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Manifold Model for the Data

Data space M" is a Riemannian manifold, i.e.
a manifold with an intrinsic notion of distance.

Observation map is an isometric embedding
T M® = RY

w(M™) is a (low-dimensional) submanifold of
RY .

Observed data xy,... ,x; € 1(M) C RY

What can we do within this framework?



Problems of Machine Learning

1. Regression/Classification
2. Data Representation

3. Clustering

RY 5 R X

M =R vV

Laplacian provides a unifying framework.



Laplace-Beltrami Operator

The Laplace-Beltrami operator:

Cf “ divv(f)

Gradient V and —div are formally adjoint op-
erators, 1.e. if X is a vector field on manifold

M then
[W(X,Vf)dv = [, div(X) fdv

IfX = Vf
I IV fIIPdv = I Lf - fdv



L is a self-adjoint positive semidefinite operator.
If M is compact, the eigenvalues of L are dis-
crete.

O=X< A <...< )\ <.

Corresponding eigenfunctions eg, €s, . . . provide
an orthonormal basis for £L2(M).

f:M—=R
f(x) = EO a; €;(X)

a; = / f(X) 62'(X) d,u
M

(Generalization of Fourier series.



An Example: Circle

& f

Eigenfunctions: e, = ™.

Eigenvalues: ), = n®.

Fourier series:



Laplacian as a Smoothness Functional

On a circle

S(f) = [ 1(9)dv =

Sl

= [ 10) 1(@)'dv = (f, £()s

In general

S(f) :/\[l IVf(x)||"dv =
Aéﬁ(f) fdv={f,L(f))m

Eigenfunctions of the Laplacian are ordered by
smoothness:

S<61> — )\2'62'



Regression /Classification

Problem: estimate f : M — R given

(X17 yl)) Tty (Xk7 yk)

Regularization:
. 71 ,
f = aagmin [ 51 x) — il + AS(f)
feH v

S(f) = Ly

Many other smoothness functionals are avail-
able within the framework.



Data Representation

Problem: given x1,... ,X; € M
find y1,... ,yr € R’ that “represent” x;.
Additional condition: we want a map

M — R

If we want to preserve neighborhoods, then a
natural choice is to minimize “average distor-
tion”

[ IV7|]*dp
M

Eigenfunctions of £ give a solution.

7(x) = (eo(X), ... ,e(x))



Clustering

Isoperimetric inequalities. Cheeger’s constant.

IM,
M

VOln_l(ng)
min (vol™ (M), vol"(M™ — M7))

h = inf

[Cheeger]
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Spectral Graph Theory

Laplace-Beltrami operator has an analogue in
graph theory.

G is a graph with the weight matrix W. L*(G)
is a space of functions G — R. The graph

Laplacian
L=D-W
> W1; 0 ce 0
D— 0 2 f.LUgi e 0

L is a positive semidefinite operator L*(G). Eigen-
functions of the Laplacians eq, ... , e, form an
orthonormal basis for L*(G).
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Graph Laplacian as a Smoothness
Functional on a Graph

f : G — Rissmooth if it does not change much
between the adjacent points.

S(E) = > (fi — f;)° W

i~]

Key fact:
> (fi — f;)*Wy; = 2f ' LE

1~]

Analagous to:

[ IVFIPdv = [ L(f)f dv

Regularization:

- 1
f =argmin|— ¥ (f; —v)* + AS(f)
fGLQ(G) 7 labeled

points
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Why Manifolds Are Useful
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Need only unlabeled points to estimate the
manifold. Natural application: partially labeled
classification.
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Convergence of Graph Laplacian to
Laplace-Beltrami operator

Gaussian kernel:

=yl

I/Vz'j: & a if0<||5172'—33]‘||<€

0 otherwise

If points are sampled uniformly from M, can
use heat kernel on M to show convergence.
Heat kernel on M is closely related to heat ker-
nel on RY.

=1

L(f)xo) = KZem T~ f(x;)

1
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Experimental results: optical
character recognition
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Figure 1: MNIST data set. Percentage error rates for different numbers of
labeled and unlabeled points compared to best k-NN base line.
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Experimental results: optical

character recognition

Labeled Number of Eigenvectors best
points || 5 10 |20 |50 |100 |200 5001000 | k-NN
20 53.7|35.8 53.4
50 48.3 124.7(12.9 37.6
100 48.622.064 |14.4 28.1
500 49.11227156 |3.6 |35 |70 15.1
1000 51.0124.115.5 |34 |32 |34 |81 10.8
5000 475125 |56 [34 (31129 2.7 |27 |6.0

20000 || 47.7/248 |54 |33 |3.1 129 27 (24 | 3.6

50000 || 47.3|24.7|55 |34 |3.1 3.0 |27 (24 |23

Table 1: Percentage error rates for different numbers of labeled points for the
60000 point MNIST dataset. The error rate is calculated on the unlabeled
part of the dataset, each number is an average over 20 random splits.The

rightmost two columns contain the nearest neighbor base line.
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Experimental results: text
classification

I I
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Figure 2: 20 Newsgroups data set. Error rates for different numbers of labeled
and unlabeled points compared to best k-NN baseline.
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Experimental results: text

classification

Lab. Number of Eigenvectors best
pts 5 10 |20 |50 |100 | 200 |500 | 1000|2000 || k-NN
50 83.4|77.3|72.1 75.6
100 81.7|74.3 | 66.6 | 60.2 69.6
500 83.1|75.8|65.5|46.4 | 40.1|42.4 54.9
1000 | 84.6 |77.6|67.1|47.0|37.7|36.0|42.3 48.4
5000 | 85.2|79.7|72.9]49.3|36.7|32.3|28.5|28.1 |30.4 || 344
10000 || 83.8 | 79.8 | 73.8 1 49.8 | 36.9|31.9 27.9|25.9 | 25.1 || 27.7
18000 || 82.9 | 79.8 | 73.8 | 50.1 | 36.9 | 31.9 | 27.5 | 25.5 | 23.1 | 23.1

Table 2: Percentage error rates for various numbers of labeled points and
eigenvectors. The total number of points is 19935. The error is calculated

on the unlabeled part of the dataset.
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