
x∈[−α2,α2]

dx
]

In short, g11 g12

g21 g22

 =

Cτα2 0

0 Cτα1


As the Riemannian structure (gij) depends in an essential way on θ, it is not constant, and

the abstract manifold M is not flat. Hence, we do not have isometry between the apparently

natural parameter space (Θ, δ) and Euclidean space.

Other examples of this type, e.g. images of ellipses with various aspect ratios and volumes,

are discussed in [9]. Many three-dimensional perspective transformations result in inherent

curvature of the abstract manifold.

8.3 Non-flatness: Fingers with Multiple Joints

Imagine a model as in the fourth panel of Figure 12 where we define a single ‘skeletal finger’

composed of three connected line segments, thickened slightly into ‘rods’. In this case, we assume

that the joints of the finger are negligible compared to the segment lengths (all segments are
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of length L). Parametrize each of the segments by an angular position: θi, i = 1, 2, 3, where

0 ≤ θi ≤ π/2. The entire skeleton of the finger is then, for l ∈ [0, L]:

S1 =(l cos(θ1), l sin(θ1))

S2 =(L cos(θ1) + l cos(θ2), L sin(θ1) + l sin(θ2))

S3 =(L cos(θ1) + L cos(θ2) + l cos(θ3), L sin(θ1) + L sin(θ2) + l sin(θ3)))

As a result, the normal and motion vectors under a three-parameter articulation, (θ1, θ2, θ3),

depend on the values of the other variables. To achieve the minimal distance between two

positions of θ1 requires that the other parameters θi, i > 1 be in optimal position, and the

definition of an ‘optimal’ position depends on the current value of θ1. The result is curvature.

9 Conclusion

We have studied manifolds of model images defined over the continuum plane, finding that for a

number of interesting articulation families, the resulting abstract image manifolds are isometric

to the underlying ‘natural’ parameter space. This gives a theoretical framework explaining why

the Isomap algorithm can be expected to work in the case of image manifolds.

Although our analysis abstracts away several possible confounding factors such as pixeliza-

tion, the comparison of theoretical predictions with empirical tests of Isomap suggests that the

theory is accurate in predicting actual empirical results. In addition, our theoretical perspective

allows consideration of variations of the image case (movies and very high-dimensional articula-

tions, for example) that would not be easy to explore by empirical techniques.

A Proof of Theorem 3.1

Notation: Let It ≡ Iϑ(t), where Iθ is a function of x ∈ R2. Let the boundary of the set B be

denoted by ∂B; points in the boundary are b ∈ ∂B. We assume that B and ∂B have the same

topology throughout Θ, and so, for a fixed θ0 there exists a parametrizing map α : ∂Bθ0×Θ → R2

using ∂Bθ0 as a parameter space for each boundary point and each θ ⊂ Θ. We also assume that

the radius of curvature of ∂B is uniformly bounded away from zero both over every b ∈ ∂Bθ and

over θ ⊂ Θ. It follows from this that for fixed θ0 there is a tubular neighborhood of ∂Bθ0 with

coordinates (b, u), where any x in that neighborhood has for its b-coordinate the closest point

in ∂Bθ0 whose normal n(b) is parallel to x − b, and for its u-coordinate the signed distance to
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∂Bθ0 . Fix now θ0 and consider the coordinate system associated to ∂Bθ0 . The motion vectors

νi(b, θ) referred to verbally in Section 3 are then defined by

νi(b, θ) =
∂

∂θi
α(b, θ),

and, if θ evolves along a path ϑ(t), the boundary ∂Bθ flows with time according to

ν(b, t) =
∑
i

dθi
dt
νi(b, ϑ(t)).

We can also parametrize the boundary ∂Bθ, for all θ sufficiently close to θ0, in terms of a

function β(b, θ) giving the u-coordinate of the boundary point in ∂Bθ corresponding to a given

b in ∂Bθ0 . We will make the quantitative assumption that β is a C2 function of both θ and b

jointly. The proof is a series of observations recorded in the form of Lemmas.

Lemma A.1 If ψ is C∞(R2) and of rapid decay at ∞,

d

dt
〈 It, ψ〉

∣∣
t=0

=
∫
∂B

σ(b)ψ(b) db

where σ(b) ≡ 〈ν(b, 0), n(b)〉.

Proof. The Tubular Neighborhood Theorem [10] allows us to write, for small enough ε > 0

〈Iε − I0, ψ〉 =
∫
∂B

∫ β(b,θε)

0

ψ(b+ un(b))J(u, b) du db

where J(u, b) is the Jacobian of the cartesian-to-tubular coordinates map (and which is 1 + o(1)

as u→ 0), and where we interpret an integral with reversed limits according to
∫ −|a|
0

≡ −
∫ 0

−|a|

as usual. Now

β(b, θε) = εσ(b) +O(ε2)

so ∫ β(b,θε)

0

ψ(b+ un(b))J(u, b) du ∼ εψ(b)σ(b), ε→ 0.

Dividing by ε and letting ε→ 0 gives the result. 2

Lemma A.2
d

dt
[φh ? It(x)]t=0 =

∫
∂B

φh(x− b)σ(b) db (1.8)

Proof. Define the function ψx0 according to ψx0(y) = φh(x0 − y). Self-adjointness of
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convolution allows us to write

1
ε
(φh ? (Iε − I0))(x0) =

1
ε

∫
(Iε − I0)(y)ψx0(y) dy

→ d

dt
〈It, ψx0〉

∣∣
t=0

, ε→ 0,

=
∫
∂B

ψx0(b)σ(b) db

where the last step follows from Lemma (A.1). (1.8) follows. 2

Lemma A.3 Let ψh(x) ≡ φ√2h(x). Then

∫
(
d

dt
(φh ? It))2 dx =

∫
∂B

∫
∂B

σ(b)σ(b′)ψh(b− b′) db db′.

Proof.

∫
(
d

dt
(φh ? It))2 dx =

∫
R2

(∫
∂B

φh(x− b)σ(b) db
) (∫

∂B

φh(x− b′)σ(b′) db′
)
dx

=
∫
∂B

∫
∂B

σ(b)σ(b′)
(∫

R2
φh(x− b)φh(x− b′) dx

)
db db′

=
∫
∂B

∫
∂B

σ(b)σ(b′)ψh(b− b′) db db′

where ψh denotes the cross-correlation φh ⊗ φh. Because φh is Gaussian, its cross-correlation

with itself, ψh, is also Gaussian, with a scale parameter larger by a factor of
√

2. 2

Now combine the above lemmas. With ψ an appropriately-scaled isotropic Gaussian,

ψh(b− b′) = ψ
(b− b′

h

) 1
h2
.

Note that near b, ∂B is approximated by L = {b+ tḃ : t ∈ R} where ḃ is the unit tangent vector

to ∂B at b. Therefore, if b′ ∈ ∂B is near b, we can write b′ = b+ tḃ+O(t2), and so

∫
∂B

∫
∂B

σ(b)σ(b′)ψ
(b− b′

h

)
h−2 db′ db ∼ h−1

∫
∂B

∫ ∞

−∞
σ(b)σ(b)ψ(tḃ) dt db

∼ h−1Cφ

∫
∂B

σ2(b) db,

where we define ∫
ψ(tḃ) dt = Cφ,
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which is independent of the choice of unit vector ḃ because ψ is isotropic. We conclude that

∫
(
d

dt
(φh ? It))2 dx ∼ h−1Cφ

∫
∂B

σ2(b) db, h→ 0.

Combining this result for both (It), a path of interest, and (Iτt ), a line segment between landmark

points, gives the result.

References

[1] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for

nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[2] S. Nayar, S. Baker, and H. Murase, “Parametric feature detection,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, California,

1996, pp. 471–477.

[3] P. N. Belhumeur and D. J. Kriegman, “What is the set of images of an object under all

possible illumination conditions?” International Journal of Computer Vision, vol. 28, no. 3,

pp. 1–16, 1998.

[4] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality analysis by locally linear embed-

ding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2003.

[5] D. Donoho and C. Grimes, “Hessian Eigenmaps: Locally linear embedding techniques for

high-dimensional data,” Proceedings of the National Academy of Sciences, vol. 100, no. 10,

pp. 5591–5596, 2003.

[6] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis. Academic Press,

Harcourt Brace, 1979.

[7] T. F. Cox and M. A. A. Cox, Multidimensional Scaling. Chapman, Hall, 1994.

[8] C. Grimes, “New methods in nonlinear dimensionality reduction,” Ph.D. dissertation, De-

partment of Statistics, Stanford University, Stanford, CA, 2003.

[9] D. L. Donoho and C. Grimes, “When does Isomap recover the true parametrization of

manifolds of articulated images?” Department of Statistics, Stanford University, Technical

Report TR2002-27, 2002.

[10] A. Gray, Tubes. Addison-Wesley, 1990.

35


