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I. HiLBERT DISTANCES
If & is any topological space then a continuous complex function of two vari-
ables f(P, Q) on & X & shall belong to class P (positive definite functions) if
1) f(P,Q) =fQ, P)
2) f(P,P)=J@Q Q)

and
3’) for any integer n, any points Py, --., P, and any complex numbers
p1, -+, pn the relation
() 2. J(Ps, Poib; 2 0,
)=
holds.

The wider class B, shall consist of all those functions for which, other assump-
tions being unchanged, the decisive inequality (1) is assumed to hold only subject
to the restriction

) 2 =0

Just how much wider the class Po actually is will be established under further
assumptions. The real classes P and P, shall consist of all real-valued func-
tions of these classes.

We will call a function p(P, Q) a distance function if p(P, Q) = p(Q, P) 2 0,
p(P, P) = 0and p(P, Q) + p(Q, R) = p(P,R). Wecall p(P, Q) a proper distance
if P  Q implies p(P, Q) > 0. Introducing the real Hilbert space $ of sequences
(2.}, {yn} With the customary distance (3. (z» — y»)")""*, we now call p(P, Q)
a Hilbert distance on © if it is possible to map & into 9 in such a way that the
value of p(P, Q) shall be equal to the value of the latter distance for the trans-
forms of P and Q. The following decisive criterion has been established by K.
Menger and 1. J. Schoenberg:' if © is separable, then p(P, Q) is a Hilbert distance
if and only if —p(P, Q) belongs to Po. Also, Schoenberg discovered the fact
that a function f(P, Q) belongs to B, if and only if &Y "? pelongs to P for each

1 See 1. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math.
Soc. 44 (1938), 522-536.

* Positive definite functions on non-compact but commutative groups have been analyzed
recently in A. Powzner, Doklady U.S.S.R., 28 (1940) 294-295, and D. Raikow, Doklady
U.S.S.R., 27 (1940), 324-327 and 28 (1940), 296-300.
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648 8. BOCHNER

positive A, and he analyzed Hilbert distances on open euclidean and Hilbert
spaces.

In the present note we will investigate Hilbert distances for some types of
general but compact separable spaces. We will obtain new relations between
the classes B and B, and structural criteria in terms of expansions in orthogonal
systems.’

II. CompacT SPACES ‘WITH BOUNDED MEASURE

Since f(P, Q) is continuous, if & is a finite interval, say, then condition 3’) for
P can be replaced by the following condition:
3) for each integrable p(P) the relation

) [[ 72, @oPro(@ aPag 2 0
holds;® and for P, relation (3) holds subject to the restriction
(4) f p(P)dP = 0.

This replacement of sums by integrals is admissible for more general spaces.

Lemma 1. Conditions 3) and 3') are equivalent if o), & is both separable and
compact, B) there exists a Lebesque measure dP on & for which v) all Borel sets are
measurable, 8) every open set has non-vanishing measure and ) the total space has
measure 1.

Proor: We first observe that & and © X & are each bi-compact, and that
therefore every continuous function f(P, Q) is uniformly continuous and bounded.
In the proof M will be independent of e. We will give the proof of the
lemma for functions of PB,, for functions of P it is even simpler. Let
(P, Q) satisfy 3’) and let p(P) be any function satisfying (4). Given ¢ > 0
we partition & into a finite number of Borel sets &, , - - - , &, such that f(P, @
oscillates by less than e on each &; X &;. Choosing an arbitrary point P;

in &; and putting p; = f p(P) dP we obviously have (2) and
S

n

(8)

s, P)oii — [ [ 1P, Qo(P1o(@ dP ag| < et.

Letting ¢ — 0 we obtain (3). Conversely, if f(P, Q) satisfies 3), and distinct
points {P;} and numbers {p;} are given, and if (2) holds, then for ¢ > 0, we pick
a set of disjoint neighborhoods &; of P; , such that f(P, Q) oscillates by less than
e on each &; X ©,. Putting p(P) = Eéa;n—e@ for Pe®;, and p(P) = 0
for Pe© — (&1 + --- + &,), we have relation (2) and (5), and, by a limit,
relation (1).

$)=

3 Whenever the range of integration is not indicated it is the total set to which the
variable refers.
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In what follows we will always assume that & satisfies the assumptions of
the lemma.

THeOREM 1. If f(P, Q) belongs to B, if o(P) s continuous and c ts a real
constant, then

(6) 9(P, Q) = f(P, Q) + ¢(P) + 0(Q) — ¢

belongs to B, except for property 2).
Conversely, if g(P, Q) belongs to Po, then there exists a continuous function
¢(P) and a real constant ¢ such that

(7) JP,Q) = g(P,Q — ¢(P) — (@ + ¢
belongs to B, except for property 2), as for instance

® oP) = [ o(P, @ d0Q

© c=[o®rap = [[ o Qarae.

Proor: The first part follows from the fact that (4) implies

10 [ o®0Ep@drdg = [ o@)(P)dp. [ 5@ de = o;

the second part follows from the fact that (7), (8), (9) and A = [ po(P) dP
implies

[[ 72, @eP@ apaq = [ [ 4P, @6(P) - NG(@ - aP de.

We call a function f(P, @) measure invariant if [ f(P, @) dQ is independent

of P. This leads to
THEOREM 2. A function g(P, Q) belongs to the measure invariant class P,
if and only if it can be written in the form

(11) (P, Q) — f(2, ®)

where f(P, Q) belongs to the measure invariant class P and @ is any point of S.

We now assume the existence of a fixed transitive group € of continuous
transformations of & into itself, and we assume that our measure is invariant
under the operations of €. We call a function f(P, Q) group invariant if for
all elements s of €, f(sP, sQ) = f(P, @), where sP is the transform of the point
P under the transformation s. In particular f(sP, sP) = f(P, P). Now if P
and Q are any two points, since our group is transitive there exists an element
ssuch that @ = sP. Thus from now onward property 2) of P will be automati-
cally fulfilled for any function f(P, @) which is group invariant. In order to
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emphasize the independence of f(P, P) of the special point P we will designate
it by f(®, ®) where ® is any fixed point which is chosen appropriately. For
instance if & itself is a group it is customary to take for & the identity element
of the group.

If f(P, Q) is group invariant we also have

oP) = [ 1P, @ d@ = [ f(sP, Q) dQ = [ aP, @) ()

- f f(sP, Q) dQ = o(sP),

and this implies that ¢(P) is a constant. In other words, if f(P, Q) is group
invariant it is also measure invariant. This leads to

TueoreEM 3. A function g(P, Q) belongs to the group tnvariant class PBo if and
only if it can be written in the form (11) where f(P, Q) s group tnvariant and
belongs to P.

A function po(P, Q) is a group tnvariant Hilbert distance if and only if it can be
represented in the form

Vi@, @) - f(P, Q),

where f(P, Q) is group invariant and belongs to the real class P. The function
p(P, Q) is a proper distance if and only if f(P, Q) < f(®, ®) for P # Q.

III. Grour INvVvARIANT FUNCTIONS

In the present section we will supplement Theorem 3 by statements involving
expansions in orthonormal systems. An orthonormal system {¢.(P)} is of
course defined by the property

fﬁom(P)m dP = Omn;

the orthonormal system we will consider will automatically consist of continuous
functions and it will be complete both in the space of continuous functions and
in the space of integrable functions.

The simplest space © is the torus 0 < z < 27 with the group of translations
on it. Any continuous function f(z, y) on & X & has a Fourier expansion
(12) Z ammet’mze—t'ny.

Group invariance means that f(z, y) = f(x + s, ¥ + s) and this implies

i(m—n)s

Am,n = Qm,n€

Thus, @m,» = 0 if m # n, and (12) has the form

(13) Z @ eim(z—v).

-—00
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Now f(z, y) belongs to P if and only if an is real and = 0, and Y am < ®;
f(z, y) is real if and only if a_m = @m. Thus, by Theorem 3, p(z, y) is a Hilbert
distance if and only if it is the square root of an expression

(14) E %(2 _ eim(:—y) _ e—i(z—u)) = Z am(el'mz _ eimy)(e——imz _ e—-imy)
m=1

me=]
where
(15) an 20 and Y am < «.

If we prefer to look upon p(z, y) as a function of the one variable z — y it is
more appropriate to write (15) in the form

(16) 2mz::la,,.(1 —cosm(z — y)) = 42 a,,(sin’g(x — y))z.

This result can be extended to our spaces in general in terms of expansions
into “generalized spherical harmonics” as given by E. Cartan and H. Weyl.!
If © is a space satisfying lemma 1 with a transitive group € of motions then
there exists on & a complete orthonormal system of continuous functions of the
following description:

(i) corresponding to each k, k = 0, &1, +£2, &3, - - - there exist a finite rectan-
gular system of functions gx,m.(P) with

m=1...,L1l= I(k);
(17)
M= 1, "';h7h= h(k);
and a quadratic system of functions uix,ma(P) on € withm, « =1, ..., 1 =
1(k), such that
l
(18) ‘Pk.mu(sp) = z:luk.ma(s)‘Pk.au(P)-

(ii) For each k, ux,ma(8) is an irreducible unitary representation of €, and for
different values of k the representations are inequivalent.
(i) fork =0,l=h =1, and @ou(P) = 1, uo,u(s) = 1;also I(—k) = k),
h(—k) = h(k), and
‘P—k.mp(P) = ‘Pk,mn(P); u—k.ma(s) = uk,ma(s)-
Now the system of functions
‘Pp.m‘n(P )'¢q,m(Q)

is an orthonormal system on & X &, and thus f(P, Q) has an expansion

(19) Z Qpg,mu,nv ‘Pp.mu(P ) ‘Pq.m(Q) .

P @iy ¥

+H. Weyl, Harmonics on homogeneous manifolds, Annals of Math., 35 (1934), 486-494.
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Replacing P and @ by sP and sQ respectively and using (18) we obtain as a
necessary and sufficient condition for group invariance the system of relations
1(p) 1(a) R
Qpg,ap,br = Qpg,munr Up,ma(8) Ug,ns(8)

m=1 ne=l

and this is equivalent with

i(q) i(p)
(20) El apq,au,nr uq .Bn(s) ‘= El am.ﬂw By up.m(s)-
N M

Since the functions {u(s)} are linearly independent the comparison of coefficients
on both sides of (20) will show that a,¢,myn» vanishes if p > g or if m = n, and
that for p = ¢ and m = n its value is independent of m. This leads to writing
(19) in the form

(21) ) (:)(_i Ot o 01.0o(P, Q))

k= —c0
where
1(k)

(22) ‘Pk.ur(P, Q) = mz_:l ‘Pk.mp(P)‘Pk.mv(Q)-

We can now express the properties of P in terms of the coefficients ax,,, . Prop-
erty 1) of P simply means that for each k, the matrix

(23) I Qi ur | pore=l, o o h(K)

is hermitian. Property 2) is automatically fulfilled, and property 3) means that
(23) is non-negative definite. In fact putting in (3)

h
p(P) = 21 Ty 0k, mu(P)

we obtain

(24) i’_l QG TuTr 2 0.
Conversely if p(P) is a finite s:m of the form
(25) 2 Zymuon.m(P)

the left side of (3) is

5 (2, ararto watem)

pom \pr=1

and this is 2 0 if (24) holds. But finite sums of the form (25) are dense in the
family of all function p(P) and thus (24) implies property 3). Finally by
property (iii) of {o(P)}, f(P, Q) is real if and only if

(26) Akyy = G—kpr -
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Thus a function f(P, Q) of the real class P has an expansion of the form

© h(k) [ ——
@) at 33 (2 tralornlP, @ + rnP, Q)

where each matrix (23) is a semi-definite hermitian matrix. Before proceeding
we require the following

LEMMA 2. There exists an array of real numbers rop,n=1,2, ... , k=0,
+ 1, +2 ..., withthe following properties: (1) 0 = rox = 1, (i) limurnx = 1,
(iii) for each n only a finite number of coefficients . ts #~ 0, and what is decistve,
(iv) #f (21) ts the expansion of a continuous function f(P, Q), then the sequence of
Sfunctions

(28) 1e,Q =3 r,.k(EI G o (P, Q))

18 uniformly convergent towards f(P, Q) as n — .

The proof of the lemma can be carried out along familiar lines and will be
omitted.’
Now, if (23) is hermitian the number

A
M= 21 oy Pk (P, B)
By =

is 2 0 and
h
A ak.uv(ﬂk,pr(P, Q) é Xk ’

By

therefore
0= 2 raaM S fu(®,8) s M
ke=—oco

where M is independent of n. Letting n — « we obtain ), A < M, and we
hence conclude that the series (21) and (27) are absolutely and uniformly con-
vergent. Therefore we have for

f(®, ®) — f(P, Q) = ¥f(P, P) + 3/(Q, Q) — f(P, Q)

the series
0 h(k)
(29) E Z ak.urwk.p'(P ) Q))
k=1 o=l
where

1(k)

(30) wl.u’(Py Q) = “;1 (‘Pk.mu(P) - 'Pk,mu(Q))(‘Pk.mv(P) - ¢k.mr(Q))-

% See S. Bochner and J. v. Neumann, Almost periodic functions in groups, Trans. Amer.
Math. Soc., 37 (1935), 21-560, esp. Part III; H. Weyl, loc. cit., p. 498-499.
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Altogether, on the basis of Theorem 3 the following theorem can now be easily
verified.

THEOREM 4. A non-negative function p(P, Q) is a group invariant Hilbert
distance if and only if its square 1s an absolutely and uniformly convergent series
of the form (29) in which such matriz (23) is non-negative hermitian and yi,,.,» has
the value (30).

We observe that our series (29) is a generalization of series (14).

THEOREM 5. The Hilbert distance of Theorem 4 is certainly a proper distance
if each matriz (23) is strictly positive definite.

Proor: In fact, if (23) is strictly positive then p(P, @) can only vanish if for
each k, m, a

¢k.m¢(P) - (Pk.ma(Q) = 0.
But the latter fact implies that every continuous function on & assumes equal
values on the points P and @, and this can only happen if P and Q are identical.
IV. Some SpeciFic Cases

Formulas (27) and (29) are greatly simplified if for all values of £k we have
h(k) = 1. In this case we can write

ﬂR®=%+;wM®®+wm®)

where

L(k)

B (P, Q) + wl(P, Q) = mg (erm(P)ek.m(@) + or,m(P)orm(Q));

also the expression

(32) 3 0(20:(®, ®) — ou(P, Q) — pu(P, @)

k=1

for p(P, Q)° shows a strong resemblance to the left side of (16). The resemblance
is most pronounced if & is the (m — 1)-dimensional unit sphere in m-dimensional
Euclidean space. In this case (31) is but for a numerical factor depending on
k (and m) the expression

T (cos )

where T5" is an ultraspherical polynomial, A\ = m — 2/2, and ¢ is the geodesic
distance between the points P, Q. The expression

3 b T (cos 9)
k==0

with by = 0and 2., bT¥ (1) < =, for the most general positive definite func-
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tion depending on the geodesic distance alone, has been given previously by
Schoenberg.®

More special than the assumption h(k) = 1 is the assumption I(k) = 1. It
corresponds to the case of the group € being an Abelian group, and in this case
we simply have

JP,Q) = 3 aePren@ + eP)ex(@)

k=0

with a; = 0.

The symbol sP. is a real multiplication of P by s if & is a group space (in which
case we write z, y, etc. instead of P, Q, etc.) and € is its group of left transforma-
tions * — sz. Our assumptions concerning & are now that & is a compact
separable group, the invariant measure on it being now uniquely determined.
In this case, h(k) = (k) and but for the factor (k)" ok (%) is k(). Since

1 —_— ]
Z_:l Wk m (D) Uemr (y) = Zl k(Y )t mu(7)
we see that, except for the factor I(k),

¢¥-n'(zy y) = uk-'p(y_lx)’

and hence we obtain the following result.
TuEOREM 6. If G is a compact separable group, then f(z, y) is a left tnvariant
member of B if and only if f(z, y) = f(y 'z) where

) L(k)

(33) 1O = 2 2 buwsnwd;
the matriz | by, | being non-negative hermitian and the series (33) in k being
absolutely convergent.

In order to obtain right invariant functions we have to put { = yzr '. Our
function is invariant on both sides if f(s 'y 'zs) = f(y 'z) that is if f(f) is a class
function. For class functions the expansion (33) depends only on the group
characters

xx() = uz_:luk,....(t)f

Thus we obtain
TueoreM 7. If §1is a compact separable group, then f(z, y) is a group invariant
member of B, if and only if

Iz, 9) = 20 bexalyz™)
k==—c0

¢ 1. J. Schoenberg, On positive definite functions on spheres. Bull. Amer. Math. Soc., 46
(1940), p. 888.
7 8ee Bochner-von Neumann, loc. cit.
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where by = 0, and D bixa(1) < «; and p(z, y) is a group invariant Hilbert dis-
tance if and only if

p(z, )’ = ,‘i:' Ck(l _ xlyz” )21.(;;0),“(%—)

with ¢ = 0; the function p(z, y) ts certainly a proper distance if all cx are > 0.

V. IsoMETRIC IMBEDDING OF RIEMANNIAN SPACE INTO HILBERT SPACE

In the present section we will draw a conclusion from Theorem 5. We assume
that our space & is a coordinate space of class C,, r = 2, (continuous partial
derivatives of order =< r), or C, (derivatives of every order) or C, (analytic
coordinates), and we further assume explicitly that the functions {¢k,mu(P)}
belong to the same class. By choosing the coefficients of the matrix (23) suffi-
ciently small we can obtain a series (29) whose sum will belong to the same
classon @ X &. Now, by a general theorem,® such a distance can be generated
by a Riemannian metric. Altogether we have the following

TueoreM 8. If & is a compact differentiable manifold (of arbitrary dimension
and) of class C,, r = 2, 0r C, or C,, if € is a fized transitive group of homo-
morphisms on it, and if the corresponding generalized spherical harmonics { ¢k, mu(P)}
belong to the same class, then there exists on S a group invariant positive definite
Riemannian metric of class C.—z, or C, , or C, for which the gwen space can be
1sometrically imbedded in real Hilbert space.

PrINCETON UNIVERSITY.

8 8. Bochner, Differentiable and Riemann metric, Duke Math. Jour., 4 (1938), 51-54.



