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FUNCTIONS DIFFERENTIABLE ON THE BOUNDARIES OF REGIONS!
By HassLEr WHITNEY
(Received September 12, 1934)

1. Introduction. Let the function f(z,, --- , z,) be defined in the bounded
region? I of n-space E, and suppose f has continuous mt partial derivatives in
R, ie. f “is of class C™”’in R. If B is the boundary of R, how shall we decide
whether f is of class C in R 4- B? If the derivatives of f take on boundary
values on B, it would be natural to define the derivatives on B as the limit of
their values in k. But it is easy to construct a region R and a function f such
that the k'™ partial derivatives of f(0 < k¥ < m) are continuous in R + B,
whereas at a certain boundary point P of B, f is not continuous;® it seems
unreasonable in this case to say that f is of class C™in R + B.

If it is possible to extend the definition of f throughout a region containing
R + B so that it has continuous m" partial derivatives there, we may then
surely say that f is of class C™ in R + B;this is the definition we shall use.
We show in this note that, for certain regions, for a function to be of class C™
in the closed region, it is sufficient that the mt partial derivatives be continu-
ous on the boundary.

We shall use a one-dimensional notation, as in a paper by the author AE.
Thus fi(z) = fir..kw @, o+, 2a), (@ — 2) = (2] — )" -+ (2, — z,)n,
=10n... L ete. Wesetor =k + --- + kn. 7. is the distance between
the two points z and 2’. The fundamental definition is: f(z) = fo(z) is of class
Cmin A if functions fi(z) and Ri(z’; 2) (61 < m) exist in A such that

(1) iy = > LD gy g R

g Sm—oay
for each k(ox = m), and R, has the following property. Given the point z° of
A and an € > 0, there is a 6 > 0 such that if  and 2’ are any two points of A

within 6 of z°, then

(2) | Ri(z";2) | £ r7.0% e

zz!

! Presented to the American Mathematical Society, December 27, 1933.

? The restriction that R be bounded is made merely for simplicity; the theorem holds
equally well without it.

# We give an example with m = 1. In polar coordinates, let S be the spiral r = §-%
(6 2 0). We let R be a narrow region about S, and set f(z, y) = F(r, ) = log 6 for
those values of r which are approximately 3. Differentiating, we find af/dz = — 6}
sin 6 and 9f/dy = 67} cos 6 approximately in R. Hence 3f/dzx and 8f/dy — O at the
origin; but f — « there.

¢ Analytic extensions of differentiable functions defined in closed sets, Transactions of
the American Mathematical Society, Vol. 36 (1934), pp. 63-89.
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If f(x) has continuous mt* partial derivatives in R, it is of class C™in R, as we
see by setting fi, ... x, = 81+ +kn f/3x%1 ... 9z%» and using Taylor’s formula.
The converse also is true.

Lemma 1. If f(x) 4s of class C™ in the closed set A, then its definition can be
extended throughout E so it will be of class C™ there.

This is proved in AE, Lemma 2.

2. The property P. We shall say a point set A has the property P if there
is a number » such that any two points z and y of 4 are joined by a curve C
in 4 of length L < wr,,.

LemMA 2. If R has the property P, so has R + B.

Let z and y be points of R 4+ B, and suppose first that y is in B while z is
in R. Let y1, y2, - -+ be a sequence of points of R such that r,, < 27572 r,,.
As ryy, < 3r,/2, there is a curve C, joining z and y; of length < 3w r,,/2. In
general, 7, < 277! r.,, and hence there is a curve C; joining y, and y.s1 of
length at most 2! w r,,. From the curves Co, C, C2, - -- we pick out a curve
C joining z to y; its length is

L < 30r.,/2 4+ 220r,, 4+ 283 wry 4 « -« = 207y
If both z and y are in B, we take a point z’ with r,,, < r,,/2, find curves joining
it to z and y, of lengths L; < wr,, and L, < 3wr,, respectively, as above; from

these we pick out a curve C joining z and y, of length L < 4wr,,. Thus the
number v’ = 4w will do for R + B. Evidently any number »’ > o will do.

3. A remainder formula. We prove here that #f (1) holds on the rectifiable
curve C of length L with end points z* and z', then Ri(z’; 2*)(or < m) is given by
the Stieltjes integral®

) Rz = — / Ui (2(5)) — fons (2™)] dle? — 2(5))",

a l=m—ﬂk

where s denotes the length of that part of C between z* and the variable point
z(s). If we carry out the differentiation indicated, we may write this as asum
of contour integrals

’ -
@ Rla52% = D, D / esr @) — ferr @) ( ” ' (),
g =m—oa; UJ'—l
In the case n = 2, k = 0, this equation, written out in full, is
', y")
Roo(2', y'; 2%, y*) = E / (filz, y) — falx*, y*)]
* oyt

1+ j=m

(5)

(CAN S Ll (VU 7) L G ) LY (T ) L }
[ o et AT I

4 An example shows that no such formula holds for all curves.
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To prove (3), let 2° = z*, 2, ... , 2 = z’ be the end points of a subdivision
of C. If in equation (6.3) of AE we subtract fx(z’’) from both sides and change
z, z’, £’ to 1, z¢, 2’ respectively, we find

© R - R@iz) = ) BeEif D gy
o Sm—oy

’ : . . .
As Ri(z); z;) = 0, summing over 7 gives

@ R(5a%) = ) ; ERH,(x' ) (@ — 29

vlSm—ak =1

We show first that as the norm of the subdivision tends to zero, the terms on
the right with ¢; < m — oy tend to zero. By (2), given an n > 0, we can take
the norm so small that

| Ry(xh; 271) | < 7pucigim (o; < m).

As |z, — z} | £ L, we find for o, < m — o4

P

< nLvl E Toica i < nLvl+1.

=1

P
2 Ry (z%; 1) (2" — 29)*

=1

as 7 is arbitrary, the statement is proved.
Now take any ! with o; = m — ox. We have

2 Rip(zt; 27 1) (2’ — E (feri(z) — fip(z )] (2" — 29)*

=1 =1

p—1
= — D) Yerl@) — firs(@®)] (@' — 2! — (2" — 23,
=1
Putting this in (7) and passing to the limit as the norm of the subdivision tends
to zero, we obtain (3).
LemMa 3. Let f(x) be of class C™ on the curve C of length L with end points
z* and z'. If

(8) [ fe(@) — fu(@®) | < e (ox = m, z on C),
then
9) | Re(z’; 2*) | < n(m + 1)" L™ %k ¢ (ox < m).

5 The numerical factor n(m 4+ 1)* may of course be replaced by the factor

2 2 a —])’ T (m f:ak—l)!'

o ;=m—oy v—
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This follows at once from (4) when we note that the first sum contains at
most (m 4 1)" terms, the second sum contains n terms, and

z! (x/ _ x)l—i i
L TN

L
0

4. Functions of class C™ in R 4 B. One more lemma will lead us to the
nain theorem of the paper.

Lemma 4. If R has the property P and fi(x) is uniformly continuous in
R(a, = m), then fi(z) is also (ox < m).

Assuming this is true for values of k such that ¢x > s (0 < s < m), we shall
prove it for any k with ¢, = s. By hypothesis, fr4,(z) is uniformly continuous
for o; > 0; from (1), we see that it is sufficient to show that for every ¢ > 0
there is a & > 0 such that if z’ and z* are any two points of B with r,.,. < §,
then | Ri(z’; z*) | < e. Take 8’ < 1so that | fi(z) — fi(x*) | < ¢/[n(m + 1)7]
if 7,,» < 8’ and ox = m. Set § = 8'/w, and take any two points z’, z* of R
with 7., < 8. There is a curve C joining them of length L < wr,,. < &';if
z is on C, then r;,» < 8’. As L < 1, Lemma 3 gives | Ri(z’; z*) | < ¢, as
required.

THEOREM. Let the region K have the property P, and let f(zxi, - -- , x,.) be of
class C™ in R. If a8 " thnf/az% .. 3zkn (ky + - -+ + ko = m) can be defined
on the boundary B of R so that it is continuous in R + B, then the definition of
f can be extended throughout space so that it is of class C™ there.

By the last lemma, fi(z) can be defined in B so that it is continuous in
R + B (ox £ m). We must show that fo(r) = f(z) is of class C» in R + B;
the theorem then follows from Lemma 1. Given an ¢ > 0, take 6’ < 1 so that
[ fu(@) — fulz*) | < ¢/In(m + 1)"w'™] (o = m) if z and z* are in R + B and
Tre < 8';8et & = 8'/w’. Now let ¥’ and y* be any two points of R + B with
ryrye < 6. By Lemma 2, thereis a curve C’joining them of length L’ < w'r,,. < 8';
all of C’ except possibly its end points lies in R. If x’ and z* are interior points
of C’, and C, of length L, is that part of C’ joining them, then, as L < L’,
Lemma 3 gives

’. * m—cjk
le(:_,dx ) | < nlm + 1)r Lm—v € :
Tk ek n(m 4+ 1)me’™

As fi(z) is continuous in R 4 B, (1) shows that Ri(z’; z*) is also. Hence,
letting z” — y’ and z* — y* in the above inequality, we obtain (2) for Ri(y’; v*),
as required.

HARVARD UNIVERSITY.



