GEOMETRIC HARMONICS

R. R. Coifman and Stéphane Lafon

AssTrACT. The goal is to efficiently describe functions on a set I'. In partic-
ular, we wish to analyze restrictions of bandlimited functions whose energy is
maximized on the set I'. We form a basis of “prolate-like” functions whose en-
ergy is maximized on the set I'. The corresponding basis functions generalize
both spherical harmonics and prolate functions.

In this report, we introduce a family of functions termed geometric harmonics.
These functions are obtained by diagonalizing a linear operator on a set, and they
possess several special properties. The report is organized as follows: we start by
presenting the general construction of the geometric harmonics, then we focus on a
special case of interest (namely, when the operator to be diagonalized is a projector).
We also list the main properties of these functions, and give some examples. We
show how geometric harmonics can be used to handle dataset in high dimension,
by doing clustering or by parametrizing points on a manifold.

In the sequel, I' and 2 are two subsets of R” such that I C €. Let y be a finite
measure on I': p(T') < +o0.

1. Definition of the Geometric Harmonics

Let k : @ x & — R be a kernel (all functions considered in this report are
real-valued functions, although the generalization to complex-valued functions is
obvious). Suppose that this kernel is positive definite (see appendix A for a defini-
tion).

We can view {k(z,y),z € I,y € '} as a a matrix indexed by the points of I’
and since this matrix is positive (and symmetric) so we can think of diagonalizing
it. Let’s define ¢;, and A; (j > 0) by

1) Njios (@) = / k(. 1) i (v)dp

for z € I'. Let’s justify the existence of the ¢;’s and A;’s.
Let H be the reproducing kernel Hilbert space corresponding to & (see appendix
B for an explanation) .
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ExAMPLE 1. It is shown in appendix B that if k(z,y) = e~ and Q =
R”™, then the H is the space of all functions whose Fourier transform belong to
L2(R, etléI”de). Likewise, if k(z,y) is the Bessel kernel, then 7 is a space of
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square integrable bandlimited functions. More generally, H will be a space of
functions where the decay of the Fourier transform is imposed (most of their energy
concentrated within low frequencies).

Consider the operator T : L?(T, du) — H defined by
7f(a) = [ ko))
r

where z €  and its adjoint T* : # — L?(T, du) given by

T g9(y) = (k(-,y),9())n

where y € T and (., .)3 is the inner product in H.
Let’s make the technical assumption that

(2) x — k(z,z) is du-essentially bounded on T’

This condition can be weakened for the following to hold, but at least it is easy to
check.
Then it can be shown (see appendices D, C and E) that
o T:L*T,du) — H is bounded
e Because of the reproducing property of k, T™* is nothing but the operator
D : H — L*(T,dp) of restriction of elements of # onto I'. This operator
is bounded.
e T*T is Hilbert-Schmidt and therefore can be diagonalized. Because of
the observation that 7* = D, to obtain the eigenfunctions of T*T', we
diagonalize the kernel k on the set T'.

The last point above shows that the ¢;’s and A;’s defined in equation (1) exist.
Since T*T is compact, we can order the \;’s so that they form a non increasing
sequence, tending to 0. Moreover, {p,} is an orthogonal sequence in L*(T', du).

@; is defined on I' and in fact, if A; > 0, it can be extended to ) using the
following formula:

3) 6i(x) = Ai / Kz, v); () dp

This extension process is called Nystrom extension and up to the scale factor A;,
¢; satisfies a generalized mean value theorem. In this report, we show that these
extensions can be used to analyse the geometry of sets. The functions ¢; are called
geometric harmonics.

REMARK 1. We have that T¢; = \;j¢;, therefore TT*¢; = ¢; and TT* is
self-adjoint, and as a consequence, {¢;} is an orthogonal sequence in .

In summary, if one diagonalizes the positive definite kernel k£ on I', one obtains
functions {p;,} that are orthogonal on I for the inner product of L*(T,dy), and
their Nystrom extensions, the geometric harmonics {¢;}, are orthogonal on , for
the inner product of H.

REMARK 2. Suppose that I" has a positive Lebesgue measure in €2, and let B be
the orthogonal projector onto H, i.e. Bf(z) = (k(x,.), f(.))%. If D is thought of as
an operator from functions defined on 2 into functions defined on Q (by extending
the restrictions with 0), then

T =BD
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and
T*T = DBD

since D and B are both projectors, the diagonalization of T*T = DBD tells us
what happens when one successively applies B and D to a function supported
on I'. This is exactly how Slepian et al (see [BellLabs1]) introduced the prolate
spheroidal wave functions in signal processing.

A natural situation where one needs to diagonalize a positive definite kernel on
a set is the following: one is given a family {e¢}ccr of (smooth) functions defined
on {2, and one views their restrictions on T as vectors (or points) in a vector space.
These restrictions form a redundant set of functions on I' and one wishes to analyze
this set. Suppose one is also given a probability measure p on I (I is possibly non-
countable). Then we can view these restrictions as forming a cloud of points, and
the probability measure as being a mass distribution on this pointset. To find
the principal axes of inertia, we can apply the common analysis technique called
Principal Component Analysis. We form the covariance matrix: for z and y in T,

k(z,y) = /g _ es@)ecp(©

and its diagonalization gives the principal directions {¢;};en. Being a covariance
matrix, the kernel k(z,y) is positive definite. In fact the converse is also true, every
positive definite kernel can be seen as a covariance matrix: indeed, the diagona-
lization on T' yields:

k(z,y) =) Aii ()¢ (y)

The motivation of the rest of the report is to analyze the set I' via a geometric
study of certain classes of functions defined on the set.

In the following, the symbol ¢; will be used to denote the extensions (functions
defined on Q) while ¢; will denote the restrictions to I

We introduce the following finite dimensional spaces:

L%(T,du) = span{p;(z), € T, such that \; > ¢}

and
H. = span{¢;(z),z € Q, such that A\; > ¢}

2. Properties of the geometric harmonics

Now we explore two characteristic properties of these sets of functions

2.1. Double orthogonality.

A remarkable fact on the geometric harmonics is the following:

PROPERTY 1. The functions {¢;}x;>< form an orthogonal basis of H. and their
restrictions to T form an orthogonal basis of L2 (T, du).

PROOF. By construction, {¢;} is orthogonal in LZ(T,dy) since they are the
eigenfunctions of T*T. If \; > ¢, as stated in remark 1, {¢,} is orthogonal. O
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It is also useful to remark that if A\; > 0,
1 *
(9i0)n = (5, TT ¢j)n

s

= (T*¢:, T*pj)r

s

= <S017S0,7)F

J

>

and it follows that
il = Asllesll3
This property implies that if f € H. then

EDIRCL?

jesa
and also )
LZ(T,du)
DfTETN " e

jess

with
£ = lesl?
JESe
and
”Df”%?(I‘,dp) = Z |cj|2)‘j
JESe

2.2. Variational optimality.

The geometric harmonics are the optimal solution to the problem of finding the
element of H most concentrated on I':

PROPERTY 2. Assume that ¢; is normalized such that ||¢;|lu = 1, Then if
Aj >0, then ¢; is a solution to

arg max || D f||?
gma |1

under the constraints:

||f||’H =1 and f 1 {¢0,¢1, "'7¢j—1} inH

In particular, ¢ is the element of H with unit energy which best concentrated
onT.

Note that there is not necessarily uniqueness of the solution since the eigen-
spaces can be degenerate (if I' possesses some symmetry).

ProOF. We want to maximize (D f, D f)r = (TT* f, f)# under the constraints:
(f, )3, = Land (¢, f)» =0, for 0 <4 < j—1. The Lagrange multipliers technique
says that there exist scalars A and ag, ..., ;1 such that

TT*f = Af + oo + ... + @j_1¢—1
Taking the inner product in H with ¢; (0 < i < j—1) yields
a; = (TT*f,¢i)n = £, TT*¢i)n = \i{f, pi)nu =0
thus TT* f = Af and taking the inner product with f yields
(Df,Df)r = A
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This quantity will be maximized if f = ¢; |

3. Examples
3.1. The Prolate Spheroidal Wave Functions.

In [BellLabsl], [BellLabs2] and [BellLabs3], Slepian et al introduced the
Prolate Spheroidal Wave Functions as the solution of the problem of finding func-
tions “optimally” concentrated in time and in frequency. In their papers, they define
H¢ to be the set of functions in L2(R") whose Fourier transform are compactly sup-
ported in the ball centered at the origin and of radius 5. In other words, it is the
set of bandlimited square summable functions, with bandwidth equal to .

In this case, the kernel k is given by (see appendix F):

ko) = (5)* Ty (mellz — yl)
2 llz —yll2
where J, is the Bessel function of the first kind and order v. We will refer to this
kernel as the Bessel kernel of dimension n.
In the case when n is odd, this kernel can be expressed in terms of the derivatives
of the sinc function(see appendix F). For n = 1, the kernel is simply given by

ke(2,y) = esinc(c(z — y))

The eigenfunctions of this kernel on a set I of positive Lebesgue measure (in )
were termed Prolate Spheroidal Wave Functions. When I' is embedded in a vector
space of higher dimension (i.e. if the codimension p > 1), then it can be analyzed
using any Bessel kernels of dimension > n — p, and the eigenfunctions are more
generally called (bandlimited) geometric harmonics.
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FIGURE 1. Slepian prolates on I' = [0, 1] with the sinc kernel.
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FIGURE 2. Slepian prolates on I' = [0,1] with the Bessel kernel,
n > 2.

Since 1€ is a set of bandlimited functions, its elements are analytic and any
set T’ containing an open ball is a set of uniqueness. Therefore the prolates form
an orthonormal basis of H¢ and their restriction to I' form an orthogonal basis of
L2(T,dp). Tt can be checked that all eigenvalues are non-zero, and that if the codi-
mension of T is p = 0 (if T contains an open set for instance), then the eigenvalues
belong to (0,1).

Note that by construction, k. is rotation invariant and as a consequence, if T
is a circle, then T is a convolution operator, and its eigenfunctions are the Fourier
basis functions. If I is a sphere, then the eigenfunctions are the spherical harmonics.

3.2. Geometric harmonics based on Fourier series: the discrete pro-
lates.

Consider the torus @ = T = R/Z and let ¢ > 0. Let
H = span{e”™ "} 1<,
The corresponding kernel is the Dirichlet kernel:

sin (7(z — y)(2¢ — 1))
sin(7(z — y))

q

k(z,y) = Doz —y) = Y ) =
j=—q
TakeI' = (—%; %) with 0 < a < 1. Then I is a set of uniqueness. Writing
q
Y@= 3 et
j=—q
(C—gyCqt1,---,¢q)T is an eigenvector of the Toeplitz matrix

{asinc(ma(i — 5)) }ilj1<q
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FI1GURE 3. Slepian prolates on the circle: we obtain the Fourier basis.

These eigenvectors correspond to the discrete prolates (see [BellLabs5]).

3.3. A simple example.

Let
Q=14
JEZ
be a partition of €2, and let

k(z,y) = > xa,(@)x4; (1)
JEZ
The corresponding Hilbert space H is the set of functions that are constant on the
A; and the projector B averages functions of L?(Q2) over the sets A;. In this case,
the geometric harmonics are all the functions x 4;- Indeed,

|Fﬂ AJ'
TXAj = XA,
451

where |A; NT| and |A4,| are the volumes of A; NT and A;.
0 belongs to the spectrum of DT, and the geometric harmonics are all the
functions y 4; for which [4; N T| # 0.

More generally, examples of this sort can be constructed by considering not
only a single partition of Q but a filtration.

3.4. Geometric harmonics based on wavelet multiresolutions.

Let {V;}jez be a wavelet multiresolution in L?(2). There are two ways to
obtain geometric harmonics from this construction:
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e Using the scaling function ®: inspired from the previous example, we take
‘H = V;. When the wavelets are compactly supported, 0 is an eigenvalue
of DT. On the contrary, if we choose Meyer wavelets (analytic), then
if ' contains an open ball, it is a set of uniqueness. However, Meyer
wavelets (and the corresponding scaling functions) decay exponentially,
and infinitely many eigenvalues A; will be exponentially small.

e Using the wavelet ¥: Instead of using V;, we can use the wavelet spaces
W;. We take H = | g Wi Again, when the wavelets are compactly
supported, 0 is an eigenvalue of DT. The same remark concerning Meyer
wavelets holds.

4. Bandlimited geometric harmonics

In this section, we study the geometric harmonics obtained as eigenfunctions
of the Bessel kernels (when the domain T’ has positive Lebesgue measure, these
functions are commonly refered to as prolates). We essentially prove that as the
bandwidth tends to infinity, the geometric harmonics become localized on the set
and allow a separation of its different connected components (up to some resolu-
tion). We also mention a property on the oscillating behavior (number of zeros) of
the geometric harmonics.

4.1. Localization property.

We now show that a first possible application of the geometric harmonics:
clustering.
Suppose that the dimension is n = 1 and that I consists of two disjoint segments
in R:
Fr=Tr,url,

and we suppose that the distance between I'y and I's is d > 0. In this case,
ke(z,y) = csinc(c(z —y))

Let f be a smooth function defined on I' and such that fir, = 0. Then for
zels

T.f(z) = / sine(c(z — y)) f (4)dy

= in(me(x — M
- /rls (mel y))ﬂ(m—y)dy
= sinrea) [ cos(wcw%dy—cos(m) ] sintwen) L0 @y)dy

()

by integration by part (this is the Riemman-Lebesgue lemma) and using the fact
that |z — y| > d.

This calculation proves that if ¢ is large enough, i.e. if ¢ > %, then for all
x € Ty T, f(z) ~ 0. This is an important property: the space of functions supported
on a given connected component of T is (numerically) left invariant by T, provided
that ¢ is sufficiently large. An illustration of this fact is shown on figure 4. The
matrix of T, is approximately a block matrix.



GEOMETRIC HARMONICS

1/c=100

— Fnio
— - Phis
’ -
/
> -
4 -
. == -
= ~ ™ > 7
- ~ . - _
., e -
s
, -
ES) EX=TS) iso ECT) =50 Soo
1/c—=s
- —— enio
N Phil
/ \ — - Phis
/ \ VRN |
/ \ / AN
7/ N -
/
, \
7 \ /
/
\ -
/
\ -
/
\
/ -
\
/ |
\
-7
so EX=TS) iso =66 =50 Soo
1/e—10
— Fnio
i
— - Phis
VARN 7
/ \
/ \
! \
/ \ —
/ \
= / 7
- N \
— N / N
- X 7
~ -
50 100 150 Z00 = 250 =oo
1/c—s.a3333
N
/A
) -
! \ |
I
\
! \ -
/
\
/ \
4 N
so EX=TS) iso =66 =50 Soo
1se—z.5
— Fnio
i
— - Phis
/A
\ -
/ \
/ \ 7
I \
1 \ —
/ \
ES) EX=TS) iso ECT) =50 Soo

FIGURE 4. T is the disjoint union of three disjoint intervals Iy U
I, U I3. The distance between I; and I is equal to 70, and the
distance between Iy and I3 is equal to 10. The figure shows the
geometric harmonics ¢g, ¢1, and ¢5 for different values of c. When
% = 100, none of the intervals can be separated. When % =25<
70, intervals I1 and I, are separated but I U I3 is still seen as one
unique structure. Last, when 1 = 2.5 < 10, the intervals I, and I3

c
are separated.
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As a consequence, each geometric harmonic is a function numerically supported
on a connected component of I'. They can therefore be used to identify and separate
the different components of a set up to the resolution c¢. The geometric harmon-
ics give us the structure of the set. In particular they can be efficiently used for
clustering purposes.

This localization property remains true in higher dimension because then

e\ 5 Jo(me|lz —yll)
ke(z,y) = (5) W

and as c increases, the oscillations in Ja (7c||lz — yl|) get wild. See figure 5 for an
example in dimension 2.

FI1GURE 5. T is the union of a circle and two segments. We obtain
three families of geometric harmonics, each of which living either
on the circle or on one of the segments. Above: graphs of the
geometric harmonics of order 0 for these three families.

4.2. Number of zeros.

If I is an interval and g is uniform, then ¢; has exactly j zeroes. If I' is a
circle, and p is uniform, then ¢; has 2j zeros. In fact, for these two examples,
the prolates are the eigenfunction of some Sturm-Liouville differential operator.
For more general I" of dimension 1, numerical evidences support the fact that the
number of zeros of ¢; grows linearly with j. In fact, the Bessel kernel is totally
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positive, and by Krein’s theorem, its eigenfunctions have the property that ¢; has
J zeros.

5. Set filtering, spectral clustering and link with the laplacian

The localization property of the geometric harmonics make them suitable for
clustering: the eigenfunctions will be localized on different structures of the set
which can therefore be separated. In fact, the idea of using the eigenfunctions of
some operator on a set to find clusters, also called spectral clustering, has been
widely used for instance in image segmentation (see [Y Weiss]|). The operator that
has naturally been considered is the laplacian operator.

Suppose that T' is a riemannian manifold, that z € T' and consider the wave
equation on T':

with initial condition u(y,0) = 6(y — z) and %%(y,0) = 0. We can think of this
problem as modeling waves on a membrane (or the surface of a drum) when the
membrane is briefly hit at the point z at time ¢t = 0.

Then the solution is

uly,t) =Y ¢(2)8;(y) cos(\st)
720

where A; and ¢; are the eigenvalues and eigenfunctions (here normalized on I') of A
on I'. This spectral representation can be interpretated in a simple way: the wave
at the point y is the superposition of different monochromatic waves corresponding
to the frequency A; with the amplitude ¢;(z)@;(y). Therefore the Y ¢;(x);(y) is
a measure of the acoustic interaction of the two points z and y in T

For other operators based on a radial kernel k(z,y) = h(|]|z — y||), it can be
shown that, in general, we have the following asymptotic expansion in the scale:

B gl 1

where a = [, h(||z|])dz, and § and v depend on the geometry of T' (curvature,
torsion...). Therefore, asymptotically for small scales, diagonalizing T is equivalent
to diagonalizing the laplacian.
Now if we fix the scale < (c is not necessarily large). The kernel k(z,y) can be
renormalized in the following way:
T k(.’E, y)

k@,y) = Aodo(w)do(y)

and the measure p can be renormalized as dji = ¢o(y)2du on T so that if
Tegle) = [ Feo)dn

we have that T, is an averaging operator: T.1= 1, and as a consequence, I — T, is
some laplacian operator on I'.

The measure dji = ¢o(y)2du is a finite measure on I' and can be used to filter
the set, for instance by selecting all points z such that ¢o(z)? is above a certain
threshold. Then one can start again on the residual points. This way one obtains
a hierarchical description of the data set.
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This approach can be generalized as follows: let £ > 0 and
Se = {j € N such that A\; > ¢}

For z € T, consider

@)= Ly H@
€ |S€| jES. ||¢.7'”i2(1‘,du)
and for x € Q 2
Pe(z) 1 ¢; (z)

IS 25 64,

Then p¢ is a probability density on I' and P¢ is a probability density on Q. PS is
defined on 2, and is concentrated on I'.

The probability density PS¢ can be used to low-pass filter the set I'. Indeed, if
we fix a threshold 0 < 7 < 1 and the resolution ¢, then the set

I’ = {z € Q such that PS(z) > 7||Pf||oo}

is a filtered version of I' at the resolution c¢. An example of such filtering is given
figure 6.

We observe a Gibbs phenomenon that is due to the fact that in the definition
of P we use only the prolates with eigenvalue > €. To avoid this effect, we can add
some weights to smoothe the effect of truncation:

1
P(z) = w——— > wivi (@)
EjeSE wj jes.
Note that the oscillations in the Gibbs phenomenon automatically “detects” the
boundary OT" of T.
We illustrate the power of the geometric harmonics for clustering with an ex-
ample (figure 7). T € R® consists of the union of the segment M (¢) = (1,0,) and

a helix given by the equation:
M (t) = (cos(t),sin(t),t) with t € [0,2n)

We fix % to be of the order of the minimum distance between two points in
the set. When we diagonalize a Bessel kernel on this set, we observe that the spec-
trum contains two kinds of (nonzero) eigenvalues: those corresponding to geometric
harmonics localized on the helix, and those corresponding to geometric harmonics
localized on the segment. We select one of these sets, and form the corresponding
probability density pt(y), we can filter the set (by a thresholding of p¢, as explained
above) and recover the structure of the set. See figure 7.

6. Feature finding and low-dimensional embedding of sets

In this section, we address the question of finding structures (features) in a
set. In learning theory, many algorithms rely on one’s ability to identify features
in the training set, and to use these features to perform tasks such as classification
and regression. The first point, finding the features, is crucial as the features are
supposed to reveal enough structure in the dataset for, say, the classification to
achieve good performance. If one has some a priori information the dataset, one
should use it in the definition of the features. For instance, if the dataset is formed
of different images, using edge and junction detection tools in the definition of the
features might not be such a bad idea.
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FI1GURE 6. T is again the union of a circle and two segments. The
filtered sets at different resolutions ¢, and the corresponding den-
sity PS¢ is shown.

However, if no significant a priori knowledge is available, then one has to dis-
cover the features from the data (unsupervised learning). The most common tech-
nique is the Principle Component Regression (PCR) in which the set is first an-
alyzed via a Principal Component Analysis, then the top eigenvectors (or rather
the projections of the points on these vectors) are retained as the features, and the
projection on these vectors are used as regressors. So if T is approximately a linear
manifold, the top eigenvectors provide a “suitable” representation of the points of
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FiGure 7. Upper Left: T is the union of a segment and a helix.
Upper right: the probability density p and the threshold. Lower
pictures: clustering obtained by thresholding at a low resolution
(left) and high resolution (right).

I" as they form a linear system of coordinates on the set. More generally, if the
set I is not well represented with a linear system coordinates, then one has to seek
non-linear ones. General kernel methods (e.g. SVM) attempt to achieve non-linear
descriptions of the dataset by embedding I into a non-linear way into a (very) high
dimensional space where the points can (hopefully) be described with linear coor-
dinates. In the following, we want to use the geometric harmonics as coordinates
on a neighborhood of T', and to be able to use these coordinates to discover relevant
features on the set.

Suppose that T' is an abstract set, not necessarily points in the euclidean space
R", endowed with some distance d. For instance, I' can be a graph, and d can
be obtained by weighting its edges. The question whether (T',d) can be globally
embedded in a euclidean space R” (1 < n < +00) in an isometric way was studied
and solved by Schoenberg ([Schoenberg]): to answer this question, it suffices to
look at the restriction of the Bessel kernels, or the Gaussian kernel to T.

Let’s form the following vector:

Voo (x)
B(z) = | Verul(e)
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This is an embedding of T into R™® = [2(N). Moreover, by construction,

+oo
(4) (®(z), 2(y))e = Z Xivi(z)i(y) = k(z,y)

k(z,y) can be thought of as a similarity measure between z and y.

A natural question arises: does this embedding preserve the metric on . In
other words is ® bilipschitz ? For two close points z and y in a strip around I', can
we find reasonable constants A < B such that :

(5) Ad(z,y) < [|®(z) — ®(y)lle < Bd(z,y)
holds ?

PROPOSITION 3. Suppose that k(x,y) = h(d(x,y)?) where h is C?. Then the
embedding ® is locally isometric:

1760 -2l _
d(z,y)—0 d(.’L’, y)

where C = /—h"(0) does not depend on x and y.

PRrOOF. First note that since by Cauchy-Schwarz, k(z,y)? < k(z,z)k(y,y), we
have h(d(z — y)?) < h(0), and h has a maximum at 0. Therefore, h'(0) = 0 and
h"(0) < 0. Now, it can be checked that because of identity (4),

[@(z) — 2(y)ll72 = k(z, ) + k(y, y) — 2k(z,y) = 2[h(0) — h(d(z,y)*)]
and a Taylor expansion yields the result. a

REMARK 4. Note that the assumption that k& be radial can be weakened to
obtain a bilipschitz map, with Lipschitz bounds independent form the location in
the set.

We can define

as a new distance on I'. In fact the proof shows that

o _dz,y)
The two distances D and d define the same topology on I' and they are locally
equivalent in the following sense: for z and y such that d(z,y) is much smaller
that o (o = 1 is the scale parameter), D(z,y) ~ d(z,y), whereas D(z,y) ~ 1 if
d(z,y) > o. Thus D discriminates only between points at (Euclidean) distance less
than the size of the support of k, all other points being sent at infinity.

As a similarity measure between z and y, k(z,y) is completely arbitrary since
the choice of the kernel may not be related to the set ' (although the scale parameter
¢ can be adjusted). However, the geometric harmonics are the eigenfunctions of the
kernel computed on the set, and together with the eigenvalues provide an analysis
of T.

Now if we suppose that I' lies in the neighborhood of some manifold of low
dimension in R", the embedding & is not of much help to recover a parametrization
of this manifold. If we use only a small number of geometric harmonics, we can
hope to find a system of local coordinates.
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EXAMPLE 2. Suppose that T is the set of all realizations of the following random
process:

. _ < l

XT(t):{ 1 ifjt—7<3

0 otherwise

where |t — 7| is the distance on the torus (circle) T = R/Z, t € T and 7 is
uniformly distributed over T.

T can be thought of as a curve in the Euclidean space L?([0,1],dx). Although
it was generated in a simple manner by a single parameter 7, it is not very smooth
as two points on this curve differ by an orthogonal increment. As a consequence,
it has a Holder 1 regularity:

X, — Xp|| = |7 = 7|2

This set is rotation invariant and if we take a rotation invariant kernel, like the
gaussian k(z,y) = e~l2=vl” then the geometric harmonics are merely the Fourier
basis: 1, cos2wt, sin 27t... The choice of (cos27t),sin 27t) as a coordinate system
on I allows to recover the parameter 7 that generated the process (in spite of the
poor regularity of the curve).

In the general setting the procedure of finding the coordinates can be carried
out through a simple algorithm:

e At each point 2 € T', define a neighborhood.

e Find a subset of eigenfunctions such that equation (5) is verified in this
neighborhood of z for some bounds A and B. These eigenfunctions define
coordinates in this neighbordhood and should be chosen among the ¢;’s
such that A; > ¢

e Agglomerate all related neighborhoods that correspond to the same choice
of eigenfunctions.

EXAMPLE 3. Mouse dissection and robustness to noise. Consider a set in R?
formed of the union of two disks and of a curve (see figure 8). In our experiment we
applied the algorithm described above with the gaussian kernel, and we imposed
that the ratio of the Lipschitz bounds % be less than 5. In other words, the
algorithm has decomposed the set into different regions. On each regions, we have
a system of coordinates that does not distort small distances too much. We chose %
to be of the order of 1, wich is the minimum distance between two points in the set.
The result is shown on figure 8 (top), and the numbers in the legend correspond to
the indices of the geometric harmonics that were selected for a given region. For
instance “4- 1 2” means that ¢ and ¢o where selected for the region of all the points
which are marked with a '+’

The body and the ear of the mouse (two disks) is split into 6 domains, each
of them being parameterized by 2 geometric harmonics. The tail is divided into
6 domains, each of them being parmetrized by one geometric harmonic. Observe
that the correct dimensionality is detected: the body and the ear appear to be one
dimensional whereas the tail belong to a one dimensional structure.

Now if we perturb the set with an additional noise, that is if each point z € T
is changed into the point z + w(z) where {w(z)},cr is a gaussian white noise with
variance o2, then we obtain the results shown on figure 8 (middle and bottom).
We have displayed the output of the algorithm for ¢ = 0.4 and ¢ = 1. This is an
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FiGure 8. T is the set formed by points uniformly distributed on
the union of two disks and a curve (it’s a mouse!). Top: the origi-
nal mouse set and its decomposition in local patches. The numbers
in the legends correspond to the indices of the ¢;’s selected. Mid-
dle: same thing with additive noise with standard deviation=0.4.
Bottom: same with standard deviation=1. The decomposition is
stable.
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important perturbation given that the minimum distance between two points in T’
is 2. These results show that the algorithm is robust to noise.

In fact if the kernel k is smooth, then an additive perturbation on the set I is,
at the first order, an additive perturbation on the kernel (that is the matrix to be
diagonalized). More precisely, if we fix the scale 1 and set if k.(z,y) = c"k(cz, cy),
then to compute the geometric harmonics, we have to diagonalize the kernel k. on
the set {z +w(z),z € T'}. Now,

ke(z +w(z),y +w(y) = " [kc(@ +w(@)),c(y +w(y))]

1R

c” [k(ca:, cy) + cw(m)%(cm, cy) + cw(y)g—z(caz, cy)

ok ok
~ kc(xay) +C1U(IL')%(CZ',C:U) +Cw(y)a_y(cx70y)

Therefore the matrix to be diagonlized is approximately the orignal matrix plus a
perturbation. The relative amplitude of this perturbation is of the order of :

ke(z + w(z),y + w(y)) — ke(,y)
ke(z,y)
where o« and B are constants depending on k only. This approximation holds if
e(|w(@)| + o)) < 1.

We can now invoke all the machinery of matrix perturbation: if one additively
perturbs a symmetric matrix A with a matrix E, A=A+ E, then there are known
results about the spectrum and eigenfunctions of A. For instance Weyl’s theorem
states that for all j,

‘Scmm@n+ﬂm@m

1A = Al < (1Bl
Likewise, Mirsky’s theorem says that

>y =)< |Ellr
J

where ||E||r is the Frobenius norm of E. These theorems show that the spectrum
is robust with respect to noise. Eigenfunctions, on the contrary, are not robust
to noise as some perturbation can make an eigenspace degenerate. However, the
projector on the space {¢;, \; > ¢} is robust to noise when the variance of the noice
is much smaller than e.

In the example of th mouse, we observe that the decomposition of the set into
patches as well as the systems of coordinate on these patches remain roughly the
same when noise is added, and the algorithm is stable.

ExAMPLE 4. Black disk on white background.

In this example, we analyze a simple image consisting of a black disk on a
white backdround. The image is 50x50 pixels. To each pixel we associate its 9x9
neighborhood in the image and we see this neighborhood as a point in R¥'. This
way we have a data set consisting of points in R®! corresponding to all overlapping
9x9 windows containing only black and white pixels separated by an edge. More
precisely, the data set is composed of several instances of the totally black window,
several instances of the totally white windows, and windows contaning black and
white pixels separated by an edge. These windows being quite small, there are
essentially two parameters governing the data set: the first one is the proportion
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Computation

3 (2]

Xo) 2 . ’ \

2 3 o ' of the ]
g 5 = ;

i i *.. Geometric Harmonics’
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50 pixels e - T T
Original image Data set of 9x9 windows

FIGURE 9. The data set is obtained by splitting the image into
9x9 overlapping windows. It is then analyzed via the computation
of the geometric harmonics.

of black pixels (or equivalently the offset ot the edge with respect to the upper left
corner of the window), and the second one is the orientation of the edge. Note that
the dataset has regularity Holder % for the Euclidean norm and as in example 2.
For an appropriate choice of the resolution ¢, the geometric harmonics recover the
two parameters. The whole processing of the data is displayed on figure 9.

%

o v w s o0 @ ~ ®

FI1GURE 10. ¢o, ¢1, ¢3 and ¢4 functions of the pixel position in the image.

We fix L to be of the order of the minimum (non zero) distance between two
points in the set and we compute the geometric harmonics for this set. The first
eigenfunctions are shown on figure 10.

These graphs show that ¢g captures the first parameter (density of black pixel in
a window), and so does ¢;. While ¢ is mostly concentrated on points corresponding
to totally white windows, ¢; is essentially supported by totally black windows.
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These functions are not symmetric as the number of totally black windows is greater
than the number of totally white windows.

¢3 and ¢, capture the orientation parameter. It is clear that the whole dataset
can be parametrized by (¢1,¢2) on one half of the set, and by (¢1,¢4) on the
other half. It is even clearer if we take a look at figure 3, where the data set is
represented in the coordinates (¢1, @3, d4). The points appear to belong to a 2D
surface of revolution.

To illustrate the fact that (¢1,¢4) capture the proportion of black pixels and
the orientation of the edges, we have represented some windows corresponding to
some locations in the plane (¢?, ¢4) on figure 13. Actually, we have plotted half of
the data set, corresponding to the points x where (¢ (), ¢4(z)) provides a bijective
parametrization. We observe that as ¢; increases, the proportion of black pixels
increases as well. Likewise, the orientation of the edges varies with ¢,.

7. Diffusion metric

In the previous section, we have introduced a distance on I" defined by
D2($ay) = k(.’L’,.Z') + k(yay) - Zk'(l',y)

or equivalently
+oo
D*(z,y) = ZM(%(%) — i) = |12(z) - 2(y)I

We now suppose that the kernel k is rotation-invariant, that is k(x,y) = h(d(z,y)?)

with h/(0) # 0. Let o denote the scale parameter and we define € = o2.

2.5 = [ 1 (222 fo)an

13

As already mentionned, the kernel can be renormalized so that the corresponding
operator is an averaging operator A, (in fact there are various ways to normalize
the kernel):

h (d(w’y)2
Af(x =/7Efysooy2du
(=) r Aopo(Z)po(y) W)eolu)
This averaging operator naturally defines a Laplace operator as follows:
A = A —1T
: £

A, and A, correspond to a diffusion on T'.
It can be shown that there exists a limit operator:

A.= Ay +e*R,
where R. is bounded on any space of bandlimited functions. When I' is a manifold,

Ay is the Laplace-Beltrami operator.
From this we can deduce that

Af = (I +eA)E = (I+eAg)f —s etho
When T is a manifold, the kernel k;(z,y) of A. represents the amount of particles (or
heat) diffused from z to y at time t. When I is a graph, k;(z, y) is a weighted average

over all paths connecting 2 and y. This similarity measure, and the corresponding
metric, provides much information on the geometry of the data.
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Ficure 11. A RGB plot of the image where red=¢1, green=¢3, blue=¢,4

FIGURE 12. Plot of the data in the coordinates (¢1,¢3,¢4). We
obtain a surface of revolution. The point (0,0,0) corresponds to
the totally white windows, while (1,0, 0) corresponds to the totally
black windows.

21
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0.16 0.32 0.47 0.63 0.78 0.94

FIGURE 13. Some windows of the data set, in the plane (¢?, ¢4).

The kernel k; is thus an approximation of the diffusion kernel defined by e~ 40

and the eigenfunctions 1; are approximations of the eigenfunctions of this diffusion
kernel with Neuman boundary conditions.
We have the identity:

ki(z,y) =Y vivi(@)di(y)
i>0

where

and

@[~

.
i = )\0

It is clear that only a few terms are needed in the sum as 0 < :\\—0 < 1. The
corresponding eigenfunctions define a low dimensional embedding which is close to
an isometry with respect to the diffusion metric:

d(z,y) = Y viix) — i)’
vi>1-6

where the equality holds up to exponentially small terms.
Therefore we come to the interesting conclusion that the diffusion on T' can be
computed very easily in the embedding space, namely by
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e mapping the data points into a low dimensional space through
z— {i(z)}
e computing the distances using the family of weighted Euclidean distances,
where the weights are the given by {v}}.
Various illustrations of this observation are shown on figures 14 and 15.

60000 Q
064y 0 l

2.0 0086‘)0@ o

05 OCoopoo0 20, 3

L L L L L ,
“15 -1 -05 0 05 1 15

FIGURE 14. The spring curve (left) in R? is embedded into R? as
a circle (right).

The relation between the spectral decomposition of the kernel and the geometry
can be explained through the following observations. As already mentionned, to
synthesize the kernel k;, one only needs a finite number of eigenfunctions. More
precisely, to reconstruct the bump k¢(z,y) centered at z and of width v/%, the
eigenfunctions needed are those for which v{ exceeds a certain threshold. As ¢
increases, this number gets smaller and the corresponding eigenfunctions have larger
support in R?. This observation, which corresponds to a version of the Heisenberg
principle, show how the spectral decomposition of the kernel provide a multiscale
analysis of the set.
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Original set

Embedded set

-2 o

Original set

Embedded set

FIGURE 15. Original sets (left) and their embeddings (right). The
colors represent the distance to a given point on T' (red=close,
blue=far)

Appendix A. Positive definite kernels
Bochner (see [Bochner]) defines (real) positive definite kernels as follows:

DEFINITION 1 (Positive definite kernel). A non zero function k¥ : @ x @ — R
is said to be a definite positive kernel on  if for all m > 1 and all choices of points
{1,Z2, ..., T, } in Q, the matrix {k(z;,z,)} is positive semidefinite.

Note that the matrix is only semidefinite, not necessarily definite. Moreover
it can be proven that a positive definite kernel is necessarily symmetric, that is
k(z,y) = k(y, o).

An interesting subclass of positive kernels is given by functions of the form
k(z—y) and are obtained by taking the Fourier transform of finite positive measures
on R™ (Bochner’s theorem). Among them we find the gaussian kernel, and the
Bessel kernels that have the particularity of having a radial Fourier transform, that
is these kernels are of the form k(||z — y||).

Appendix B. Reproducing kernel Hilbert spaces

A Hilbert space H of functions defined on (£, dz) is said to be a reproducing
kernel Hilbert space with kernel k if

e for almost every z in Q, k(z,.) € H
e for almost every z in Q and all f € H, (k(z,.), f)n = f(z)



GEOMETRIC HARMONICS 25

where (., .} denotes the inner product in #H. It is easy to verify that any reproduc-
ing kernel is a positive definite kernel. In fact the concepts of reproducing kernels
and positive definite kernels are identical since if & is a positive definite kernel, one
can construct a Hilbert space H in which & is the reproducing kernel. For more
information about this construction process, see [Aronszajn].

Since all this might seem abstract, let’s give an example. Suppose that k(z,y) =
p(z—y) and that Q = R". Then by Bochner’s theorem we know that p is the Fourier
transform of a finite positive measure, and for simplicity we will assume that it is
of the form p(£)d{. Now consider all signed measures v verifying

(6) /F/Fp(a: —y)dvdr < +00

and define the space of convolutions of all such measures with p:

H= {f of the form f(z) = / p(x — y)dv with v verifying condition (6)}

n

If we endow this space with the following inner product:

(f,9)n =/F/Fp(w — y)dvidv,

where f(z) = p*dv; and g(x) = p * dv2, we obtain a Hilbert space and it can be
verified that k(z,y) = p(z —y) = p* d,(y) is the reproducing kernel of this Hilbert
space.

To understand what this space looks like, we can use the Fourier transform to
characterize it. We thus obtain that

o dE
o= | (GG

and this shows that # is nothing but the image of a weighted L? by the Fourier
transform. Remember that from Bochner’s theorem, p(£) > 0 and is integrable,
and therefore the frequency content of elements of H is concentrated around low
frequencies (the weight % penalizes high frequencies.

In particular, if k(z,y) = ele=¥I”, then H = F~1 (LQ(Rn,ﬂea||5||2)). Likewise,

if n = 1 and k(z,y) = e/*~¥l then H is the Sobolev space commonly denoted by W?.
Last, if p is the indicator of some set, then H is the space of all square integrable
bandlimited functions (i.e. that have frequencies in this set).

Appendix C. T* = D : H — L*(T',du) is bounded
Assume that f € H. Then

17 ()] [k, -, £ ()
Ik(y, sl fllae (Cauchy-Schwarz)

VE@Y )l £l

IN A

Thus we can conclude:

/ £ @) Pdp < |1 1B,(T) ess sup k(y, )
T yel
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Appendix D. T : L*(T,du) — H is bounded
If f € L?(T,dp), then

T = < [ ) St [ k<.,yz)f(y2)du<y2)>

H

/F / T £ ) (K1), Ko o)) iy ) ()
/F/Fmf(w)k(yl;y2)du(y1)dﬂ(y2)

Since k is the reproducing kernel of H

|k(y15y2)|2 = |<k(y1a')7k(y2>')>7{|2
1ECy1s P Ilk(y2, )II*  (Cauchy-Schwarz)
k(y1,y1)k(y2, y2)

therefore, since x — k(z,z) is du-essentially bounded on T, then

/F / o) F o)k (g, o) | duy ) dulys)

IN A

IN

1T £113,

IN

/F / £ @) f ) VR0, 92) R (G2 92) |y ) dia()
( / f(y)\/k(y,y)du(y)>

( /F f (y)|2dﬂ) ( /F k(y,y)du> by Cauchy-Schwarz

1£11Z2(r a1 (T) ess sup k(y, y)
y€r

IN

IN

IN

Appendix E. T*T = DT : L*(T,du) — L?(T,du) is Hilbert-Schmidt
Here we consider DT : L*(T',du) — L*(T,du), given by
DTf(2) = [ ko))
r

and we prove that it is Hilbert-Schmidt. The fact that it is self-adjoint is immediate.
Let’s prove that

/F / k() 2dja(y)dp(z) < +oo0
Thus

[ [eurawane < [ [ sear i)

(/F k(y,y)du>2

(u(F) ess Sup k(y, y))2

< 4

IA

IA
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This proves that DT : L*(T,du) — L*(T',du) is Hilbert-Schmidt and therefore
compact. In addition it is self adjoint, and thus DT possesses eigenvectors and
these form an orthonormal basis of L2(T, du).

Appendix F. Bessel kernels

In the case of the Slepian prolates, the kernel is given by the inverse Fourier

transform of the ball centered at the origin and of radius §. This kernel is radial,

therefore if z = re,, is along the last coordinate with » > 0, and if ¢ = 2 and if we

write £ = (£',&n)

/ eQiﬂ(E,z)dé- — / 2i7rr§n d§
llgl<1 llgll<1
Vi-legne
/ / 2171'7'5" dfndfl
lig’f<1 Vi-lgn?

_ / sin(27wry/1 — [|€']|?) i
IIE <1 r

= / / sin(27ry/1 — p2)p"2dpdo
sn—2

= C/sm27rr — p2)p™ 2dp

= C / sin(27r cos ¢) sin™ 2 ¢ cos pde

sin"1(4) 1%
n—1 ]

= C ( [sin(?m‘ cos @)

P
2

27W1 / ’ cos(27r cos ¢) sin™ ququ)

2

n —

= C'/E cos(27r cos @) sin™ ¢pd

Now Poisson’s Bessel function formula states that if (v) > —%,

1 v %
J,(2) = T D (g) /12r cos(z cos ¢) sin?” ¢dep
This proves that

/ e?iﬂ(ﬁ,m)dé- —orie v/ J% (271'7“)
llgl<1 r

M\S

Using that

lim Ju(2) = T

z=0  2z¥ 2?I'(v + 1)
and equating both hands of above equation to the volume of the unit ball yields
C" =1. We find (after rescaling by £) that the kernel is

o) = (5)F L5
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where 7 = ||z — y||.

In the case where n is odd, this can be further expressed in terms of derivatives
of the sinc function: the spherical Bessel function of the first kind is

aps (0= /230

1 d)p sint

and it can be proved that

tdt) t

o= (1) 5

therefore,
k(z,y) = (5) V2e(-1)" pm sinc(rc)
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