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ON CERTAIN METRIC SPACES ARISING FROM EUCLIDEAN SPACES
BY A CHANGE OF METRIC AND THEIR IMBEDDING
IN HILBERT SPACE!

By I. J. SCHOENBERG
(Received January.7, 1937)

1. W. A. Wilson ([9])* has recently investigated those metric spaces which
arise from a metric space by taking as its new metric a suitable (one variable)
function of the old one. He considered in particular the euclidean straight
line B, whose metric 8 = PP’ is changed to A = d(P, P’) = PP" and showed
that this new metric space can be imbedded® in Hilbert space $. Here the
old metric § and the new metric A are connected by the relation A* = 8.

In an article soon to appear ([5]), John von Neumann and the author have
determined all the functions f(8) such that if R; is provided with the new
metric A, defined by A* = f(5), 8 = PP’, the new metric space thus arising
shall be imbeddable in $. They are of the form

) 5@ = f T sin’ (8) o),

§?
where af(s) is non-decreasing for 0 = s < « and such that f 8? da(s) exists.
1

Wilson’s case f(§) = ¢ is included in the general formula on account of

@ 5=2 f " sin® () 5 G 2 0).

T §?

In the present note Wilson’s example is extended to higher dimensional
euclidean spaces, its chief result being the following theorem.
« THEOREM 1. If we change the metric of the euclidean space R from the euclid-
ean distance PP’ to the new distance

&) d(P, P') = PP"", 0<vy<yt

the new space RS thus drising may be imbedded isometrically in the Hilbert
space 9.

1 Presented to the American Mathematical Society, February 20, 1937.

t The numbers in square brackets refer to the list of references at the end of this note.

3 Here and throughout this note the word imbedding is meant in the sense of ‘sometrical
imbedding. '

4 The case y = 1 is trivial. The theorem does not hold for v = 0, for the space R,
with d(P, P’) = 1if P % P’ and d(P, P) = 0, is obviously not separable. The constant1is
the best constant, for ER,(,:’) is not a metric spaceif y > 1.
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788 1. J. SCHOENBERG

2. As for all such imbedding problems into 9, the proof of Theorem 1 is
based on the following theorem of Menger ([4]).

A metric space R can be imbedded in O if and only if R s separable and every
setof n +1(n =2, 3,4, ... ) distinct points of R can be tmbedded in R, .

Therefore, as our RY" is obviously separable, it suffices to show that any
n + 1 distinct points Py, Py, --- , Pn, of RS can be imbedded in R., i.e.,
there exist n + 1 points Qo, @1, -+, Qn, of R, such that Q,Q, = P,P,”
(u,» = 0,1, ... ,n)° This “finite” imbedding problem is readily solved by
means of the following theorem ([6], Theorem 1, p. 724).

The quantities a,, (u,v = 0,1, -+, n; @y = @y > 0if p # », @y, = 0) are
the distances of n + 1 points @y, Q1, -+ ,Qu, of R., t.e. ap = Q.Q,, if and
only if the quadratic form

F(z,z) = } 2 (ab; + ais — aj) i
2

is positive, i.e. always = 0. If this form is positive definite, the points Q, are the
vertices of a n-simplez.’

Our finite imbedding problem a,, = P,P,” = Q.Q, is therefore contained
(for @ = 2v) in the following theorem.

TaeoreM 2. If Py, P, ---, P., are distinct points of a euclidean space
R.. (m = 1), the quadratic form

@ F9,z) =} ~,,Zl (PP + PoP,* — PP zize (0<a <2
=

is positive definite.’

Note that in order to prove Theorem 1 we need only to know that
F'®(z, z) = 0. Its positive definiteness means that in order to imbed into $
any n + 1 distinct points of R, we need fully all dimensions of a n-dim. sub-
space of 9, i.e. a R,.

s 1. M. Blumenthal ([2], Corollary, p. 402) .proved the following result. If P:({ =
0, 1, 2, 3) are four points of a metric space R, for any nonnegative number v, not exceeding %,
there exist four points Q:(1 = 0, 1,2, 3) of Rs such that Q;Q; = {d(P;, P)Y(,7=0,1,2, 3).

This result is not contained in our present problem, for the distances d(P;, P;) are not
assumed in Blumenthal’s theorem to be the edges of a euclidean tetrahedron. If this
assumption is added, as for instance by assuming R to be a euclidean space, Blumenthal
conjectures that the inequality 0 < v =< 4 of his theorem may be replaced by 0 s v = 1
(loc. cit., concluding remark of section 4, p. 403). Theorem 2 below proves this conjecture
and extends it from four points to n + 1 points.

¢ This elementary theorem is in substance identical with the well known correspondence
between lattices of points and positive definite quadratic forms. See H. Minkowski,
Gesammelte Abhandlungen, vol. 1, pp. 243-254, where also references to Gauss and Dirichlet
are. found. For an imbedding problem of arithmetical nature see 1. J. Schoenberg, [7].

7 Communicating the proof of Theorem 2 to Prof. G. Szegs, my letter and one of his
crossed each other; in his letter Prof. Szegd proves independently and in a different way
Theorem 2 fora = 1and m = 1,2and 3. An extension of his proof to arbitrary « (0 < a <
2) is obvious, but not an extension to all dimensions m.
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3. Let us pass now to the proof of Theorem 2. Although this theorem is
algebraic in nature, at least for rational values of «, an algebraic proof would
probably be difficult and complicated. The following proof is elementary but
uses transcendental means. To simplify notations we prove it first for m = 3,
ie.,, Py, Py, --., P,, are points in ordinary 3-space.

Consider the following function of three real variables

1 (ubde i(
Q(U, v, w) — 4__ . 61(u£+tq+wt) de = m{ez(u5+vq+wr)}’
4 2492452l

which is the mean value of the function e'™**™*" over the spherical shell

g4+ 7+ =1 Qu, v w)is obvicusly invariant with respect to rigid rota-
tions around the origin and is therefore a function of r = (u* + * + w*)! only,
which we denote by Q(r). Now

2r r r
9m=mwﬁ=l/.ffmmw@w=§/fmmww=——
4r 0 0 0

hence

(5) () = 28T = MU0 o= (P 4 0P+ W),

r
Let P, = (0, 0, 0), P; = (u;, v;, w;), indicate the coordinates of our points
in R;. For s = 0 we have

Q(S'Pu—P;) = 9(8‘\/(1@ —u)? 4+ (v —0)* + (wa — Wr)z)

— M B+ umv ) nt (w,—w, 1] 1,

whence
(6) Q(S'ﬁ) - We{eit(u“5+v,q+w“{') _e—ic(u.f+v-’l+w,f)} (S > 0).

On the other hand we have (as is readily seen by substituting st for s in the
integral) for 0 < a < 2

= Q(ts) s = cla _ —l—a
- [l c()f ds c()f {1 — Q(ts)}s™ “ds

0<a<2;t>0),
where

d@=1/ﬁau—mmfwa 0<a<?2).

We may now express our hermitian form F®(z, ) as follows

° % ;1 {PoP,'a + P()P];al - P]'Pka}xjjk.
(8) 2y

- C_(gl 3 {1 — Q(s-BoP) — 2s-ByPy) + Qs P, Po))z%-ds,
0 1
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where z;, ..., z,, are arbitrary complex numbers. Writing
Zo = —i z; |

we have

3 (1 - 26 BiP) — 0o PoPy) + 2l Pl zs2a

n
2

2 n n n n n
— 290 PoPzy 2 & — 20 PoP)T 22 + 2 (s PiPoi

= [:co[z + fo'ZlQ(S'P()Pj)Zj + IO';Q(S'PoPk)fk + ;9(8-P,~Pk):c,-5:k

n

= 2, Q(s-P,P)z,%,,

pyye=0

which, in view of (6), is equal to
n 2
SUE{ To + Dzjetittrinteil) \ }
Now (8) becomes

=1
i ;1 (I)0I7:"l + POPI: - PjP,,“)x,-:i,,

1y

(9) ( ) © n 2
= c_‘_x_. s—l—u.wz{ zo + z xieia(uiﬂ»v,‘lﬁ-wi{) }ds = 0.
2 0 =1
Here we have the equality sign if and only if
(10) zo + E xjeil(uiﬁvirf-w,'f) =0

j=1
holds identically in s and the direction cosines £, n, {. As the points (u;, v;, w;)
are all different and none is at the origin, a direction (£, #, {) can be found for
which the inner products u;£ + v;n + w;{ (j = 1, - - -, n) are all different and
none is zero, and now (10) implies that z; , - - - , z, must all vanish. Theorem 2
is thus completely proved for m = 3, hence also for m = 1 and m = 2.

4. An extension of the proof to any value of m is now obvious. All we have
to do is to repeat the above argument with the function

1) Q) = M{FrbtFembmly o 2 4wl

t(uy 1+ Fumém)

that is, the mean value of e over the spherical shell

B+ -+ =1
Thus for m = 1 we have

(r) = 3™ + ¢*) = cosr
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and for m = 2
1 2% X .
Qg(r) = Z‘rﬁ et(ul cosf+ug sinb) do = Jo(T)

where Jo(r) is the Bessel function.
To settle the matter there remain only two essential details to be checked.
First, that the improper integral in the formula

(12) t* = cmla) / Q”'(ts) 7 ds 0<a<2;t>0),

which is the analogue of (7), actually converges for 0 < @ < 2. Second, that
the factor '

Cmla) = 1//:{1 — Q.(8)}s™ % ds

on the right side of (12) is defined and positive for 0 < @ < 2. Both facts
were obvious in the case of (7), for ;(r) = sin r/r enjoys the properties

-1 =) =1, %r) =1-—- 3"+

In order to establish similar properties of @a(r), we remark that by m-dimen-
sional polar coordinates we readily find

(13) Qu(r) = /; freon? sin™ % g dﬁ// sin™"? ¢

Expansion of the exponential integrand in its power series shows that Q.(r)
is a real and even entire function of . The remark that | .(r) | < @.(0) = 1
completes the argument.
Incidentally, (13) gives the expansion
2 4 (]

T T T .
1) () = 1= 5+ T i bmmEmEy T

from which the following expression in terms of Bessel functions of the first
kind becomes apparent

15) 2.() = r(%)(g)““’ Tion®  m=1,23 ).

5. To John von Neumann are due the following consequences of our previous
results.

THEOREM 3. Let O, denote the metric space obtained from the Hilbert space
by replacing its metricd(z,z’) = ||z — 2’ || by d,(z,2") = ||z — 2" | (0O <y = 1).

1. $, may be tmbedded in 9.

2. If0 <y =6 =1, O, may be imbedded in Ds .

The first statement is essentially equivalent to Theorem 1 on the basis of
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Menger’s theorem. Indeed, as any n + 1 points of $, may be imbedded in 9,
the whole of $, may thus be imbedded. This result may be stated analytically
as follows: There exists a function ¢,(z), defined for all z ¢ §, with ¢,(z) € D,
such that

len(@) = e(@) || = ||z — 2" || (ze9, 2" D).

As for the second statement, which contains the first as a special case (§ = 1),
consider §,/5. A function ¢,/(z) which performs its imbedding in § satisfies,
as just mentioned, the identity -

| evis(@) — evia(@) || = ||z — 2" || (e, 7' € D),
whence

lens(@) = ems@) II' = llz = 2" || (z e,z D)

Hence ¢,5(z) (z € ), which imbeds 9,5 in 9, at the same time performs the
imbedding of §,in ;.

6. Let us finally state and prove the following corollary of Theorem 2.
TaeorEMm 4. If Py, P,, - -, P, are distinct points of the euclidean space R, ,
the quadratic form

n

Z P.'P):I-;'xk (0 <a< 2)

t,k=0

18 non-singular and its canonical representation contains one positive and n negative
squares.

The sole difficulty consists in proving that the determinant

det ” P,-Pka ”o.n #= 0.
Let us show that

(16). sgn det || P;P:" [o.n = (—1)"  (nz1).

Now perform in R, an ordinary inversion by reciprocal radii with respect to the
sphere of center P, and radius r = 1, and let @, ---, @. be the transforms
of the points Py, ---, P, by this inversion.® Consider the determinant of
order n + 1

k=12 ---,n).

; 0 1
Q:Q:°

On the one hand we find (compare Blumenthal [1], p. 424) by suitable subtrac-
tions of lines and columns

D = (—l)n det H QlQr‘x + QlQla - QrQltx H }(T; s = 2; 3) ) n);

8 This inversion was suggested by the equivalence under inversion between the triangle
inequality and Ptolemy’s inequality of elementary geometry. See J. Hadamard [3],
PP 228-229.
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hence
(17) sgn D = (—1)"

by Theorem 2. On the other hand we have (since r = 1) by an elementary
property of inversion

QiQw = P;P./(PyP;-P,P;), (i,k=1,---,n),
whence
0 1 i P,P.°
D= a a a =(P0Pl.“P0Pn)_2a'—-—~ —o—k .
1 P,'Pk /PoP; ‘PoPk P()P.'a P,'Pka

Hence (17) implies (16). The theorem now follows from the classical theory
of the signature of quadratic forms.

A special case of Theorem 4, where « = 1 and Py, - - - , P, areequidistant
points on a straight line, was discussed from the point of view of Toeplitz
matrices by G. Szego [8]. :
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