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REMARKS TO MAURICE FRECHET’S ARTICLE “SUR LA DEFINITION
AXIOMATIQUE D'UNE CLASSE D’ESPACE DISTANCIES VECTOR-
IELLEMENT APPLICABLE SUR L’ESPACE DE HILBERT!

By I. J. SCHOENBERG

(Received April 16, 1935)

1. Fréchet’s developments in the last section of his article suggest an elegant
solution of the following problem.
Let

A = Qi G#k;i,k=0,1,--.,n)

be in(n 4+ 1) given positive quantities. What are the necessary and sufficient
conditions that they be the lengths of the edges of a n-simplex AoA, --- A.? More
general, what are the conditions that they be the lengths of the edges of a n-‘‘simplex’”
AoA, - .- A, lying in a euclidean space R, (1 = r = n) but not in a R,_,?

This problem is fundamental in K. Menger’s metric investigation of euclidean
spaces ([6] and [7], particularly his third fundamental theorem in [7], pp. 737-
743). It was solved by Menger by means of equations and inequalities involv-
ing certain determinants. Theorem 1 below furnishes a complete and inde-
pendent solution of this problem. Theorem 2 solves the similar problem for
spherical spaces previously treated by Menger’s methods by L. M. Blumenthal
and G. A. Garrett ([1]) and Laura Klanfer ([5]); it may be conveniently applied
(Theorems 3 and 3’) to prove and extend a theorem of K. Gédel ([4]). The
method of Theorem 1 is finally applied to solve the corresponding problem for
spaces with indefinite line element recently considered by A. Wald ([8]) and
H.S. M. Coxeter and J. A. Todd ([2]).

Construction of simplexes of given edges in euclidean spaces

2. A complete answer to the questions stated above is given by the following
theorem.

THEOREM 1. A necessary and sufficient condition that the a;x be the lengths of
the edges of an n-*““simplex”’ A¢A, --- A, lying in R,, but not in R,_,, s that the
quadratic form

1 These Annals, vol. 36 (1935), pp. 705-718.
2 The quotation marks should indicate that the configuration may liein a euclidean space
of less than n dimensions.
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Z%ix.'-l" Z (@g; + a5, — aty) zxy
i=1 ik=1
(i<k)

(1) F(II) T2y - - ;In)

n

Z (agi + agk - a%k) T T

1,k=1
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(¥

(With a;, = 0if 7z = k)
be positive, i.e. always = 0, and of rank r.
The condition is necessary. Let AgA, --- A, be an n-‘“‘simplex” with 4,4, =

a;.. Let Aq = 0 be the origin of a R, in which A ; has the cartesian coordinates
a1, @4y, - -+, ain.  The point (in vector space notation)

P=IIA1+I2A2+ e +ann= (éh E?,"';En)

has the coérdinates

£v=l'1alv+x2a2v+"’+xnanv (V=1,---~,77,),
whence
P = H P H Z i'?v Z (ray, + -++ + Tnny)?
v=1
n n n
9 9
= Z Y o, 4+ 2 > T Z Qi Oty
i=1 v=1 1<k v=1
Since
- 2
A2 2

Za%u=U i = Ao,

v=1

n n n o
2 Z Qi Qtgy = o, + g, Z (@i — aw)? = oA + A AT — 4,47

v=1 v=1 v=1 v=1
=aj; + a5, —ai;,

we have
(2) OP* = ||z di+ - + 2.4, ||P =Flay,az -+, 20)
Hence F(xy, - - - , x,) 1s positive. It follows furthermore from our assumptions

that P = 0, hence F = 0, on a linear manifold of n — r dimensions in the vari-
ables zy, - - - , z.; hence F is of rank r.

The condition s sufficient. Let us first assume F to be positive definite, i.e.
r = n. By means of a certain linear non-singular transformation

3) (y) = H(z)
we get the identity

4) Flry, - - ,2.) =¥y +ys + -+ +un.
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Call A, the origin of the cartesian space of the variables (y1, - - - , ¥») and
Ay, Ay - AL,
the n points which in virtue of (3) correspond to
) (x5, 22y ++- ,20) = (1,0,--.,0), (0, 1,0,...,0),---,(,0,---,0,1),

respectively. Their y-coordinates are readily found by (3). For their mutual
distances we find by (3), (4) and (5),

(i)

Z_O_A%=F(0,---,1,'~-,O)=a(2”,
(1) (k)
A.-Ai =F(0y"'71,"',—1;"',0)=agi"‘a(z)k—-(agi-*'agk—azik)

= a%k} (i <k)’

which show that 444, - .- A, is precisely the n-simplex we are looking for. Itis
indeed an n-simplex because the points (5) are independent and (3) is non-
singular.

If »r < n, then (4) has to be replaced by

(6) F(xlr"':xn):y?+y§+"'+y3°
The above procedure gives an n-simples A4, - .- A., however the quantities
F(I,O)"',O)=a§1) F(I)_I;Oy"')0)=a§2)"'

are no more the squared lengths of the edges 4,4%, 4,43, - - - , but, viewing (6),
the squared lengths of their projections on the sub-space (y1, -- -, ¥-), i.e., on
the manifold y,41 = --- = y» = 0. Hence the projection A;A; --- A, on this
manifold of the n-simplex Ao4; - - - A, is an n-*‘simplex” of the type we are look-
ing for, i.e. with A;A, = a4 This n-“simplex” AyA; --- A, is by con-
struction contained in a R, but not in a R,_,, as readily seen.

Remark. If the matrix H of (3) is H = || ki ||, then the y-codrdinates of the
vertices A; and A are

Ai = (h]i)hZ’i; st ;hni), A: = (hi],hgi, e 7h‘ri’07 oo ’O) .

The actual construction (i.e. determination of the coordinates of its vertices) of an
n-‘‘simplex’” of edges aii 1is therefore carried out by a reduction of the quadratic
form (1) to its canonical form (6). This is a problem of the second degree, for
the transformation (3) is by no means required to be orthogonal.

As an illustration of this method let us construct a regular n-simplex with
aix = 1. By (1) we have

F(xly"'yxn)= Z .’l'%-i— inxk-

i=1 i<k
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The identity

_s i+l Tit1 Tite Tits 2
Flay -oym) = 24 = <x‘+i+1+i+1+i+1+”'>’

(z; =0, if > n),

shows that F is positive definite, hence the existence of our regular n-simplex
is insured. The coordinates of the vertices of one such simplex may be read off
from this last identity: one vertex is Ao = (0, - .-, 0) while the cooérdinates of
A, (=1,...,n)are

n—v

1 1 1 1 1/—”_1 s
V212 V223 V234 V20 -1y 2

Construction of simplexes of given edges in spherical spaces

3. Denote by 8% the r-dimensional spherical space
i+ 23 4 T =0

immersed in a R,,;. The problem is as follows.

2

decide whether there exist, on some S?, n points A,, A, --- , An, such that their
~

spherical distances A Ar = ai.

According to a remark of J. von Neumann this problem may be reduced to
the preceding one regarding the construction of simplexes in euclidean spaces.?
Combining his remark with Theorem 1 we get the following theorem which solves
completely the problem stated above.

THEOREM 2. Let ayx = axi (0 # k;7,k=1,2,--.,n) be (g) given positive

Given (n) posttive quantities a i (1 #Z k; 1,k = 1,2, - .., n) and a positive p, to

quantities. Necessary and sufficient conditions that there be, on some spherical
manifold of radius p, n points A,, As, - - - , An, of mutual spherical distances equal
~~

to the a;x, i.e. A;Ar = ai, are the inequalities.
(7) ik § ™ ,

together with the condition that the quadratic form

n

(8) ‘1’(1'1, Ty -0y Tp) = Z Ccos (a.'k/P) T (i = 0, if 7 =k)

i1,k=1

be positive. If r (= 1) s the rank of ®, then we can find such points in S%_,, but
not tn S2_, (which ts undefined if r = 1).

3 After Prof. von Neumann’s verbal communication I noticed that the same reduction
has already been used by Laura Klanfer ([5]) to carry over Menger’s results from euclidean
spaces to spherical spaces.
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The meaning of the inequalities (7) is obvious viewing the fact that no distance
on a sphere of radius p can exceed 7p. Suppose there are required points A4,,
- ,A,onsome S,(m = 1). Call 4, the sphere’s center. Then A4, --- A,
is an n-‘“‘simplex’’ in R,,,,, the lengths of its edges being

(9) AA, = p = ay, A,-A,,=2psm¥‘=a.~k Gok=1,---,n;i%k).
p

From Theorem 1 we know that the construction of such a ‘“simplex”” amounts to
the investigation of the quadratic form

1 n n ‘ '
F=3 2 (a3; = af, — a%,) zaa, = p? 2 <1 - 2sm2;—p">x.-xk

1,k=1 1,k=1

n

=p2 . cos (au/p) 2ty = p2 @ .
i,k=1
Its positivity is necessary and sufficient for the existence of Ao4, - - . A, with the

properties (9). Its rank r indicates that A,4; --- A, is contained in R, but
~
not in R,_;, hence 4,4, ... A, with the desired properties, i.e. 4:4; = ay, is

contained in S?_; but not in S*_,.

4. The set of quantities o) in Theorem 2 could be thought of as the edges of an
abstractly defined (n — 1)-simplex (in Menger’s terminology it is a semi-metric
space composed of n — 1 points). Theorem 2 answers the question whether or
not this abstract simplex can be immersed isometrically, i.e. by congruence, in a
spherical space of given radius. )

An interesting consequence of Theorem 2 is the following theorem.

THEOREM 3. Let 0,1 be a (n — 1)-simplex of a S.°,; there exists a radius
p1 = po such that o,_; can be immersed isometrically in S°*, .

Thus for n = 3 we get the following geometrically obvious statement: Any
ordinary spherical triangle of a S5° can be placed isometrically on a circumference
of suitable radius p; < po.

We note first that if ¢,_, can be immersed in S:°,, which happens when the
rank of

(10) ®(z;p) = i cos (air/p) ixx

i,k=1

is = n — 1for p = p;, our theorem is proved with p; = po. Let us now assume
@®(z; po) to be of rank =, hence

®(x; po) positive definite and ? = po,

by Theorem 2. Note that ®(z; p) can not be positive definite for all p with
0 < p = po, for it fails to be so if e.g. p = a2/ since the first principal minor of
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order 2 of the discriminant of ®(z; ay2/7) vanishes. Call p; the greatest lower
bound of the values ¢ with the property that ® (z; p) is positive definite if
o £ p < po. By a previous remark necessarily

(11) aix = mpr.

Now ®(x; p) can not be positive definite if p = p; for it would still be so (by
continuity) for all values p sufficiently close to p; in contradiction to the definition
of p;. But ®(z; p1) is necessarily positive, as the limit of positive definite forms
®(z ; p),for p— p1 + 0. Hence ®(z; p1) is positive and of rank < n. Now the
proof is completed by (11) and Theorem 2.4

5. We shall now extend Theorem 3 to cover the case when p; = =, that is
when ¢,_; is in R.—;. We assume a,_;, of edges ax, to be a (n — 1)-simplex of
Rn—l, ie.

(12) 1 3 (af; 4+ alr — %) zaxy positive definite.

t,k=2
Let us prove that o, can be immersd isometrically in Sh_,, provided p is suff-
ciently large. This is proved if we can show that

n

®(x;p) = D, cos (au/p) Tets

1, k=1

is positive definite if p is sufficiently large. A well known criterion states that a
quadratic form is positive definite if and only if all the » principal minors of its
discriminant chosen as follows .

=

=

are positive (see Dickson [3], §40). If in the matrix of coefficients

ay
1 cos

(irk=27 "',ll)

[o % [0 %
cos =% cos —*
p ol

of ®(z; p) we subtract the first line from all the other lines and then the first
column from all the other columns we get the symmetric matrix

1 cos 2% _ 1 l
p
(13)
r [0 258 a; o
os 2 1 cos 2* _ cos =2 — cos = + 1
p P p p

+ Note that p = p; is the first value < po which is a root of the transcendental equation
det || cos (air/p) || = 0. It would be interesting to decide whether o = p; is necessarily a
simple root of this equation.
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which, as a result of the above criterion, will be the matrix of a positive definite
form if and only if ® (z; p) is positive definite itself. Noting that (13) can be
written as follows

1 — gil‘ 4+ 0(1)
2p? PL

% 1 1 1
- o(;) o (e ady — ) + 0(34)

we see that the »*» (» > 1) principal minor of (13) is = to p~2¢~V times the (v — 1)
principal minor of the discriminant of (12), plus a remainder O(p=?). By (12)
all these minors are positive if p is sufficiently large, hence ®(z; p) is positive
definite and o,_; can beimmersed in S2_,. For any such p = p;. Theorem 3
proves the existence of S,',, with p; < po, in which ¢,._; can be immersed. We
have thus proved the following

TaeoreM 3’ (of Godel). If ¢, 2s a n-stmplex of R.,, then there always exists a
S?_, in which o, can be immersed tsometrically.®

y (P_’x):

The case of indefinite spaces

6. Consider the space of real variables (yi, -- - , ym) With the property that
the square of the distance PP’ of two points is given by the formula

m

PP = Z € (y. - yln)2;
v=1
withe = +1forv =1,.-.- ,p,6 = —=1lforv=p+1,-..,p 4+ q (= m).
We denote this space by R, ,; thus R, = R, The linear geometry of
R, , is obviously the same as that of R,y = Rn.

Let now 3n(n 4 1) real numbers cix(cis = 0, cix = cxi; 2,k =0, .-+, n).be
given. Are there n 4 1 points Ao, 4y, --- , 4, in some space R, , such that
A;A? = cq, and what is the space R, , of the least number of dimensions in
which there are such points? A complete answer is furnished by the following
theorem.

THEOREM 1’. Consider the quadratic form

(14) F(zy, 25, ++- ,2,) = } Z (coi + cor — Cik) TTs -

i,k=1

§ A heuristic proof of this theorem for n = 3 is as follows. Think of the edges of o5 to be
made of flexible strings; place in the interior of o3 a small sphere which is gradually inflated.
This sphere will reach a certain definite size when it will become tightly packed within the
6 strings (edges) of ¢;. Note that in the rigorous proof above a very large sphere was used
which was gradually deflated to its proper size.
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Let it be of type (p, q).6 The necessary and sufficient conditions that there be n + 1
points Ao, Ay, - -+ , Anin Ry o with A;A} = cix, are the inequalities

pzp ¢ 2q.
Thus R, 4 1s the least space in which there are such points.

The condition is necessary. Let the points 4 = 0, A, ---, A,in R, ¢ have
the required property and let R, , be the least linear subspace containing these
points. We know that p < p’, ¢ = ¢/, p + ¢ = n. Letp + ¢ = m and let
A; = (aq, --- , ain) be the coordinates of 4 ;in R, , with respect to an orthog-
onal coérdinate system. For the point

P=Z1A1+"'+ann= (Ely"')im)

of coordinates ¢ = Tiay, + --- 4 Znan, we find as in section 2 the identity

_O_P‘l = Z&Ei = Z ev(:l:lalv + A + xnanv)2 = F(xly A yx'n) .
yv=1 v=1
Viewing our assumption that the matrix of the «,, is of rank m and the law of
inertia (Dickson, [3], p. 72), we see that F(x) is of type (p, ¢).
The condition is sufficient. Assume first p + ¢ = n. By a non-singular trans-
formation

3" (y) = H(z)
we get the identity

F(zi, -+ %) = Y14 - + Yy — Vo1 — ==+ — Un-

Consider in the space R, , of the variables (y;, ---,y.) the points whose
z-codrdinates are given by (5). We find as in section 2 A;A} = cq: and the
theorem is proved, for R, , can be considered as a subspace of R, o, if p’ = p,
¢ zq

If p + ¢ = m < n, then we get

Flay, -+ ,2) =yl + - + 45 — Y1 — - — Un-
To get the desired points we have to project the points Ao, - - - , A, on the mani-
fold Y41 = - -+ = yn = 0, whichisa R, ,.

7. It should be remarked that F defined by (14) is the most general real
quadratic form in n variables. We thus have the following
COROLLARY. Let

(15) F = Z b"k Ty
1

¢ That is of indez p and rank p + ¢q. See Dickson [3], p. 71.
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be a non-degenerate real quadratic form of type (p, q). If by mears of

3" (y) = H()
we have
(16) F=yid - 4y — Yo — - —¥n,
then the columns of the matrixz
hll ¢ hl‘n
H=|:
hnl st h'nn

are the y-coérdinates in R, , of n points A,, - - - , A., which together with A, = (0)
have the property A;A: = cix, where

coi = by, Cik = bis + bix — 2bu (i, k> 0).

A geometric interpretation of the reduction of (15) to the canonical form (16)
by means of an orthogonal linear transformation is well known from the theory of
quadrics. The above Corollary furnishes a geometric interpretation of this
reduction by any linear non-singular transformation.

Probably the most concise description of the result of Theorems 1 and 1’ is as
follows. If the squares of the edges of a simplex 4,4, --- A, are given real
numbers, A;A} = cu, then this defines uniquely a (indefinite) space which, if
referred to the coordinate unit-vectors AqA;, A¢ds, - -, Agd., has the line
element

n

ds* = 3 Z (coi + Cor — cax) Tixi

ik=1
SwARTHMORE COLLEGE, SWARTHMORE, Pa.
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