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Abstract

Spectral methods of graph partitioning have been shown to provide a pow-
erful approach to the image segmentation problem. In this paper, we adopt
a different approach, based on estimating the isoperimetric constant of an
image graph. Our algorithm produces the high quality segmentations and
data clustering of spectral methods, but with improved speed and stability.

1 Introduction

The application of graph theoretic methods to spatial pattern analysis has
a long history, including the pioneering work of Zahn [1] on minimal span-
ning tree clustering, the development of connectivity graph algorithms for
space-variant sensors by Wallace et al. [2], and the seminal work on image
segmentation, termed “Ncuts” by Shi and Malik [3]. One reason for this
interest is that the segmentation quality of Ncuts and other graph-based seg-
mentation methods [4, 5, 6] is very good. However, there are several other
important advantages of graph-based sensor strategies.

1.1 Motivation for using graph theoretic approaches

in image processing

There are at least four distinct reasons to employ graph theoretic approaches
to image segmentation:

1. Local-global interactions are well expressed by graph theoretic algo-
rithms. Zahn [1] used a minimal spanning tree on a weighted graph
to illustrate Gestalt clustering methods. The term “Gestalt” derives
from early theories of visual psychology which attempted to relate local
and global features of visual stimuli in terms of “rules” which may be
best described as simple variational principles (e.g., “best completion”,
etc.). Zahn’s results were impressive for the time, coming at the very
beginnings of modern image processing and clustering. The central
reason for this success, we believe, is that the minimal spanning tree
defines a minimizing principle (e.g., a tree of minimal edge weights)
which respects the global structure of the problem set, allowing a sim-
ple local rule (e.g., cut the graph at peak values of local density measure
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[1]) to effectively cluster a set of feature vectors. Many graph theoretic
approaches involve the use of global and local information, as will be
made explicit later in the present paper. As Zahn originally pointed
out, the important notion of Gestalt in image processing—the relation-
ship of the whole to the part—seems to be an important ingredient in
both biological and machine image processing.

2. New algorithms for image processing may be crafted from the large cor-
pus of well-explored algorithms which have been developed by graph
theorists. For example, spectral graph partitioning was developed to
aid in design automation of computers [7] and has provided the foun-
dation for the development of the Ncuts algorithm [3]. Similarly, graph
theoretic methods for solving lumped, Ohmic electrical circuits based
on Kirchhoff’s voltage and current law [8, 9, 10, 11], form the basis
for the method proposed in this paper for solving the isoperimetric
problem.

3. Adaptive sampling and space-variant vision require a “connectivity
graph” approach to allow image processing on sensor architectures with
space-variant visual sampling. Space-variant architectures have been
intensively investigated for application to computer vision for several
decades [2, 12] partly because they offer extraordinary data compres-
sion. A sensor [12] employing a complex logarithmic visual sampling
function can provide equivalent peak resolution to the workspace size
of a constant resolution sensor with 10,000 times the pixel count [13].
However, even simple space-variant architectures provide significant
challenges with regard to sensor topology and anti-aliasing. The con-
nectivity graph was proposed by Wallace et al. [2] as a general algo-
rithmic framework for processing the data output from space-variant
sensors. This architecture describes sensor pixels by a specific neighbor-
hood connectivity as well as geometric position. Using this approach,
a variety of image processing algorithms were defined on an arbitrary
pixel architecture, including spatial filtering via the graph Laplacian.

4. New architectures for image processing may be defined that generalize
the traditional Cartesian design. Vision sensors are generally based on
fixed size pixels with fixed rate clocks (i.e., they are space-invariant
and synchronous). The space-invariant pixel design, as noted above,
can lead to a huge inefficiency when compared to a spatially adaptive
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sensor (e.g., a foveal architecture). A similar issue holds for tempo-
ral sampling, indicating that biological systems once again provide a
counterexample to current engineering practice. Retinal sensors are not
synchronous, but are based on an asynchronous “integrate and fire”
temporal design. They integrate the locally available intensity, and fire
when a fixed threshold is achieved. It is evident that this “just in time”
strategy for temporal sampling will improve the average response speed
of the ensemble of sensors. Presumably, a slight difference in response
speed may translate to a significant difference in survival value. Just
as in the spatial case, the temporal domain can (and does, in animals)
exploit an adaptive, variable sampling strategy. In a computational
context, this suggests the use of graph theoretic data structures, rather
than pixels and clocks. In turn, the flexible data structures based on
graphs, which are familiar in computer graphics, have been relatively
unexplored in computer vision. The structure and algorithms of graph
theory provide a natural language for space-time adaptive sensors.

1.2 Overview of Graph partitioning

The graph partitioning problem is to choose subsets of the vertex set such
that the sets share a minimal number of spanning edges while satisfying a
specified cardinality constraint. Graph partitioning appears in such diverse
fields as parallel processing [14], solving sparse linear systems [15], VLSI
circuit design [16] and image segmentation [3, 17, 6, 5].

Methods of graph partitioning may take different forms, depending on the
number of partitions required, whether or not the nodes have coordinates,
and the cardinality constraints of the sets. In this paper, we use the term
partition to refer to the assignment of each node in the vertex set into two
(not necessarily equal) parts. We propose a partitioning algorithm termed
isoperimetric partitioning, since it is derived and motivated by the equa-
tions defining the isoperimetric constant (to be defined later). Isoperimetric
partitioning does not require coordinate information about the graph and al-
lows one to find partitions of an “optimal” cardinality instead of a predefined
cardinality. The isoperimetric algorithm most closely resembles spectral par-
titioning in its use and ability to create hybrids with other algorithms (e.g.,
multilevel spectral partitioning [18], geometric-spectral partitioning [19]), but
requires the solution to a large, sparse system of equations, rather than solv-
ing the eigenvector problem for a large, sparse matrix. In this paper we will
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develop the isoperimetric algorithm, prove some of its properties, and apply
it to problems in data clustering and image segmentation.

1.3 The Isoperimetric Problem

Graph partitioning has been strongly influenced by properties of a combina-
torial formulation of the classic isoperimetric problem: Find a boundary of

minimum perimeter enclosing maximal area.
Define the isoperimetric constant h of a manifold as [20]

h = inf
S

|∂S|

VolS
, (1.1)

where S is a region in the manifold, VolS denotes the volume of region S,
|∂S| is the area of the boundary of region S, and h is the infimum of the
ratio over all possible S. For a compact manifold, VolS ≤ 1

2
VolTotal, and for

a noncompact manifold, VolS < ∞ (see [21, 22]).
We show in this paper that the set (and its complement) for which h takes

a minimum value defines a good heuristic for data clustering and image seg-
mentation. In other words, finding a region of an image that is simultaneously
both large (i.e., high volume) and that shares a small perimeter with its sur-
roundings (i.e., small boundary) is intuitively appealing as a “good” image
segment. Therefore, we will proceed by defining the isoperimetric constant
on a graph, proposing a new algorithm for approaching the sets that minimize
h, and demonstrate applications to data clustering and image segmentation.

2 The Isoperimetric Partitioning Algorithm

A graph is a pair G = (V,E) with vertices (nodes) v ∈ V and edges e ∈
E ⊆ V × V . An edge, e, spanning two vertices, vi and vj, is denoted by
eij. Let n = |V | and m = |E| where | · | denotes cardinality. A weighted

graph has a value (typically nonnegative and real) assigned to each edge
called a weight. The weight of edge eij, is denoted by w(eij) or wij. Since
weighted graphs are more general than unweighted graphs (i.e., w(eij) = 1
for all eij ∈ E in the unweighted case), we will develop all our results for
weighted graphs. The degree of a vertex vi, denoted di is

di =
∑

eij

w(eij) ∀ eij ∈ E. (2.1)
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For a graph, G, the isoperimetric constant [21], hG is

hG = inf
S

|∂S|

VolS
, (2.2)

where S ⊂ V and

VolS ≤
1

2
VolV . (2.3)

In graphs with a finite node set, the infimum in (2.2) becomes a minimum.
Since we will be computing only with finite graphs, we will henceforth use
a minimum in place of an infimum. The boundary of a set, S, is defined as
∂S = {eij|i ∈ S, j ∈ S}, where S denotes the set complement, and

|∂S| =
∑

eij∈∂S

w(eij). (2.4)

In order to determine a notion of volume for a graph, a metric must be de-
fined. Different choices of a metric lead to different definitions of volume and
even different definitions of a combinatorial Laplacian operator (see [22, 23]).
Dodziuk suggested [24, 25] two different notions of combinatorial volume,

VolS = |S|, (2.5)

and
VolS =

∑

i

di ∀ vi ∈ S. (2.6)

The combinatorial isoperimetric constant based on equation (2.5) is what
Shi and Malik call the “Average Cut” [3]. The matrix used in the Ncuts al-
gorithm to find image segments corresponds to the combinatorial Laplacian
matrix under the metric defined by (2.6). Traditional spectral partitioning
[26] employs the same algorithm as Ncuts, except that it uses the combinato-
rial Laplacian matrix defined by the metric associated with (2.5). In agree-
ment with [3], we find that the second metric (and hence, volume definition)
is more suited for image segmentation since regions of uniform intensity are
given preference over regions that simply possess a large number of pixels.
Therefore, we will use Dodziuk’s second metric definition and employ volume
as defined in equation (2.6).

For a given set, S, we term the ratio of its boundary to its volume the
isoperimetric ratio, denoted by h(S). The isoperimetric sets for a graph,
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G, are any sets S and S for which h(S) = hG (note that the isoperimetric sets
may not be unique for a given graph). The specification of a set satisfying
equation (2.3), together with its complement may be considered as a partition

and therefore we will use the term interchangeably with the specification of
a set satisfying equation (2.3). Throughout this paper, we consider a good
partition as one with a low isoperimetric ratio (i.e., the optimal partition is
represented by the isoperimetric sets themselves). Therefore, our goal is to
maximize VolS while minimizing |∂S|. Unfortunately, finding isoperimetric
sets is an NP-hard problem [21]. Our algorithm is therefore a heuristic for
finding a set with a low isoperimetric ratio that runs in polynomial time.

2.1 Derivation of Isoperimetric Algorithm

Define an indicator vector, x, that takes a binary value at each node

xi =

{

0 if vi ∈ S,

1 if vi ∈ S.
(2.7)

Note that a specification of x may also be considered as a partition.
Define the n × n matrix, L, of a graph as

Lvivj
=











di if i = j,

−w(eij) if eij ∈ E,

0 otherwise.

(2.8)

The notation Lvivj
is used to indicate that the matrix L is being indexed by

vertices vi and vj. This matrix is also known as the admittance matrix in
the context of circuit theory or the Laplacian matrix (see, [27] for a review)
in the context of finite difference methods (and in the context of [24]).

By definition of L,
|∂S| = xT Lx, (2.9)

and VolS = xT d, where d is the vector of node degrees. If r indicates the
vector of all ones, maximizing the volume of S subject to VolS ≤ 1

2
VolV =

1

2
rT d may be done by asserting the constraint

xT d =
1

2
rT d. (2.10)
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Thus, the isoperimetric constant (2.2) of a graph, G, may be rewritten in
terms of the indicator vector as

hG = min
x

xT Lx

xT d
, (2.11)

subject to (2.10). Given an indicator vector, x, then h(x) is used to denote
the isoperimetric ratio associated with the partition specified by x.

The constrained optimization of the isoperimetric ratio is made into a free
variation via the introduction of a Lagrange multiplier Λ [28] and relaxation
of the binary definition of x to take nonnegative real values by minimizing
the cost function

Q(x) = xT Lx − Λ(xT d −
1

2
rT d). (2.12)

Since L is positive semi-definite (see, [29, 30]) and xT d is nonnegative, Q(x)
will be at a minimum for any critical point. Differentiating Q(x) with respect
to x yields

dQ(x)

dx
= 2Lx − Λd. (2.13)

Thus, the problem of finding the x that minimizes Q(x) (minimal partition)
reduces to solving the linear system

2Lx = Λd. (2.14)

Henceforth, we ignore the scalar multiplier 2 and the scalar Λ since, as we
will see later, we are only concerned with the relative values of the solution.

Unfortunately, the matrix L is singular: all rows and columns sum to
zero (i.e., the vector r spans its nullspace), so finding a unique solution to
equation (2.14) requires an additional constraint.

We assume that the graph is connected, since the optimal partitions are
clearly each connected component if the graph is disconnected (i.e., h(x) =
hG = 0). Note that in general, a graph with c connected components will
correspond to a matrix L with rank (n − c) [29]. If we arbitrarily designate
a node, vg, to include in S (i.e., fix xg = 0), this is reflected in (2.14) by
removing the gth row and column of L, denoted by L0, and the gth row of x
and d, denoted by x0 and d0, such that

L0x0 = d0, (2.15)

which is a nonsingular system of equations.
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Solving equation (2.15) for x0 yields a real-valued solution that may be
converted into a partition by setting a threshold (see below for a discussion
of different methods). In order to generate a clustering or segmentation
with more than two parts, the algorithm may be recursively applied to each
partition separately, generating subpartitions and stopping the recursion if
the isoperimetric ratio of the cut fails to meet a predetermined threshold. We
term this predetermined threshold the stop parameter and note that since
0 ≤ h(x) ≤ 1, the stop parameter should be in the interval (0, 1). Since
lower values of h(x) correspond to more desirable partitions, a stringent value
for the stop parameter is small, while a large value permits lower quality
partitions (as measured by the isoperimetric ratio). In Appendix 1 we prove
that the partition containing the node corresponding to the removed row
and column of L must be connected, for any chosen threshold i.e., the nodes
corresponding to x0 values less than the chosen threshold form a connected
component.

2.2 Circuit analogy

Equation (2.14) also occurs in circuit theory when solving for the electrical
potentials of an ungrounded circuit in the presence of current sources [10].
After grounding a node in the circuit (i.e., fixing its potential to zero), deter-
mination of the remaining potentials requires a solution of (2.15). Therefore,
we refer to the node, vg, for which we set xg = 0 as the ground node.
Likewise, the solution, xi, obtained from equation (2.15) at node vi, will be
referred to as the potential for node vi. The need for fixing an xg = 0 to con-
strain equation (2.14) may be seen not only from the necessity of grounding
a circuit powered only by current sources in order to find unique potentials,
but also from the need to provide a boundary condition in order to find a
solution to Laplace’s equation, of which (2.14) is a combinatorial analog. In
our case, the “boundary condition” is that the grounded node is fixed to
zero.

Define the m × n edge-node incidence matrix as

Aeijvk
=











+1 if i = k,

−1 if j = k,

0 otherwise,

(2.16)

for every vertex vk and edge eij, where eij has been arbitrarily assigned an
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orientation. As with the Laplacian matrix, Aeijvk
is used to indicate that

the incidence matrix is indexed by edge eij and node vk. As an operator,
A may be interpreted as a combinatorial gradient operator and AT as a
combinatorial divergence [31, 11].

Define the m×m constitutive matrix, C, as the diagonal matrix with
the weights of each edge along the diagonal.

As in the familiar continuous setting, the combinatorial Laplacian is equal
to the composition of the combinatorial divergence operator with the com-
binatorial gradient operator, L = AT A. The constitutive matrix defines a
weighted inner product of edge values i.e., 〈y, Cy〉 for a vector of edge values,
y [11, 10]. Therefore, the combinatorial Laplacian operator generalizes to
the combinatorial Laplace-Beltrami operator via L = AT CA. The case of a
uniform (unit) metric, (i.e., equally weighted edges) reduces to C = I and
L = AT A. Removing a column of the incidence matrix produces what is
known as the reduced incidence matrix, A0 [32].

With this interpretation of the notation used above, the three funda-
mental equations of circuit theory (Kirchhoff’s current and voltage law and
Ohm’s law) may be written for a grounded circuit as

AT
0
y = f (Kirchhoff’s Current Law), (2.17)

Cp = y (Ohm’s Law), (2.18)

p = A0x (Kirchhoff’s Voltage Law), (2.19)

for a vector of branch currents, y, current sources, f , and potential drops
(voltages), p. Note that there are no voltage sources present in this formula-
tion. These three equations may be combined into the linear system

AT
0
CA0x = L0x = f, (2.20)

since AT CA = L [29].
In summary, the solution to equation (2.15) in the isoperimetric algorithm

is provided by the steady state of a circuit where each edge has a conductance
equal to the edge weight and each node is attached to a current source of
magnitude equal to the degree (i.e., the sum of the conductances of incident
edges) of the node. The potentials that are established on the nodes of this
circuit are exactly those which are being solved for in equation (2.15). An
example of this equivalent circuit is displayed in Figure 2.1.

One final remark on the circuit analogy to (2.15) follows from recalling
Maxwell’s principle of least dissipation of power: A circuit with minimal
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(a) (b)

Figure 2.1: An example of a simple graph and its equivalent circuit. Solving
equation (2.15) (using the node in the lower left as ground) for the graph in
(a) is equivalent to connecting the circuit in (b) and reading off the potential
values at each node.

10



power dissipation provides a solution to Kirchhoff’s current and voltage laws
[33]. Explicitly, solving equation (2.15) for x is equivalent to solving the
dual equation for y = CAx. The power of the equivalent circuit is P =
I2R = yT C−1y subject to the constraint from Kirchhoff’s law that AT y = f .
Therefore, the y found by y = CAx also minimizes the above expression for
y [11, 34]. Thus, our approach to minimizing the combinatorial isoperimetric
ratio is identical to minimizing the power of the equivalent electrical circuit
with the specified current sources and ground [11].

2.3 Algorithmic details

Choosing edge weights

In order to apply the isoperimetric algorithm to partition a graph, the posi-
tion values (for data clustering) or the image values (for image segmentation)
must be encoded on the graph via edge weights. Define the vector of data
changes, cij, as the Euclidean distance between the scalar or vector fields
(e.g., coordinates, image RGB channels, image grayscale, etc.) on nodes vi

and vj. For example, if we represent grayscale intensities defined on each
node with vector b, then c = Ab. We employ the weighting function [3]

wij = exp (−βcij) , (2.21)

where β represents a parameter we call scale. In order to make one choice
of β applicable to a wide range of data sets, we have found it helpful to
normalize the vector c.

Choosing Partitions from the Solution

The binary definition of x was extended to the real numbers in order to
solve (2.15). Therefore, in order to convert the solution, x, to a partition, a
subsequent step must be applied (as with spectral partitioning). Conversion
of a potential vector to a partition may be accomplished using a threshold.
A cut value is a value, α, such that S = {vi|xi ≤ α} and S = {vi|xi > α}.
The partitioning of S and S in this way may be referred to as a cut. This
thresholding operation creates a partition from the potential vector, x. Note
that since a connected graph corresponds to an L0 that is an M-matrix
[30], and is therefore monotone, L−1

0
≥ 0. This result then implies that

x0 = L−1

0
d0 ≥ 0.
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Figure 2.2: Dumbbell graph with uniform weights

Employing the terminology of [35], the standard approaches to cutting the
indicator vector in spectral partitioning are to cut based on the median value
(the median cut) or to choose a threshold such that the resulting partitions
have the lowest available isoperimetric ratio (the ratio cut). The ratio cut
method will clearly produce partitions with a lower isoperimetric ratio than
the median cut. Unfortunately, because of the required sorting of x, the ra-
tio cut method requires O(n log(n)) operations (assuming a bounded degree).
The median cut method runs in O(n) time, but forces the algorithm to pro-
duce equal sized partitions, even if a better cut could be realized elsewhere.
Despite the required sorting operation for the ratio cut, the operation is still
very inexpensive relative to the solution of equation (2.15) for the range of
n we focus on (typically 128× 128 to 512× 512 images). Therefore, we have
chosen to employ the ratio cut method.

Ground node

We will demonstrate that, in the image processing context, the ground node
may be viewed from an attentional standpoint. However, in the more general
graph partitioning context it remains unclear how to choose the ground.
Anderson and Morley [36] proved that the spectral radius of L, ρ(L), satisfies
ρ(L) ≤ 2dmax, suggesting that grounding the node of highest degree may have
the most beneficial effect on the conditioning of equation (2.15). Empirically,
we have found that as long as the ground is not along the ideal cut, a partition
with a low isoperimetric ratio is produced.

Figure 2.3 illustrates this principle using the dumbbell shape (in Figure
2.2) discussed in Cheeger’s seminal paper [20] on the relationship of the
isoperimetric constant and the eigenvalues of the Laplacian on continuous
manifolds. The left column (i.e., (a), (c), (e), and (g) in Figure 2.3) shows
the potentials, x, solved for using (2.15). The brightest node on the graph
represents the ground node. For the rest of the nodes, bright nodes are
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closer to ground (i.e., have lower potentials) and dark nodes are further from
ground. The right column (i.e., (b), (d), (f), and (h) in Figure 2.3) shows the
post-threshold function where the ratio cut method has been employed. The
top two rows indicate a random selection of ground nodes and the bottom
two represent pathological choices of ground nodes. Of the two pathological
cases, the third row example (i.e., (e) and (f) in Figure 2.3) uses a ground in
the exact center of the neck, while the last row takes ground to be one node
over from the center. Although the grounding in the exact center produces
a partition that does not resemble the known ideal partition, grounding one
node over produces a partition that is nearly the same as the ideal, as shown
in the fourth row example (i.e., (g) and (h) in Figure 2.3). This illustrates
that the solution is largely independent of the choice of ground node, except
in the pathological case where the ground is on the ideal cut. Moreover, it is
clear that choosing a ground node in the interior of the balls is better than
choosing a point on the neck, which corresponds in some sense to our above
rule of choosing the point with maximum degree since a node of high degree
will be in the “interior” of a region, or in an area of uniform intensity in the
context of image processing.

Solving the System of Equations

Solving equation (2.15) is the computational core of the algorithm. It re-
quires the solution to a large sparse system of symmetric equations where
the number of nonzero entries in L will equal 2m.

Methods for solving a system of equation fall generally into two categories:
direct and iterative methods [37, 38, 30]. The former are generally based on
Gaussian elimination with partial pivoting while for the latter, the method of
conjugate gradients is arguably the best approach. Iterative procedures have
the advantage that a partial answer may be obtained at intermediate stages
of the solution by specifying a limit on the number of iterations allowed.
This feature allows one to trade speed for accuracy in finding a solution.
An additional feature of using the method of conjugate gradients to solve
equation (2.15) is that it may lend itself to efficient parallelization [39, 40].
In this work, we used the sparse matrix package in TMMATLAB [41] to find
direct solutions.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.3: An example of the effects on the solution with different choices of
ground node for a problem with a trivial optimal partition. The left column
shows the potential function (brightest point is ground) for several choices
of ground while the right column shows thresholded partitions. Uniform
weights (β = 0) were employed.
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Time Complexity

Running time depends mainly on the solution to equation (2.15). A sparse
matrix-vector operation depends on the number of nonzero values, which
is, in this case, O(m). If we may assume a constant number of iterations
required for the convergence of the conjugate gradients method, the time
complexity of solving (2.15) is O(m). Cutting the potential vector with
the ratio cut requires a O(n log(n)) sort. Combined, the time complexity is
O(m + n log n). In cases of graphs with bounded degree, then m ≤ ndmax

and the time complexity reduces to O(n log(n)). If a constant recursion depth
may be assumed (i.e., a consistent number of “objects” in the scene), the time
complexity is unchanged.

Summary of the algorithm

Applying the isoperimetric algorithm to data clustering or image segmenta-
tion may be described in the following steps:

1. Find weights for all edges using equation (2.21).

2. Build the L matrix (2.8) and d vector.

3. Choose the node of largest degree as the ground node, vg, and determine
L0 and d0 by eliminating the row/column corresponding to vg.

4. Solve equation (2.15) for x0.

5. Threshold the potentials x at the value that gives partitions corre-
sponding to the lowest isoperimetric ratio.

6. Continue recursion on each segment until the isoperimetric ratio of the
subpartitions is larger than the stop parameter.

2.4 Relationship to Spectral Partitioning

Building on the early work of Fiedler [42, 43, 44], Alon [45, 46] and Cheeger
[20], who demonstrated the relationship between the second smallest eigen-
value of the Laplacian matrix (the Fiedler value) for a graph and its isoperi-
metric constant, spectral partitioning was one of the first successful graph
partitioning algorithms [7, 26]. The algorithm partitions a graph by finding
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the eigenvector corresponding to the Fiedler value, termed the Fiedler vec-

tor, and cutting the graph based on the value in the Fiedler vector associated
with each node. Like isoperimetric partitioning, the output of the spectral
partitioning algorithm is a set of values assigned to each node, which require
cutting in order to generate partitions.

Spectral partitioning may be used [26] to minimize the isoperimetric ratio
of a partition by solving

Lz = λz, (2.22)

with L defined as above and λ representing the Fiedler value. Since the vector
of all ones, r, is an eigenvector corresponding to the smallest eigenvalue
(zero) of L, the goal is to find the eigenvector associated with the second
smallest eigenvalue of L. Requiring zT r = 0 and zT z = n may be viewed
as additional constraints employed in the derivation of spectral partitioning
to circumvent the singularity of L (see, [47] for an explicit formulation of
spectral partitioning from this viewpoint). Therefore, one way of viewing
the difference between the isoperimetric and the spectral methods is in terms
of the choice of an additional constraint that allows one to circumvent the
singular nature of the Laplacian L.

In the context of spectral partitioning, the indicator vector z is usually
defined as

zi =

{

−1 if vi ∈ S,

+1 if vi ∈ S,
(2.23)

such that z is orthogonal to r, for |S| = 1

2
|V |. The two definitions of the

indicator vector (equations (2.7) and (2.23)) are related through x = 1

2
(z+r).

Since r is in the nullspace of L, the definitions are equivalent up to a scaling.
The Ncuts algorithm of Shi and Malik [3] is essentially the spectral par-

titioning algorithm, except that the authors implicitly choose the metric of
[25] to define a combinatorial Laplacian matrix rather than the metric of [24]
typically used to define the Laplacian in spectral partitioning. Specifically,
the Ncuts algorithm requires the solution of

D−
1

2 LD−
1

2 z = λz, (2.24)

where D = diag(d). Therefore, although the spectral and Ncuts algorithms
produce different results when applied to a specific graph, they share many
theoretical properties.

Despite the remarkable success of spectral partitioning [26], it has been
pointed out that there are some significant problems. Guattery and Miller
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(a)

(b)

Figure 2.4: The “roach” graph (n = 20) illustrated here is a member of a
family of graphs for which spectral partitioning is known to fail to produce
a partition with low isoperimetric ratio. Uniform weights were used for both
algorithms. (a) Solution using isoperimetric algorithm. Ratio = 0.1. (b)
Solution using spectral algorithm. Ratio = 0.5.

[48] proposed families of graphs for which spectral partitioning fails to pro-
duce the best partition. One of these is the “roach” graph shown in Figure
2.4. This graph will always be partitioned by the spectral method into two
symmetrical halves (using the median cut), which yields a suboptimal parti-
tion relative to the minimum isoperimetric ratio criterion. For a roach with
an equal number of “body” and “antennae” segments, the spectral algorithm
will always produce a partition with |∂S| = Θ(n) (where Θ() is the function
of [49]) instead of the constant cut set of two edges obtained by cutting the
antennae from the body. Teng and Spielman [35] demonstrated that the
spectral approach may be made to correctly partition the roach graph if ad-
ditional processing is performed. The partitions obtained from the spectral
and isoperimetric algorithms when applied to the roach graph are compared
in Figure 2.4. The solution for the spectral method was obtained from the
MESHPART toolbox written by Gilbert, Miller and Teng [50]. This example
demonstrates that the isoperimetric algorithm performs in a fundamentally
different manner from the spectral method and, at least in this case, outper-
forms it significantly.

A second difference is that the isoperimetric method requires the solution
of a sparse linear system rather than the solution to the eigenvalue problem
required by spectral methods of image segmentation [3, 5, 4]. The Lanczos
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algorithm provides an excellent method for approximating the eigenvectors
corresponding to the smallest or largest eigenvalues of a matrix with a time
complexity comparable to the conjugate gradient method of solving a sparse
system of linear equations [37]. However, solution to the eigenvector prob-
lem is less stable to minor perturbations of the matrix than the solution to a
system of linear equations, if the desired eigenvector corresponds to an eigen-
value that is very close to other eigenvalues (see, [37]). In fact, for graphs
in which the Fiedler value has algebraic multiplicity greater than one the
eigenvector problem is degenerate and the Lanczos algorithm may converge
to any vector in the subspace spanned by the Fiedler vectors (if it converges
at all). A square lattice with uniform weights is an example of a graph for
which the Fiedler value has algebraic multiplicity greater than unity, as is
the fully connected graph with uniform weights (see Appendix 3). The au-
thors of [51] raise additional concerns about the Lanczos method. Appendix
2 formally compares the sensitivity of the isoperimetric, spectral and Ncuts
algorithms to a changing edge weight.

3 Applications

3.1 Clustering applied to examples used by Zahn

When humans view a point cluster, certain groupings immediately emerge.
The properties that define this grouping have been described by the Gestalt
school of psychology . Unfortunately, these descriptions are not precisely
defined and therefore finding an algorithm that can group clusters in the
same way has proven very difficult. Zahn used his minimal spanning tree
idea to try to capture these Gestalt clusters [1]. To this end, he established a
collection of point sets with clear cluster structure (to a human), but which
are difficult for a single algorithm to group.

We stochastically generated point clusters to mimic the challenges Zahn
issues to automatic clustering algorithms. For a set of points, it is not im-
mediately clear how to choose which nodes are connected by edges. In order
to guarantee a connected graph, but still make use of local connections, we
generated an edge set from the Delaunay triangulation of the points. Edge
weights were generated as a function of Euclidean geometric distance, as in
equation (2.21).

The clusters and partitions are shown below in Figure 3.5. Each parti-
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Figure 3.5: An example of partitioning the Gestalt-inspired point set chal-
lenges of Zahn using the isoperimetric algorithm. The x’s and o’s represent
points in different partitions. β = 50.

tion is represented by a symbol, with the ‘x’s and ‘o’s indicating the points
belonging to the same partition. Partitions were generated using the median
cut on a single solution to (2.15). Ground nodes were chosen using the max-
imum degree rule discussed above. Of these clusters, it is shown in Figure
3.5 that the algorithm performs as desired on all groups except the problem
in the second row of the second column that requires grouping into lines.

3.2 Methods of image segmentation

As in the case of point clustering, it is not clear, a priori, how to impose a
graph structure on an image. Since pixels define the discrete input, a simple
choice for nodes is the pixels and their values. Traditional neighborhood
connectivity employs a 4-connected or 8-connected topology [52]. Another
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approach, taken by Shi and Malik [3] is to use a fully connected neighborhood
within a parameterized radius of each node. We chose to use a minimal 4-
connected topology since the matrix L becomes less sparse as more edges
are added to the graph, and a graph with more edges requires more time to
solve equation (2.15). Edge weights were generated from intensity values in
the case of a grayscale image or from RGB color values in the case of a color
image using equation (2.21).

A similar measure of partition quality has been employed by other authors
[53, 54] to develop image segmentation algorithms, but a different notion of
volume (e.g., the algorithm in [53] is defined only for planar graphs) and
different methods for achieving good partitions under this metric of quality
separate their work from ours.

The isoperimetric algorithm is controlled by only two parameters: the
scale parameter β of equation (2.21) and the stop parameter used to end
the recursion. The scale affects how sensitive the algorithm is to changes in
feature space (e.g., RGB, intensity), while the stop parameter determines the
maximum acceptable isoperimetric ratio a partition must generate in order
to accept it and continue the recursion. In order to illustrate the dependence
of the results on parameterization, a sweep of the two-dimensional parame-
ter space was performed on individual natural images. An example of this
parameter-sweep is shown using a natural image, with the scale parameter
on the vertical and the stop parameter on the horizontal (Figure 3.6). It can
be seen that the solution is similar over a broad range with respect to changes
in scale and that the effect of raising the stop parameter (i.e., making more
partitions admissible) is to generate a greater number of small partitions.

3.3 Completion

Study of the classic Kaniza illusion [55] suggests that humans segment ob-
jects based on something beyond perfectly connected edge elements. The
isoperimetric algorithm was used to segment the image in Figure 3.7, using
only one level of recursion with all nodes corresponding to the black “in-
ducers” removed. In this case, choice of the ground node is important for
determining the single bipartition. If the ground node is chosen inside the
illusory triangle, the resulting partition is the illusory triangle. However,
if the ground is chosen outside, the triangle partition is not produced, but
instead a partition that hugs the corner in which the ground is located. In
this way, the ground node may be considered as representing something like
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(a) (b)

Figure 3.6: (a) Image used to benchmark the effects of a changing scale and
stop parameter. (b) This tiled figure demonstrates the results of varying
the scale (vertical) and stop (horizontal) parameters when processing the
image in (a), showing a large range of stable solutions. scale range: 300–30,
stop range: 1 × 10−5.5–1 × 10−4.5.
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(a) (b) (c)

Figure 3.7: The Kaniza triangle illusion with the single bipartition outlined
in black and the ground node marked with an ‘x’. (a) The graph being
segmented. (b) Isoperimetric partition using a ground point in the corner.
(c) Isoperimetric partition using a ground point inside the triangle. Uniform
weights (β = 0) were employed in both cases.

an “attentional” point, since it induces a partition that favors the region of
the ground node. However, note that these partitions are compatible with
each other, suggesting that the choice of ground may affect only the order in
which partitions are found.

3.4 Segmentation of natural images

Having addressed issues regarding stability and completion, we proceed to
examples of the segmentation found by the isoperimetric algorithm when ap-
plied to natural images. Examples of the segmentation found by the isoperi-
metric algorithm for some natural images are displayed in Figure 3.8. All
results in the example segmentations were obtained using the same two pa-
rameters. It should be emphasized in comparisons of segmentations produced
by the Ncuts algorithm that the authors of Ncuts make use of a more fully
connected neighborhood as well as fairly sophisticated spatial filtering (e.g.,
oriented Gabor filters at multiple scales) in order to aid in textural segmen-
tation. The demonstrations with the isoperimetric algorithm used a basic
4-connected topology and no spatial filtering at all. Consequently, the seg-
mentations produced by the isoperimetric algorithm should be expected to
perform less well on textural cues. However, for general grayscale images, it
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appears to perform at least as well as Ncuts, but with increased numerical
stability and a speed advantage of more than one order of magnitude (based
on our TMMATLAB implementation of both algorithms). Furthermore, be-
cause of the implementation (e.g., 4-connected lattice, no spatial filtering),
the isoperimetric algorithm makes use of only two parameters, compared to
the four basic parameters (i.e., radius, two weighting parameters and the
recursion stop criterion) required in the Ncuts paper [3].

The asymptotic (formal) time complexity of Ncuts is roughly the same as
the isoperimetric algorithm. Both algorithms have an initial stage in which
nodal values are computed that requires approximately O(n) operations (i.e.,
via Lanczos or conjugate gradient). Generation of the nodal values is followed
in both algorithms by an identical cutting operation. Using the TMMATLAB
sparse matrix solver for the linear system required by the isoperimetric algo-
rithm and the Lanczos method (TMMATLAB employs ARPACK [56] for this
calculation) to solve the eigenvalue problem required by Ncuts, the time was
compared for a 10000× 10000 L matrix (i.e., a 100× 100 pixel image). Since
other aspects of the algorithms are the same (e.g., making weights from the
image, cutting the indicator vector, etc.), and because solving for the indi-
cator vector is the main computational hurdle, we only compare the time
required to solve for the indicator vector. On a 1.4GHz AMD Athlon with
512K RAM, the time required to approximate the Fiedler vector in equa-
tion (2.24) was 7.1922 seconds while application of the direct solver to the
isoperimetric partitioning equation (2.15) required 0.5863 seconds. In terms
of actual computation time (using TMMATLAB), this result means that solv-
ing the crucial equation for the isoperimetric algorithm is more than an order
of magnitude faster than solving the crucial equation required by the Ncuts
algorithm.

3.5 Stability

Stability of the solution for both the isoperimetric algorithm and the spec-
tral algorithms differs considerably, as does the perturbation analysis for the
solution to a system of equations versus the solution to the eigenvector prob-
lem [37]. Differentiating equations (2.15) and (2.24) with respect to an edge
weight reveals that the derivative of the solution to the spectral (2.22) and
Ncuts (2.24) equations is highly dependent on the current Fiedler value, even
taking degenerate solutions for some values (see Appendix 2). By contrast,
the derivative of the isoperimetric solution has no poles. Instability in spec-
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(a)
ESLab0002

(b) Seg-
ments

(c)
ESLab0005

(d) Seg-
ments

(e)
ESLab0009

(f) Seg-
ments

(g)
ESLab0015

(h) Seg-
ments

(i)
ESLab0021

(j) Seg-
ments

(k)
ESLab0007

(l) Seg-
ments

(m)
ESLab0024

(n) Seg-
ments

(o)
ESLab0027

(p) Seg-
ments

(q)
ESLab0033

(r) Seg-
ments

(s)
ESLab0043

(t) Seg-
ments

(u)
ESLab0052

(v) Seg-
ments

(w)
ESLab0054

(x) Seg-
ments

Figure 3.8: Examples of segmentations produced by the isoperimetric algo-
rithm using the same parameters (β = 95, stop = 10−5). Our TMMATLAB
implementation required approximately 10–15 seconds to segment each im-
age. More segmentation results from the same database may by found at
http://eslab.bu.edu/publications/2003/grady2003isoperimetric/. Images
may be obtained from http://eslab.bu.edu/resources/imageDB/imageDB.php.
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tral methods due to algebraic multiplicity of the Fiedler value is a common
problem in implementation of these algorithms (see [53]). This analysis sug-
gests that the Ncuts algorithm may be more unstable to minor changes in
an image than the isoperimetric algorithm.

The sensitivity of Ncuts (our implementation) and the isoperimetric al-
gorithm to noise is compared using a quantitative and qualitative measure.
First, each algorithm was applied to an artificial image of a white circle on a
black background, using a 4-connected lattice topology. Increasing amounts
of additive, multiplicative and shot noise were applied, and the number of
segments output by each algorithm was recorded. Results of this comparison
are recorded in Figure 3.9.

In order to visually compare the result of the segmentation algorithms ap-
plied to progressively noisier images, the isoperimetric and Ncuts algorithms
were applied to a relatively simple natural image of red blood cells. The
isoperimetric algorithm operated on a 4-connected lattice, while Ncuts was
applied to an 8-connected lattice, since we had difficulty finding parameters
that would cause Ncuts to give a good segmentation of the original image if
a 4-connected lattice was used.

In both comparisons, additive, multiplicative, and shot noise were used
to test the sensitivity of the two algorithms to noise. The additive noise was
zero mean Gaussian noise with variance ranging from 1–20% of the brightest
luminance. Multiplicative noise was introduced by multiplying each pixel by
a unit mean Gaussian variable with the same variance range as above. Shot
noise was added to the image by randomly selecting pixels that were fixed to
white. The number of “shots” ranged from 10 to 1,000. The above discussion
of stability is illustrated by the comparison in Figure 3.10. Although additive
and multiplicative noise heavily degrades the solution found the Ncuts algo-
rithms, the isoperimetric algorithm degrades more gracefully. The presence
of even a significant amount of shot noise appears to not seriously disrupt the
isoperimetric algorithm, but it significantly affects the convergence of Ncuts
to any solution.

4 Conclusion

We have presented a new algorithm for graph partitioning that attempts to
find sets with a low isoperimetric ratio. Our algorithm was then applied to
the problems of data point clustering and image segmentation. The algorithm
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(a) Additive noise

(b) Multiplicative noise

(c) Shot noise

Figure 3.9: Stability analysis relative to additive, multiplicative and shot noise for an
artificial image of a white circle on a black background, for which the correct number of
segments should be one. The x-axis represents an increasing noise variance for the additive
and multiplicative noise, and an increasing number of “shots” for the shot noise. The y-
axis indicated the number of segments found by each algorithm. The solid line represents
the results of the isoperimetric algorithm and the dashed line represents the results of the
Ncuts algorithm. The underlying graph topology was the 4-connected lattice with β = 95
for the isoperimetric algorithm and β = 35 for the Ncuts algorithm. Ncuts stop criterion
= 10−2 (relative to the Ncuts criterion) and isoperimetric stop criterion = 10−5. In all
cases, the isoperimetric algorithm outperforms Ncuts, most dramatically in response to
shot noise. 26



(a) Additive noise

Image Iso Ncuts
Noise

(b) Multiplicative
noise

Image Iso Ncuts

(c) Shot noise

Image Iso Ncuts

Figure 3.10: Stability analysis relative to additive, multiplicative and shot
noise. Each row represents an increasing amount of noise of the appropri-
ate type. The top row in each subfigure is the segmentation found for the
blood1.tif image packaged with TMMATLAB (i.e., zero noise). Each figure
is divided into three columns representing the image with noise, isoperi-
metric segmentation and Ncuts segmentation from left to right respectively.
The underlying graph topology was the 4-connected lattice for isoperimet-
ric segmentation and an 8-connected lattice for Ncuts segmentation (due to
failure to obtain quality results with a 4-connected lattice) with β = 95
for the isoperimetric algorithm and β = 35 for the Ncuts algorithm. Ncuts
stop criterion = 5× 10−2 (relative to the Ncuts criterion) and isoperimetric
stop criterion = 10−5. Results were slightly better for additive noise, and
markedly better for multiplicative and shot noise. (a) Additive noise. (b)
Multiplicative noise. (c) Shot noise.
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was compared with Ncuts to demonstrate that it is faster and more stable,
while providing visually comparable results with less pre-processing.

Developing algorithms to process a distribution of data on graphs is an
exciting area. Many biological sensory units are nonuniformly distributed
in space (e.g., vision, somatic sense) with spatial distribution often differing
radically between species. The ability to develop algorithms that allow the
designer a free hand in choosing the distribution of sensors (or data of any
sort) represents a large step over existing algorithms that require a regular,
shift-invariant lattice.

These initial findings are encouraging. Since the graph representation is
not tied to any notion of dimension, the algorithm applies equally to graph-
based problems in N-dimensions as it does to problems in two dimensions.
Suggestions for future work are applications to segmentation in space-variant
architectures, supervised or unsupervised learning, 3-dimensional segmenta-
tion of mesh-based objects, and the segmentation/clustering of other areas
that can be naturally modeled with graphs.

Appendix

1 Connectivity

The purpose of this section is to prove that regardless of how a ground is
chosen, the partition containing the grounded node (i.e., the set S) must be
connected, regardless of how a threshold (i.e., cut) is chosen. The strategy
for showing this will be to show that every node has a path to ground such
that each node in that path has a monotonically decreasing potential.

Proposition 1 If the set of vertices, V , is connected then, for any α, the

subgraph with vertex set N ⊆ V defined by N = {vi ∈ V |xi < α} is connected

when x0 satisfies L0x0 = f0 for any f0 ≥ 0.

This proposition follows directly from proof of the following

Lemma 1 For every node, vi, there exists a path to the ground node, vg,

defined by Pi = {vi, v
1, v2, . . . , vg} such that xi ≥ x1 ≥ x2 ≥ . . . ≥ 0, when

L0x0 = f0 for any f0 ≥ 0.
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Proof: By equation (2.15) each non-grounded node assumes a potential

xi =
1

di

∑

eij∈E

xj +
fi

di

, (1.1)

i.e., the potential of each non-grounded node is equal to a nonnegative con-
stant added to the (weighted) average potential of its neighbors. Note that
(1.1) is a combinatorial formulation of the Mean Value Theorem [57] in the
presence of sources.

For any connected subset, S ⊆ V, vg /∈ S, denote the set of nodes on the
boundary of S as Sb ⊂ V , such that Sb = {vi| eij ∈ E, ∃ vj ∈ S, vi /∈ S}.

Now, either

1. vg ∈ Sb, or

2. ∃ vi ∈ Sb, such that xi ≤ min xj, ∀ vj ∈ S by (1.1), since the graph is
connected.

Therefore, every node has a path to ground with a monotonically decreasing
potential, by induction (i.e., start with S = {vi} and add nodes with a
nondecreasing potential until ground is reached).

2 Sensitivity Analysis

Previous work in network theory allows for a straightforward analysis of the
sensitivity of the isoperimetric, spectral, and normalized cuts algorithms.
Here we specifically examine the sensitivity to the edge weights for these
three algorithms.

Sensitivity to a single, general parameter, s, is developed in this section.
Sensitivity computation for many parameters (e.g., all the weights in a graph)
may be obtained efficiently using the adjoint method [58].

2.1 Isoperimetric

Given the vector of degrees, d, the Laplacian matrix, L, and the reduced
Laplacian matrix L0, the isoperimetric algorithm requires the solution to

L0x0 = d0. (2.1)
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The sensitivity of the solution to equation (2.1) with respect to a parameter
s may be determined from

L0

∂x0

∂s
= −

∂L0

∂s
x0 +

∂d0

∂s
. (2.2)

Since L0, x0 are known (for a given solution to equation (2.1) and ∂L0

∂s
may be

determined analytically, ∂x0

∂s
may be solved for as a system of linear equations

(since L0 is nonsingular) in order to yield the derivative at a point x0.

2.2 Spectral

The spectral method solves the equation

Lx = λ2x, (2.3)

where λ2 is the Fiedler value. The sensitivity of the solution to equation
(2.3) to a parameter s is more complicated, but proceeds in a similar fashion
from the equation

∂L

∂s
x + L

∂x

∂s
=

∂λ2

∂s
x + λ2

∂x

∂s
. (2.4)

The term ∂λ2

∂s
may be calculated from the Rayleigh quotient for λ2 and the

chain rule. The Rayleigh quotient is

λ =
xT Lx

xT x
. (2.5)

The chain rule determines ∂λ2

∂s
by ∂λ2

∂s
= ∂λ2

∂x
∂x
∂s

. This may be solved by finding
∂λ2

∂x
from the Rayleigh quotient via

∂λ2

∂x
= 2Lx(xT x)−1 − 2xT Lx(xT x)−2x. (2.6)

Equation (2.6) allows us to solve for ∂λ2

∂s
via equations (2.4) and (2.6)

(

L −

(

∂λ2

∂x

T

x + λ2

)

I

)

∂x

∂s
=

∂L

∂s
x. (2.7)

Equation (2.7) also gives a system of linear equations which may be solved
for ∂x

∂s
since all the other terms are known or may be determined analytically.

30



2.3 Normalized Cuts

The normalized cuts algorithm [3] requires the solution to

D−
1

2 LD−
1

2 x = λ2x, (2.8)

where D is a diagonal vector with Dii = di. In a similar fashion to the above
treatment on the spectral algorithm, the sensitivity of x with respect to a
parameter s may be determined using the Rayleigh quotient and the chain
rule.

Employing the chain rule, taking the derivative of equation (2.8) with
respect to s and rearranging yields

(

D−
1

2 LD−
1

2 −

(

∂λ2

∂x

T

x + λ2

)

I

)

∂x

∂s
=

(

2
∂D−

1

2

∂s
LD−

1

2 + D−
1

2

∂L

∂s
D−

1

2

)

x. (2.9)

Again, this is a system of linear equations for ∂x
∂s

. For Ncuts, the eigen-

value corresponds to D−
1

2 LD−
1

2 instead of L, so ∂λ2

∂x
must be recomputed

from the Rayleigh quotient. The result of this calculation is

∂λ2

∂x
= 2D−

1

2 LD−
1

2 x(xT x)−1 − 2xT D−
1

2 LD−
1

2 x(xT x)−2x. (2.10)

2.4 Sensitivity to a weight

Using the results above, it is possible to analyze the effect of a specific pa-

rameter by finding ∂L
∂s

, ∂d
∂s

and ∂D−
1

2

∂s
for the specific parameter in question.

The value for ∂L0

∂s
is determined from ∂L

∂s
simply by deleting the row and col-

umn corresponding to the grounded node. For a specific weight, wij, these
quantities become

(

∂d

∂wij

)

vi

=

{

1 if eij is incident on vi,

0 otherwise,
(2.11)

and
(

∂D−
1

2

∂wij

)

vpvq

=

{

−1

2
d
−

3

2

p if p = q, p = i or p = j,

0 otherwise.
(2.12)
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The matrix ∂L
∂wij

equals the L matrix of a graph with an edge set reduced to

just E = {eij}. The degree of node vi is specified by di.
Equations (2.2), (2.4) and (2.9) demonstrate that the derivative of the

isoperimetric solution is never degenerate (i.e., the left hand side is always
nonsingular for a connected graph), whereas the derivative of the spectral
and normalized cuts solutions may be degenerate depending on the current
state of the Fiedler vector and value.

3 Fully connected graphs

The isoperimetric algorithm will produce an unbiased solution to equation
(2.15) when applied to fully connected graphs with uniform weights. Any
set with cardinality equal to half the cardinality of the vertex set and its
complement is an isoperimetric set for a fully connected graph with uniform
weights. For a uniform edge weight, w(eij) = κ for all eij ∈ E, the solution,
x0, to equation (2.15) will be xi = 1/κ for all vi ∈ V . The use of the median
or ratio cut method will choose half of the nodes arbitrarily. Although it
should be pointed out that using a median or ratio cut to partition a vector
of randomly assigned potentials will also produce equal sized (in this case
optimal) partitions, the solution to equation (2.15) is unique for a specified
ground (in contrast to spectral partitioning or Ncuts, which has n − 1 solu-
tions) and explicitly gives no node a preference since all the potentials are
equal.
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