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ANALYTIC EXTENSIONS OF DIFFERENTIABLE
FUNCTIONS DEFINED IN CLOSED SETS*

BY
HASSLER WHITNEY}

I. DIFFERENTIABLE FUNCTIONS IN CLOSED SETS

1. Introduction. Let 4 be a closed set, bounded or unbounded, in eu-
clidean n-space E, and let f(x) be a function defined and continuous in 4.
It is well known that this function can be extended so as to be continuous
throughout E.} If 4 satisfies certain conditions, the solution of the Dirichlet
problem is a function harmonic in E—4 and taking on the given boundary
values in 4. Two questions which arise are the following: Is there always a
function differentiable, or perhaps analytic, in E—A4, and taking on the given
values in A? If the given function f(x) is in some sense differentiable in 4,
can the extension F(x) be made differentiable to the same order through-
out E?

These questions are answered in the affirmative in Theorem I. We use a
definition of the derivatives of a function in a general set which arises nat-
urally from a consideration of Taylor’s formula. In Part II, a differentiable
extension of f(x) is found, whether f(x) is differentiable to finite or infinite
order. Part ITI is devoted to some general approximation theorems. It is well
known that a continuous function in a bounded closed set can be approxi-
mated uniformly (together with any finite number of derivatives) by poly-
nomials; we show that functions defined in open sets may be approximated
(together with derivatives) by analytic functions, the approximation being
closer and closer as we approach the boundary of the set. This theorem, to-
gether with the results of Part II, furnish an immediate proof of Theorem I.
In Part IV we give some extensions of Theorem I; in particular, we show that

* Presented to the Society, December 29, 1932; received by the editors March 29, 1933, and,
after revision, May 2, 1933.

t National Research Fellow.

I See references in a paper by P. Urysohn, Mathematische Annalen, vol. 94 (1925), p. 293,
footnote 51.

A continuous extension the author has not seen in the literature may be given as follows; we
assume for simplicity that 4 is bounded. Let %(r) (»=0) be a continuous and monotone increasing
function such that #(0)=0, and if x and y are any two points of 4 whose distance apart is 7, then
| (@) —7(») | £k(r2y). For any points x of E and v of 4, set H(x, y)=f()—h(rsy); then if x isin 4,
H(x,y)<f (x). The continuous extension of f (x) is F (%), which at each point x of E equals the maxi-
mum of H(x, y) as y varies over 4.
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64 HASSLER WHITNEY [January

the extension of f(x) may be made analytic at the isolated points of 4. The-
orem III includes all preceding results but Lemma 7.

2. Notations. We shall write all equations involving # variables as if
there were but a single variable present. For instance, we write

fo(x) for fo o(xl, Y xn))

hrtethn

————————— e e / o« 0 ’
axlkl LR axnkn f(xl ’ » ¥n )’

() o () ()

for LRI 5
l I In
etc. For any #-fold subscript %, we put

ok =kt o+ k.

Note that o4 =01+01. 7., will always denote the distance between x and y
(unless # and y are complex). As an example, (3.1) below is short for

D, f(x") for

fk1'°'kn(xl,1 ) xﬂ,)

Z fk1+11.' . '-kn+ln(x1; Ty Xn) , ,

(af — @)t (a0 — @)

Lt Ll - 1!
Sme(kyde - +kn)

A Rigeotn(®d o0y ®a 521,07 0 5 ®n).

3. Differentiable functions in subsets of E. Let f(x) be defined in the set
A, and let m be an integer 0. We say f(x) =fo(x) s of class C™ in A in terms
of the functions fi(x) (cx<m) if the functions fi(x) are defined in 4 for all
n-fold subscripts & with ¢, <m, and

*

e

3.1) fi(@') = (&' — 2)' + Ri(s; %)

c)Sm—oyp 7!

for each fi(x) (o <m), where Ry(x’; x) has the following property. Given any
point x° of 4 and any >0, there is a § >0 such that if x and &’ are any two
points of 4 with 7,,,<8 and 7,,,,<9, then
(3.2) | Ri(#'; %) | < 720r €.

One might define the derivatives of a function at the points of a set B,
when the function is defined in a larger set 4. We shall not do this here.

If m=0, (3.1) and (3.2) state merely that f(x) is continuous. Note that
the conditions are satisfied automatically at all isolated points of 4, no mat-
ter how the fi(x) are defined there.
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It is easily seen that the fx(x) are continuous in a neighborhood of each
point of 4, and are thus bounded there. From this we prove that if f(x) is of
class C™in 4 in terms of the fi(x) (ox <m), then it is of class C™ in 4 (m’ <m)
in terms of the fi(x) (cx<m’).

Any function we shall say is of class C—'in 4. f(x) is of class C* in 4 in
terms of the fi(x) (defined for all k) if it is of class C™ in A4 in terms of the
fr(x) (ox=m) for each m.

Suppose f(x) is defined throughout the region R, and is of class C™ in
terms of the fi(x) (cx<m). Then putting x=(x1, - - -, ®a), &' =(xs, - - -,
TnFAxn, - - -, %), (3.1) gives

(33) fkl"'kn(x,) = fkl"’kn(x) +fklv"'vkh+1v"'vk,.(x)Axh

(k)
+ Rkl...k”(x’; x) .

(provided o; <m), where R i, (&' ®)/AR—0 as Ah—0, which shows that
i}

(3.4) —fklkn(x) =fkl‘...,kh+1‘...,k”(x) (G'k < m)
axh

in R; thus in this case, f(x) is of class C™ in the ordinary sense, and the f(x)
are the partial derivatives of f(x). The converse is true, by Taylor’s Theorem.
4. The main theorem of the present paper is the following:

THEOREM 1. Let A be a closed subset of E, and let f(x) =fo(x) be of class C™
(m finite or infinite) in A in terms of the fi(x) (cr=<m). Then there is a function
F(x) of class C™ in E in the ordinary sense, such that

(1) F(x)=f(x) in 4,

(2) DyF(x)=fr(x) in A (ex<m),

(3) F(x) is analytic in E—A.}

Of course (2) includes (1).

No such theorem holds if we leave out the uniformity condition on
Ri(x'; %), i.e. if we assume merely that for any x and € >0 there is a § >0 such
that if 7,,, <8, then | Ry(2'; %) | <r2 "*. The following example shows this.
Let A be the set of points (using one variable) =0, 1/2* and 1/2:+41/2%
(s=1,2, - - -).Setf(x) =0at x=0and 1/2°, and f(x) =1/2% at the remaining
points. Set fi(x) =0 in 4. The above condition is satisfied, but there is no
extension of f(x) which has a continuous first derivative.

5. The following lemma will be needed; its proof is elementary.

t It is seen from the proof in §16 that F(x) is analytic in a complex region with the following

property. If x is a point of E—4 distant 3p from 4, then the region contains all points within a dis-
tance p of x.
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LEMMA 1. Let w(2) be a continuous function of one variable defined throughout
an interval containing %, let A* be a closed set in this interval, and let wi be a
fixed number. Suppose that for every e >0 there is a 6 >0 such that

(1) if z is in A* and | z—20| <8, then
| w(z) — w(z0)/(z — 20) — wd | < ¢;
(2) if 2 is mot in A* and | 3—320| <8, then the derivative w’(z) exists and
| w'(z) — wd | <e.
Then w(z) has a derivative at 2o, and w’ () =wy .
II. DIFFERENTIABLE EXTENSIONS

6. The functions ¥;(x’; x). We shall make use of functions defined as
follows for x in 4 and «’ in"E (m finite):

6.1) s = x 19

(& — x)! (ox = m);
o Sm—oy I

¥i(x'; x) is the value at 2’ of the polynomial of degree at most 7 —g; which

approximates the function fx(x) to the (m —o)th order at . Keeping « fixed,

it is a polynomial in «’, given by Taylor’s formula in terms of its value and

derivatives at x. In terms of these functions, (3.1) becomes

(6.2) (@) = du(a’; x) + Ri(a'; x) (or < m).

The Ith derivative of the function of 2’ i(x’; x) at & is Yr(x’; %) ; if we
express ¥i(x'"; x) by Taylor’s formula in terms of its value and derivatives

at x’, we obtain
Yira(a'; x)
", = "o N1
w0 = 2 D - )

P A Rl

The definition of ¥x(x’’; ") in conjunction with this identity gives, for any
points x and #’ in 4 and «’’ in E,

(e &) = 2 “‘—“fk+;(,x) (& — &)’
1 :
"o N\ .
(6 3) — ; (x l' x) [E fk+l;:’7(x) (x[ — x),_l_ Rk+l(x,; x)]
Rk ,;
AR SCIE Y
1 .
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7. The function ©(x). Let R be the region given by the inequalities
| 2| <1 (k=1, - - -, m), let R’ be R minus the origin, and let R* be the
boundary of R. Define the functions 6, 6’, © as follows:

(7.1) 0x) =21 —x2) - - -1 —x.2) —1in R/,
(7.2) 0'(x) = —ﬂ in R/,
1 —62(x)
(7.3) 0(x) = { e in R,
0 in E — R.

It is seen that —1<6(x) <+1, 8(x)—+1 as x—0, and 6(x)>—1 as x—R*;
hence 6'(x)—>+» as x—0 and 6'(x)—>—o as x—R* Consequently
O(x)—+ o to infinite order as x—0 and O(x)—0 to infinite order as x—R¥;
also ©(x) is of class C* for x>0. If ©’(x) =1/0(x) in R’ and ©’(x) =0 for
x=0, then ©’(x) is of class C* in R.

8. The subdivision of £E—A. Divide E into #n-cubes of side 1, and let K,
be the set of all these cubes whose distances from A are at least 6n'/2? (if
there are any). In general, having constructed the cubes of K,_;, divide each
cube which is now present but is not in K¢+ - - - 4+K,_; into 2" cubes of
side 1/2¢, and let K, be the set of all these cubes whose distances from A4
are at least 6n'/2/2¢ (if there are any).

The distance from any cube C of K, to 4 is <18x!/2/2: (s=1); for it lies
in a cube C’ of the previous subdivision which does not belong to K, ;, and
whose distance from A4 is therefore <6n/2/2+-1,

Any cube C of K, is separated from any cube C’ of K,,, by at least four
cubes of K,;;. For the distance from C to 4 is =12#%/2/2++1, the distance
from any point of C’ to 4 is <9xn'/2/2¢+ and the diameter of any cube of
K,y is 022/ 2041,

9. The functions ¢,(x). We introduce the following definitions:

vyl 9% - - -is the set of all vertices of cubes of Ko+K;+ - - -, arranged
in a sequence.

7, is the distance from y,to 4 (v»=1, 2, - - - ).

¥ is a fixed point of 4 whose distance from y* is 7,.

b, is the length of side of the largest cube of K¢+ Ki+ - - - with y as a
vertex.

I, is the set of points x for which | x,—y»’ |<b, (k=1, - - -, m); B, isits
boundary.
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X — yr Xn — Yo’ .
7ry(x)=®( ;, ;---;T) in E— y
Xy — v Xn — Yo’
! () =®'(—1——£, R ——y—) in I, - B,
b, b,
(%) .
= — in E—A4,x#= 9y, 9% ..,
2am(x)
$u(x) =
1, x =y,
0, x =y (u#v).

Suppose y* is a given point of E— A4, distant §x from 4 (or from a given
point 2° of 4), and suppose y* lies in the cube C of K,. Then if I,, with center
¥, has points in common with C, and y is distant d, from A4 (or from 29),

(9.1) 80/2 < d, < 20.

To prove this, say C’ is a largest cube with y” as a vertex, and C’ is in Kj;
then ¢=s—1. The diameter of C’is #*/2/2¢; hence 9y is distant at most #%/2/2¢
<2n12/2¢ from any point of I,. As the diameter of C is #/2/2¢, y* is distant
at most 3nY2/2¢ from y*. But 6+=6#%'/2/2%, and the inequalities follow.

Each function =,(x) is >0 in I, — B,—%" and only there; it approaches «
and O to infinite order as x approaches ¥ and B, respectively. Each point %
of E— A is interior to some cube I,, hence ,(x) >0 for some »,and >_m(x) >0
in E— A, justifying the definition of ¢,(x). Note that ¢,(x) is 0 in I,—B,
and only there; also

9.2) Y (x)=1 in E—A4.

We shall show that ¢,(x) is of class C* in E— A. This is obvious at points
x5%9”. Consider a small neighborhood U, of y*, N#v. ! (x) is of class C* in
Uy; hence the same is true of ¢,=m/m,/(1+m! Y uam) in Us. Similarly
¢,=1/(14m> 0m,) is of class C* in a small neighborhood U, of y*; the
statement follows.

10. The derivatives of the ¢,(x). Consider two (closed) cubes C and C’ of
Ko+Ki+ - - -,andlet J and J' be those sets I, with points in C and C’ re-
spectively. We shall say C and C’ are of the same type if the sets in J' can be
brought into coincidence with the sets in J by a translation and stretching
of the axes, that is, if the structure of the subdivision about C’ is the same
as that about C. There are but a finite number, say d, of possible types of
cubes, and for some number ¢, there are at most ¢ sets I, with points in any
given cube C.
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Take a fixed cube C of K, and a fixed k. As each ¢,(x) is of class C*,
Dy¢,(x) is bounded in C; there are only a finite number of these functions 0
in C, and hence they are uniformly bounded:

| Digy(%) | < Nx(C) in C =12---).

Consider now any cube C’ of any K, and let C be a (perhaps hypothetical)
cube of K, of the same type as C'. If I, - - - , I, are the sets I, with points
in C’,let I,, - - -, I, be the corresponding sets with points in C; the latter
set of sets is carried into the former by a translation of the axes and a stretch-
ing by a factor 1/2¢. Each function #», corresponding to I goes thereby into
the function

brg (%) = drg[yhe + 2:(x — 2A)]
corresponding to I, ;. Therefore, differentiating o times with respect to «,
Dkq‘”‘q’(x) = zkakd’)\q[y)‘q + Zc(x - y)‘q,)]
for x in C’, and hence
| Digo(x) | < 25N 4(C) in C’ v=1,2,---),

as ¢,(x)=0in C’ for %N/, - - -, N\/. Now the constants N;(C) take on at
most d distinct values for a fixed k; if we let V; be the largest of these, we can
state: Given any n-fold set of numbers k, there is a number N, such that if C is
any cube of K,, then

(10.1) | Dig,(x)| < 2N, in C w=12---).
11. A differentiable extension of f(x), 7 finite. We are now in a position to
prove, for m finite,

LeMMA 2. Under the conditions of Theorem 1, there is a function g(x) of class
C* in E—A, having the properties (1) and (2) of Theorem 1.

Foreachr (v=1,2, - - -) there are functions ¢,(x) and ¥ (x; 2*) = ¥o(x; #*) ;
we put
(11.1) g(x) = { Zy:‘ﬁv(x)‘l/(x; %) in E— A4,
f(x) in 4.

As the ¢,(x) and ¥(x; 27) are of class C* in E— 4, the same is true of g(x).
The function g(x)=f(x) is of class C™ at all inner points of 4, by §3. It re-
mains to show that Dg(x) exists, equals fi(x), and is continuous, at all
boundary points of 4, for o <m.
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Take a fixed boundary point «° of 4, and any ¢, 0 <e<1. Take
1 < ¢/{2c[(m + 2)!]*(108%/2)»N} and n < €/6,

where N is the largest of the numbers N for o, <m. Take M >| fi(®) |
(6x<m, xin A and 7,» <1), and take

6 <e/{6(m~+1)»M} and 6 < 1

so small that (3.2) holds at the point x° with e replaced by 5. Take now any
point y* of E—A within a distance §/4 of «°; we shall show that

(11.2) | Dig(y*) — fu(a") | < e (ox < m).

Say the distance from y* to 4 is 8x/4 (then 6% <9§), and let ™ be a point of
A distant 8x/4 from y*. Consider the sum in (6.1) with " and « replaced by
x* and a° respectively; as each /5 is <m, it contains at most (m+1)* terms.
If we take the term with /;= - - - =1,=0 to the other side, there is in each
remaining term a factor (w,* —,%) with 1,>0. As each | a* —2,0 | is <8<1,
we find

| Wa(a¥; 2%) — fu(2®) | < (m + 1)"M5 < ¢/6.
But also |Ri(x*; 4% | <7< ¢€/6; hence, using (6.2),
| fu(a®) = fi(a®) | < ¢/3.
Similarly we see that |@i(y*; %) —fu(2*) | <e€/6; therefore
(11.3) | w(y*; 2%) — fu(a®) | < ¢/2 (0% < m).

Say y* lies in the cube C of K,, and let I, - - -, I, be those sets I with
points in C. Each corresponding point y*« is distant <§/2 from °, by (9.1),
and hence each corresponding point 2*« is distant <4 from °. As the same is
true of x2*, (3.2) gives

(11.4) | Ri(2; ) | < 1 ' =2y 0y N,
Set
Snn(®) = Yr(x; 27) — Yu(w; %) (=N, -, M)

then as 7,7,* <8x and | a5 —ay’ | <8 for #in C, | (x—a*)!| <8, and (6.3) and
(11.4) give

(11.5) | 6@ | < (m 4+ D)maem iy in € (p =Ny, -+, No).
Using (9.2), we see that

(11.6) g(x) = ¥(x; 2*) + 2 &, (®)5r0(x) in C.
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As Dwp(x; #*) =yi(x; 2°) and therefore Dif,.0(x) = &;2(x),
¢ k
Dig(x) = Yu(w; o) + 2, Z( Z>Dz¢x.(x)§'>\,;k—z(x) in C.

(10.1) and (11.5) give, as ¢=<c¢ (see §10) and

()
= ml,
In

(11.7) | Dag(x) — u(x; &) | < Dc[(m + 1)1]20: N5, m—oktoig in C.
l

Now the distance from C to 4 is >0x/6; also, as C is in K,, this distance is
<18n'2/2:. Hence 18#n12/2:>84/6, or, 2°<108x2/§, . This gives, as cr<m
and %<1,

(11.8) | Dig(x) — ¥u(x; &*) | < c[(m + 2)1]7(108n1/2) nNoy ™k g < /2

in C, and in particular, at y*. This inequality together with (11.3) gives
(11.2), as required.

The proof can now be completed with the aid of Lemma 1. (11.2) with
k=0 shows that g(x) is continuous throughout E. Take any number
k=(ky, - - -, k) with o,<m, and put &'=(ky, - - -, kx+1, - - -, kn). As-
suming that D;g(x) is continuous in E, we shall show that D;.g(x) exists and
is continuous in E. Take any boundary point %= (2", - - -, #.°) and put
zo=24", w(z)=w(xn)=Drg(x:% - - -, Xp, - + -, 27, wd =fw(2?). Let A* be
the set of points of 4 for which x,=%,° (p52h). (3.3) with x=2° and Az,
=x,—x5%, and (11.2) with % replaced by &', show that the conditions of the
lemma are fulfilled; hence dw(zo)/0x5=Di-g(2°) exists and equals fi («°).
(11.2) shows that D;.g(x°) is continuous at 2°. Therefore g(x) is of class C™
in E.

12. A differentiable extension of f(x), m infinite. We now prove Lemma 2
for the case m = . For any given m, let Ym;i(x’; ) (o <m) be the function
given by the right hand side of (6.1). Choose the axes so that the origin falls
on a point of 4. Let S, be the set of all points of E whose distances from the
origin are <27, p=1,2, - - - . Let M, be the maximum of | fi(x) | for or<p
and xin 4 -S,, and let N® be the maximum of Ny for o < p. Choose for each
positive integer p a number §, such that

bp < 1/{227+1c[(p + 2)U]#(36n12) PN D M i1}, 6, < 6p1/2.

The extension g (x) of f(x) is determined as follows. Given any number
v, determine the number v, so that 6,1 =7, <3§,, (see §9); set v, =0 if ,> 8.
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Put

2 bu(FWmz0(x; #*) in E — 4,
(12.1) g (%) = { ’

f(x) in 4.

Given any fixed k£, we shall find an inequality similar to (11.2) for
Dig(x). Let g (x) be the extension of f(x) of class C™ given by Lemma 2
(m=1, 2, - - -). Given any boundary point «° of 4 and any ¢>0, choose
p=0i+2 so that &° lies in S, and so that 1/2» <e. Take § <8, so that (11.2)
with g replaced by g¢» will hold for our given % and any y* of E—A4 within
0 of 2°; we show next that for any such y*,

(12.2) | Dig ™ (y*) — Digtw (y*) | < e.

Choose g so that 8,41 < 6% <8,, where 8x is the distance from y* to 4 ; then
gq2p. Define C, Ky, L1, - - -, I, as in §11. Note that for »=any Az, 8,41
=7,<20<20,<8p1, hence v,4+1>p—1, and thus v, >p—2=0y. Set

(12.3) E(x) = ¥n0(x; 27) = Yop0(x; 27) (=N, 0, N);
using (12.1) and (11.1), we see that

t
(12.4) g (%) = gP(x) + 2o (0)r(x) in C.
u=1
Now D &,(x) =v,;i(x; ") —¥oi(x; 7). If we replace £ by j in (6.1), then
those and only those terms in the sum with ¢;<m—¢; occur. Replacing m
by v, and o successively and subtracting, we have
v fa(a)

(12.5) Di(x) = 2

0 =0k—0;+1 “

Now 7,>8x/2, by (9.1), hence 7,> 8,42, and thus v, <g4+1 (v=\y, - - -, \));
there are therefore less than (¢+42)» terms in the sum, and in each term,
.0,+0,=g+1. It follows that |f;;i(2") | <M, in each term. Also | #n—aw |
<20%<28, and 0 =01 —0;+1 in each term; hence

| Dit(0)| < (g 4 2)"M g4r20 8,771,
in C. This with (12.4) gives

(x — «*)! in C.

‘ k
| Dig)(x) — Dig® (%) | = 2 Z(J.)le-mu(x)llD,-m(x)|

u=1 i

k
< Z( .>2“""“”"N @D (q + 2)"M g4127H15,747id
i \NJ
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in C. Now the distance from C to 4 is >8%/2 and is <18#Y2/2¢; hence
20 <36m''%/84. Also 7, < p <q; therefore

| Dig™ (%) — Dirglw (%) | < ¢[(g + 2)!]7(36n1/2) aN (DI oy 29H5,
<1/2¢< e

in C, and in particular, at y* proving (12.2). Using (11.2), we find
| Dig™ (y*) —fi(a?) | <2€ for any point y* of E—A within & of 2. Again we
can apply Lemma 1 and show that D¢ (x) exists and is continuous through-
out E. As this is true for every %, the proof is complete.

13. We prove next a combined extension and approximation theorem.

LEMMA 3. Let f(x) be of class C™ (m finite) in E, with Dif (x) =fi(x) (or Sm)
there, and let fi(x) (m<cr<m', m'>m finite or infinite) be defined in the
closed set A so that f(x) (considered now only in A) is of class C™ there. Then
for an arbitrary € >0 there is a function g(x) which is of class C™ in E, of class
C™ in a neighborhood of A, and equals f(x) outside another neighborhood of A,
such that

(12.6)

(13.1) Dig(x) = fu(x) in 4 (op = m),
and
(13.2) | Dig(x) — Dif(2)| <€ in E (ox < m).

Let f'(x) be the extension of class C™ of the values of f(x) in 4 given by
the last lemma, and put {(x) =f'(x) —f(x); then {(x) is of class C™ in E, and

Dii(x) =01in 4 (ox S m).
Set n=¢/{c[(m+1)!]"(36n?)»N} (N=max N, for ¢ <m). As {(x) is of

class C™ and D;{(x) vanishes in 4 (o <m), we can find an open set R con-
taining 4 so that if y is any point of R—4, at a distance é from 4, then

| Dit(y) | < nom—e (0% < m).

Let vy, vy, - - - be those numbers such that I, lies whollyin R (p=1,2, - - -).
We set

(13.3) §(@) = /(=) + £(2) 3 dy(2) in E — 4,

and g(x) =f(x) in A. As D _¢,,(x) =1 in an open set surrounding 4, g(x) =" (x)
there. As D ¢,,(x) =0 in E—R, g(x) =f(x) there. The statements about the
class of g(x) are true. To show that (13.2) holds, let y be a point of R—A4,
distant & from 4 ; then, defining C, K,, I,, - - -, I, as in the previous lemma,
we have
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k
| Die(y) = Dif3)| = 3 };( l)lDz%p()’)HDk—zi‘(}’)l

< ¢ Y (ml)r2snNsm—ortoy < e (or = m).
l

14. We close this section with a theorem concerning the isolated points
of A. Define o, as follows:

(14.1) _ { m if m is finite
' * T A pif mis infinite (b=1,2--).
LemuMA 4. Consider the closed set A =A"+a1+ax+ - - -, where ay, ag, - - -

are isolated points (then A’ is closed), and let m be finite or infinite. Let fi(x) be
defined in A’ for oy <m and at each a, for all k, so that f(x) is of class C™in A
in terms of the f1(x) (o1 <m). Then there is a function g'(x) of class C* in E—A’
and of class C™ in E, such that

(14.2) Dyg'(x) = fu(x) in A’ for o = m and at each a, for all k.

Let g(x) be the extension of f(x) of class C™ given by Lemma 2. Let
Ui, Us, - - - be neighborhoods of a1, @s, - - -, chosen so that each is at a
positive distance from each other and from A’. If m is finite, we alter g(x)
in Uy, next in Uy, etc., by means of the last lemmat, so that the new function
g’ (x) will take on the required derivatives at a;+as+ - - -, and so that

(14.3) | Dig/(x) — Dig(e)| < 1/pin U, (ok S ey p=1,2,-- ).

(14.2) is an immediate consequence of this inequality and Lemma 1.

III. APPROXIMATION THEOREMS

15. We prove first the following extension of the Weierstrass approxima-
tion theorem.} )

LeMMA 5. Let g(x) be of class C™ in E (m finite), and let S be a bounded
closed set in E.§ Then for each >0 there exists a function G(x) analytic m_jE
and such that

(15.1) | DiG(x) — Dig(x)| < ein S (or S m).
Let Ry be the set of points distant at most b from the origin (bz0). Con-
sider the n-tuple integral

+ We use the last lemma with 4 replaced by @, and m’ by «.

1 Compare de la Vallée Poussin, Cours d’Analyse, vol. II, 2d edition, 1912, pp. 126-137.

§ Itis sufficient that g(x) be defined over S, for we can then extend its definition over E, by
Lemma 2.
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(15.2) &) = TfR erhudy = Tf e fe‘(”12+"‘+”n2)dy1 e dya,
b

where T is chosen so that ®() =1; then 0= () =1 for all 4. If we replace
y by ky and b by «b, we see that

(15.3) &(kd) = TK"f e<rudy.-
Ry

Let v(x) be a function =1 in S, =0 outside some neighborhood of .S, and of
class C* in E, such that Dsv(x) =0 in S for all k. (Such a function may be
found for instance by the aid of Lemma 2.) Put g’(x) =v(x)g(x), and

(15.4) G(x) = TK"f g,(y)e—ltzfzzy dy’
E

where k will be chosen later; G(x) is analytic in E. As 7., is a function of y —x
alone, differentiating under the integral sign gives

DG(x) = Tk f g (De@e**rdy = (— 1) Tk f g (9D We'riu dy,
E E

where Di® and D™ denote differentiation with respect to x and y respec-
tively. Integrating by parts o, times gives

(15.5) DuG(x) = Tk f Dig' ()" dy.
E

As () =1, we see that

(15.6)  DiG(x) = Dug'(x) = Tr [ [Dag'(y) = Dug' ()} .
E

Take M so large that
(15.7) | Dig’(x)| < M in E (ox < m).

The functions D;g’(x) are uniformly continuous in E; hence there is a § >0
such that

(15.8) | Dig'(y) — Dug'(%) | < /2 (rzy < 8, 04 < m).
Take « so large that
(15.9) 1 — &) < e/(4M).

For a given x, let U consist of all points within § of x; then if J, and J, are
formed by replacing the domain of integration on the right hand side of
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(15.6) by U and E— U respectively, we have, using (15.3),

|J|<Tfe ”d—eq>(5)<e
n _e-‘xfz —_ — —
1 K U2 v ay 2 K 2)

| 72| < Txk» f WM dy = 2M[1 — ()] < —
E-U 2

and hence | DiG(x) —Dyg’ (%) | <e in E(or<m), which gives (15.1).
G(x) may of course be replaced by a polynomial if desired.
16. The above lemma can be generalized as follows.

LeMMA 6. Let R be an open set and let Ry, R, - - - be bounded open sets
(some of which may be void) whose sum is R, such that each R,=R, plus bound-
ary is in Rpy1. Then if g(x) is defined and of class C™ (m finite or infinite) in
R, and €= &= - - - are given positive numbers, there is an analytic function
G(x) defined in R such that
(16.1) | DiG(x) — Dig(2)| < ep in R—Rp, (ox S app=1,2,---).

o, is defined in (14.1). Note that, if Ry, - - -, R, are void, then
(16.2) | DyG(x) — Dig(x)| < €g in R (or £ ap).

Consider the closed set R, 1+ (Rp1—Rp) +(E—Rpi2) =05 +0,+07";
if in Lemma 2 we replace 4 by this set and f(x) by a function =1in Q, and -
=01in Q/ +Q;’, we find a function u,(x) for each p, of class C* in E, such
that
1in Q,,
0inQ; +0Q5;
(If Rpy1is void, we put #,(x) =0; if R,y is not void but R, is void, we have
#,(x) =01in Q' and =1in R,41.) Let Z,=1 be such a number that

(16.4) | Diuy(a) | <Z,inE (xS app=1,2,-").

(16.3)  uy(x) = { Diuy(x) = 0in Q) 4+ Qp + Qp' (o1 > 0).

We define successively analytic functions Gi(x), Ga(x), - - -, by the fol-
lowing formula:

aaaGmw=n;fmwmw%%a@H~~+ﬁﬂwnk¢%@.

(For p =1, the factor in brackets is simply g(3).) «, is chosen so that, if we set
(16.6) Hy(x) = u,(0)[g(x) = {Gi(®) + - - +Goa(@)}],
then
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(16.7) | DiGy(x) — DiH ()| < B = epsr/ {2772 (g + 1)1] Zps1}
inRpp1 (0% S app1)

(see Lemma 5); we shall restrict «, further later. Remembering the definition
of u,(x), we see that (16.7) with (16.6) gives

(16.8) | Dig(x) — Di{Ga(x) + - - - +Gp(2) } | <87 < &/2inQp(0x = apta).

Differentiating H,(x) and using (16.4) and (16.8) with p replaced by p—1,
we see that (compare the derivation of (11.7))

I Dka(x)l < [(O‘p + 1)!]anBp—-l' = €,/271in Qps (ok = ay).

As u,(x) and its derivatives are 0 in R,_y, this holds in R,_; also; hence, using
(16.7), we have

(16.9) | DiG () I < /27 in R, (or = ap).
We set now
(16.10) G(x) = Gi(x) +Go(®) + - - - ;

this is the desired approximation to g(x). To prove this, we see first from
(16.9) that D;[Gi(x)+ - - - +G»(x)] converges uniformly in any bounded
closed subset of R (¢:=<m); hence G(x) is defined in R, and

(16.11) DG(x) = DiGi(x) + DiGa(x) + - -+ in R (ox < m).
Next (16.9) shows that
(16.12) | DiGpi1(#) + DiGpia(x) + + + + | < ep1/27 + €ppa/272 - -«

' S (1/22 41/ + -+ - ) = ¢/2in Rppa (0% £ apr);

this with (16.8) gives | D:G(%) —Dig(%) | <€, in Qp(cr=a,), proving (16.1).

It remains to be shown that G(x) is analytic in R. To this end we extend
the definition of each G,(x) to complex values of x=(x{ 4idx{’, - -,
%, +ix."), using (16.5) still. Consider the analytic function of

reg = 2 —w)? = 20 — wd) il — =)
as ¥’ =0 in (16.5), the domain of integration being real,
Rrzf) = 22[(i — wd)? — ]

Take any point 4° of R and let U be the complex region of radius p about «?,
where p is so small that the real points in the complex region of radius 3p
about x° lie in some R, ; we take ¢ so that 3p2>1/2¢. Nowif p >¢,xisin U, and
yisin R—R,_;, then Y 22 <p?and > (y/ —# )22 4p? and hence

ER(rzyz) > 3p2.
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Also H,(y) vanishes in R, and in E—R,,2 for p>q; therefore if M, is the
maximum of | H,(y) | (note that H,(y) is determined before we determine
ky) and V, is the volume of R, (p=1,2, - - -),

Gy(a" + ix") | < Tx"f M esx™’dy
(16. 13) | ? I ? Ryi2—Rp 3 !
< T T MV oo
for  in U and p>g¢. Hence if we choose «, successively for p=1,2, - - - | s0

that this quantity is <1/27 (and so that (16.7) holds), then the series in
(16.10), when defined for complex values of x, converges uniformly in a com-
plex neighborhood of any point of R. Therefore the function G(x) is analytic
in R, completing the proof.

17. The numbers «, as chosen above depend not only on the functions
u,(x) but also on the function g(x). Under certain restrictions, we can take
them independent of g(x), as follows.

LemMA 7. Let the open sets Ry, Ry, - - -, the numbers e, €, + - - , and the
functions ui(x), us(x), - - - be given as in Lemma 6; let Ai(r), Aq(r), - - - be
a sequence of positive continuous functions defined for r >0, such that A,(r)—0
as r—0 and Apyi(r) 2ZA,(r); let a be a point of R, and M a positive number.

Then there is a sequence of numbers ki, ko, « + + , with the following property.
If g(x) is any function of class C™ defined in R such that | g(a) | <M and
(17.1) | Dig(s) — Dag(®) | < Ap(raz) in R,  (ox S ap p=1,2,--),

and if G(x) is defined in terms of g(x) as in the previous lemma, using the above
numbers k,, then G(x) is analytic in R and (16.1) holds.

As the #’s and their derivatives are uniformly continuous in E, there are
functions T',(x) of the same sort as the A’s above such that

(17.2) | Dauy(2") — Dith(2) | < Tp(722) in E (04 S apyr, p = 1,2, -+ ).

The conditions on g(x) imply that for some M{’, | Dig(x) | <My in R
(O'k-_-<_a2).1' Say

| Diuy(x)| <27 in E (06 < app, p=1,2,---).
Then as #1(x) =0 in R— R;, we have
I D,-ul(x')ng(x’) - D,ul(x)ng(x) l = Pl("zz')Ml” + Zl' As("zz’)

t If ds is the diameter of Rj, then [g(x)|<M'+A1(da) in Rs. Now take any &/ = (&, + + - , ba—1,
*0*, k) and k=(ky, - - -, ku)(0<orSas). Let «'2’ be a line segment parallel to the xs-axis and

lying wholly in R;; set r= I ! —xn I .As le'g(x’ "Y—Dyrg(x") ] <Ai(7), the law of the mean gives, for
some point x* of x'x"/, ]Dk(x*)[ < Ai(r)/r. Hence ]Dk(x)l <A(r)/r+A2(ds) in R; (0<or=<as).
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for ¢;<os and o< and any x and «’ in E. Hence if we put
AF(r) = [(ea + MM [TaD ML + Z{As(n)],
we shall have, on differentiating H;(x) =u.(x)g(x),
(17.3) | DiH1(«") — DiHi(%) | £ AF(rzer) in E (or < ap).

Also | DiHy(%) | < [(ee+1)!]"Z{ M{’ in Rs and =0 in E—R; (6x<av); thus
inequalities corresponding to (15.7) and (15.8) hold for H.(x). Hence if we
take ;>0 so that

Af(r) < B{/2 (r < é1),
and take k; so that
1 — ®(kidy) < B! /{4[(ae + D]'Z{ M{'},

then if we form Gi(x) for any admissible g(x) by means of (16.5), (16.7) will
hold with p =1; we take «; large enough so that the right hand side of (16.13)
with p=1 will be <1/2.

If we differentiate (16.5) with p =1 o times (o <m), we derive an equa-
tion similar to (15.5); forming this for x=x and x =2’ and subtracting, we
find (changing y to y+x’—x in one equation)

(17.4) DiG1(2") — DiyG1(x) = Tk f [DiH\(y + &' — x) — DkHl(y)]e"‘lszydy.
E

This with (17.3), (15.3), and the definition of ®(x) gives
(17.5) | DiGy(2") — DiGi(x) | < A#(r,s) in E (or < as).

Assume now we have defined functions A, *(r) and have chosen numbers
Kk, SO that

(17.6) | DiG,(¢") — DiGp(%) | < AF(r.0r) in E (0% £ apyr),

so that (16.7) holds, and so that the quantity in (16.13) is <1/2», for p<gq.
Then for any admissible g(x), g(*) — {Gi(%) + - - - +Go1(x)} satisfies the
same kind of conditions as g(x); hence, just as before, we find a function
Ag*(r) so that an inequality similar to (17.3) holds for D Hy(x) in E (0% = 0tg41) .-
Also H,(x) is bounded properly; hence we can choose «, so that (16.7) holds
for any admissible g(x) with p replaced by ¢, and so that (16.13) with p=g¢ is
<1/22. From this we show, as before, that (17.6) holds with p replaced by g.
We can thus continue finding functions A,*(r) and numbers «, indefinitely.
We put finally G(x) =G.(x) +Gz(x)+ - - -, and show, just as in Lemma 6,
that G(x) has the required properties. This ends the proof.
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IV. ANALYTIC EXTENSIONS

18. Proof of Theorem I. Let g(x) be the extension of f(x) of class C™
given by Lemma 2. Set R=E—A and define Ry, Ry, - - -, o, 0, - - -, and
numbers €, €, - - -, approaching zero as in §16. Define G(x) in E—4 as in
Lemma 6, and set F(x) =G(x) in E—A, F(x) =f(x) in A. That F(x) is of
class C™in E and property (2) holds follows from (16.1) and Lemma 1, just
as in §11; the other facts are obvious.

19. The functions w,;(x). In the next sections we shall discuss the an-
alyticity of the extension of f(x) at the isolated points of 4. Let R be an open
set, let @i, @s, - - - be points of R having no limit point in R, let my, ms, - - -
be corresponding integers =0, and let m be an integer = —1 or «. We as-
sume that if a,,, @,,, - - - is any sequence of points a, approaching the bound-
ary of R, then
(19.1) lim inf m, = m.

§—> 0
Choose about each @, a neighborhood U, lying, with its boundary, in R,
so that no two have common points. Define the numbers p(v; k) so that when
(v; k) runs through the values (1; &), ox Smi; (2; k), 0 <ma; etc.; then p(v; &)
runs through the values 1, 2, 3, - - - . Let p’(v; k) equal one plus the largest
of the numbers m, - - -, m,, p(v; k).

Take any positive integer s, and consider all neighborhoods U, such that
p'(vk) = s for some k (o, <m,);let R, be the set of all points of R whose dis-
tances from these neighborhoods and from the boundary of R are >1/s, and
whose distances from the origin are <s. Then R, is a bounded open set, R,
lies in Reys (s=1, 2, -+ +), Ri#+Re+ - - - =R, and U, lies in R—R, (p
(cx<m,). By Lemma 2, there are functions w,z(x) of class C* in E, defined
for ox=m,, v=1, 2, - - -, such that

1,1=+F .
(19.2) Dw,r(a,) = { 0.1 (61 = m,); w(x) =0in E — U,.
Choose for each » a positive number 38, <1/» so that 8, = 8,41, and

(19.3) B,| Diwni(2) | < 1/v[(m, + 1)"] in E

(a'kémv,o'lémny'_': 1;2)"')'

Now let f,x be any set of numbers, defined for ox=m,,»=1, 2, - - -, satis-
fying the condition

(19.4) vak[éﬁv (o =my,v=1,2,--).

Set
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(19.5) Covky = ka, w;(vk)(x) = ka(x) (o'k = My, v = 1’ 2, )°

Take any s=p(#). As o/ (x) =w(x) =0 in R—U,, and R,= Ry is in
R, (ry which has no points in common with U,,

(19.6) o/ (x) = 0in R, (s=1,2,---).
20. The transformation L. Define functions wu;(x), us(x), - - - as in

Lemma 6. Consider any function

(20.1) g®) = Mol (#) +Nawd () + -+ (I N] = 1,s=1,2,--.);

such functions and N’s we shall call admissible. Set

(20.2) €& = f,/2:H (s=1,2,---).

There are, obviously, functions A(7), A5(r), - - -, so that (17.1) holds for any
such g(x); hence, by Lemma 7, we can define numbers ki, ks, - - - , so that if
G(x) is defined in terms-of g(x) as in Lemma 6, then G(#) is analytic in R and
(16.1) holds. I'n using Lemma 6, we replace o, by p.

We note here a certain property of G(x): If g(x) is admissible and

(20.3) if g (x) = Oin Ry, then | DiG(x)| <eo1/22in Koy (o < s — 1).

As u,(%) =0 in R—R, (p=<s5—2), u,(x)g(x) =0 in E (p<s—2). Using (16.5),
we see in succession that Gi(x) =0, - - -, G,—(x) =0. This with (16.9) and
(16.11) gives

D6 | = Y | DG | < 3 €0/27 S €_1/207

p=s—1 p=s—1
in R,_; (¢x=<s—1), as required.
Given any admissible g(x), let Lg(x) be the corresponding function G(x).
It follows easily from the definition of G(x) that L is linear:
(20.4) Lgi(®) + Mga(#) ] = MLgi(%) + NoLga(2).

We show now that for admissible numbers A,

(20.5) LY Mol (%) = 2 NLo! ().

8=1 8=1
To prove this, take any point «° of R, in the set R,, and any e>0. Take
¢’z ¢ so that 1/2¢-3<e. (19.6) and (20.3), for s=¢’+1, ¢'+2, - - -, give, as
Aw; (x) is admissible,

| i MLo! (%) | = | i L\e! (%) | < i 1/20-2 = 1/294'-2 < ¢/2

8=g’+1 8=q’+1 8=q’+1
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in R, and in particular, at x°. As

> Aw! (%) = 0in Ryyq

8=q’+1

and is admissible,

|L 35 Mol (x9)] < 1/29-1 < ¢/2.

8=q’+1
Moreover ,
Li Nw! (x) = i NLw! (x) + L i Ny (x);
=1 8=1 s=q’+1
hence

| L3> Mol (#0) — D0 Lol (29) |

8=1 =1
SIL X el @)+ 2 Mol (3] <
g=gq’+1 s=q’'+1

which proves (20.5).

We prove two inequalities. Take any (v; &), (u; ?) (0x =<m,, 0:<m,); then
(20.6) I DkLwyl(av) - Dkwul(av) | < €o(vk),
(20.7) ] Dkqul(av) - Dkwnl(‘IV) I < €uy-
The first follows from (16.1) when we note that a, is in R—R, x, and
€ iy < €1y, and o <m, <p’(vk) (recall that a, was replaced by p in using
Lemma 6). We now prove the second. As w,;(x) =0 in R,y and p’(u)
2 p(ul) +1, (20.3) gives
(a) | DiLow(x) — Dewu(®) | < eup in Ryrgunt (ok = p'(ul) — 1).
Also (16.1) gives
(b) | DirLwu(x) — Diwu()| < eun in R — R, (o = p, p 2 ' (ud) — 1).

Say a, is in Ryp1—R,. As @, is not in R,/or, p'(vk) = p, and or=m, <p’(vk)
—1=p—1.1f p2p’(ul) —1, (20.7) follows directly from (b). If p <p'(ul) —1,
then a, is in R, .p—1, and o <p—1<p'(ul) —1, and (a) applies.

21. An infinite system of linear equations. We prove here

LeEMMA 8. Suppose ns and ¢, (s=1,2, - - - ), and ¥e (s, ¢=1,2, - - - ), are
given, so that 120,27, >0 (s=1,2, - - -), |c.| =1, and

(21.1) |7stl<775/2‘+1 (37t=1;27"')'
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Then there are numbers N, (s=1, 2, - - - ) such that

(21.2) Z(’Yat + 5az))\t = Z'Yatkt +X=c (S = 1’ 2, )7
t=1 t=1

and

(213) |)\a—'63|§m (S=1,2,"‘).

Using the method of successive approximations, put
(214) A = sy )\pa = - E'Yatxp-l.t (P = 2’ 3’ ce )'
t=1

It is readily proved by induction that
(21.5) |)\psl < /2771 (p=23,--).
Hence the series M, +Ne,+ - - - converges to a limit \, (s=1,2, - - - ), and

Z('Yat + 6at)>\t Z Z('Yat + 53!)}\pt = E(Xpa )\p+1,a) = Cqgy

t=1 p=1 =1
|xs_53| =IZ>‘P8|§ Zﬂs/2r1=m-
p=2 p=2

22. We are now ready to prove

LEMMA 9. Let R, m, a,, m,(v=1, 2, - - - ) be defined as in §19. Then there
are numbers B,>0 (v=1, 2, - - - ) with the following property. Given any set of
numbers f,i, defined for o <m,,v=1,2, - - - | such that (19.4) holds, there exists
a function G(x) analytic in R, such that

(221) DkG(av) = ka (‘Tk = My, V= 1: 2; cte )’
and such that if we set G(x) =0 in E—R, then G(x) is of class C™ in E, and
(22.2) DiG(x) =0in E — R (ox < m).

We define the w,(x) and the B8, as in §19. Now take any f, satisfying
(19.4), and define the ¢, by (19. 5) Define the ¢, and the transformation L
as in §20. Set

(223) Nooky = By (U'k =m,v=12--- )3
and
(22.4) Yot = YVookpwn = DiLwu(ay) — 8ot = DiLwui(a,) — Diwu(a,).

Let » = p(0/) be the larger of the two numbers s =p(vk), ¢ = p(ul). Then us-
ing (20.6) or (20.7) according as u=s or » =4, we find (as B,¢» = Boor <B»)
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[ Yat| < €oon S Bo/2041 < /2041,

Also |c,|=|f+|=B,<1. Therefore the equations (21.2) have a solution
A, Ae, - - -, and

(22'5) Z('YM + 6at)>\t = pr(ul)Dkprl(av) = (s = Cp(vk) = ka-

t=1 u,l

By (22.8) below, the N’s are admissible (§20), and we can define the analytic
function G(x) in R by the equation

(22.6) G(x) =L i)\tw{ (x).
(20.5) and (22.5) give

(22.7) DiG(a,) = Dy 2 \eLo! (@) = 2 NpwnDiLwa(a,) = fur.
t=1 ul
(19.6) and (20.3) show that the last sum above is uniformly convergent in any
R,; hence the termwise differentiation is permissible.
Set G(x) =0 in E—R; we must show that G(x) is of class C™in E. (This is
trivial if m = —1.) First note that, by (19.4) and (21.3),

(22.8) [ Nonr | S | oo | + moony = | for| + 85 = 28,
this with (19.3) gives (replacing », k£ and I by u, ! and k)
| MownDaoa(®) | < 2/[um, 4 1)"] in E

(22.9)
(o'kra'l = Myy b = 1; 21 tee )

Now take any boundary point 2° of R, any integer m’<m, and any e>0.
Take ¢=m’ so that ¢, <e/2. Take § >0 so that R, has no points within § of
Y, and so that if » is any number such that U, has points within & of 2, then
m,=m' and 2/r<e/2 (see (19.1)). Consider any point y of R within & of x°,
and take any k, o, <m’. Either Diw,:(y) =0 for all g, /, or else for some u, y
lies in U,, in which case there are at most (m,+1)" such numbers 0, and
2/u<e/2, and m,=m'. Thus if we replace # by y in (22.9) and sum over u
and [, we find

| Di on0! (39) | = | ZNocunDieoa(9) | < ¢/2 (or = m).
t=1 Bl
As y is in R—R,, replacing o, by ¢=m’ in (16.1) gives

| DiL Y Nwl (9) — Dy D ! (¥) I < e <e¢€/2 (o1 = m').
t=1

t=1
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This with the last inequality gives
| DiG(y)| < ein Rif ra, < (0 < m');

the proof is completed with the aid of Lemma 1.
23. Functions analytic at the isolated points of 4. Lemmas 4, 6 and 9 lead
directly to the following theorem.

THEOREM II. Let A be a closed set in E, and let a1, as, - - - be isolated points
of A. Set A’=A—(a1+as+ - - - ). Let m be an integer Z —1 or o, and let the
integers m, =0, v=1, 2, - - -, satisfy (19.1). Let fr(x) be defined for x in
A'(0r=m), and for x=a, (cx <m,), so that f(x) is of class C™ in A. Then there
is a function F(x) of class C™ in E such that

(1) F(x)=f(x) in A,

(2) DyF(x)=fi(x) in A’ for ar<m and at each a, for s =m,,

(3) F(x) is analyticin E—A’.

We asked that f(x) be of class C™ in 4, while fi(a,) may not be defined
for certain values of » and % (¢, <m). We require merely that after setting
fr(@) =0 (g >m,), f(x) shall be of class C™in 4.

A special case of interest is 7= —1. The m, and the fi(a,) are then unre-
stricted. A’ may be void, in which case f(«) is analytic throughout E. A’ may
of course contain isolated points.

To prove the theorem, set R=E—A' and determine the open sets R, and
the numbers 8, (=1, 2, - - - ), as in §19. Let g’(x) be the extension of f(x)
of class C»in E and of class C*in E— A’ given by Lemma 4 (setting f(a,) =0
for o, >m,). Let G'(x) be the analytic function in R given by Lemma 6 (with
a, replaced by p) such that

(23.1) | D6 (x) — Dig'(x)| <Bpin R — R, (or < 2),
and set G'(x) =f(x) in 4’. G'(x) is of class C™ in E, and

(23.2) DiG'(x) = fu(x) in 4’ (ok = m)
(see §18). Set

(23.3) for = Dig'(a,) — DiG'(as) (or Smyv=1,2,---).

As g, lies in R—R, 1 and p’(vk) >m,, (23.1) gives | for | <Borwiy <Bo(or Sm,).
Thus the conditions of Lemma 9 are satisfied, and there is a function G(x)
analytic in R, =0 in 4’ of class C™ in E, and such that (22.1) and (22.2)
hold. Set

(23.4) F(x) = G'(x) + G(=);



86 HASSLER WHITNEY [January

then F(x) is our required function. It is of class C™ in E as the same is true
of G'(x) and G(x); it is analytic in R=E— A’ as the same is true of G’(x) and
G(x); it equals f(x) in A" as G'(x) =f(x) and G(x) =0 there. (22.1), (23.3)
and (14.2) show that D.F(a,) =D:ig’(a,) =fr(a,) (e =<m,); (22.2) and (23.2)
show that DyF(x) =fi(x) in A’, completing the proof.

24. An extension-approximation theorem. We prove here

THEOREM IIL.t Let A be closed, and let A_y, Ao, A1, - - - be closed subsets of
A such that each A, lies in Ayy1. Let ag, @, - - - be points of A,— A,y which
are isolated points of A, and set A'=A—) a,. Let B_; be void, and let B,
By, - - - be sets whose sum B lies in E— A, such that each B, lies in Bgy1, such
that each set B;— B,_, has limit points in B—B,_1+A, only, and such that each
set A+B— B, is closed. Let fi(x) be defined in each set Ty=A+B—(A,_1+B.)
for ox=s (s=0,1, - - - ) so that f(x) =fo(x) is of class C* in T, in terms of the
Su(x) for each s. Let €(x) be a continuous function, positive in E— A’ and zero in
A'. Then there is a function F(x) defined in E—A_; such that

(1) F(x) is of class C*in E— A, (s=0,1, - - -),

(2) DkF(x) =fk(x) n A-A,..l (akés, S=0, 1, LR ),

(3) | DiF(x) —fu(%) | <e(x) in B—B,y (o1 <5, s=0, 1, - - - ),

(4) F(x) is analytic in E—A’.

Any number of sets 4,, B, may be void; any of the points ¢,; may not
exist. Note that if A, =4 —(4_1+40+ - - ), then F(x) is of class C* at all
points of A . Theorem I for m finite is obtained by letting Band A4, - - -,
A4 n_1bevoid, and setting 4 =4 ,.; and for m infinite, by letting B and every 4,
be void. Theorem II is obtained similarly; we arrange the a,; in a sequence
a, @, - - - ,and set m,=sif a,isin A,— A4, ;. Lemma 6 is obtained by setting
A=A_1=E—R, B;=R,; (s=0, 1, - - - ), and taking e(x) so that e(x) <e,
in R—R,.

We turn now to the proof. Take a subdivision of the open set E— (4 +B)
as in §8, let ¥ (v=1, 2, - - - ) be the vertices of the cubes, and let x* be a
point of I'y whose distance from y® is not more than twice the distance from
y% to T'. Define the functions ¢, (x) in E— (4 +B) as in §9, and define g¢ (x)
by (11.1), using the functions $o.(x) and Yoo (x; %) =f(2), and replacing
E—A and A by E—(A+B) and T, respectively. Then g (x) is defined
throughout E—A_;, and is easily seen to be a continuous extension of f(x).
Let go(x) be a function=g{ (x) in A —A4_;+T; and analytic in the open set
E—(A+T)) so that

1 A special case of this theorem has been proved by A. Besikowitsch, Uber analytische Funktionen
mit vorgeschriebenen Werten ihrer Ableitungen, Mathematische Zeitschrift, vol. 21 (1924), pp. 111-118.
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(24.1) | g0(x) — gd (#) | < 6:1(x)/4in E — (4 + T),

where 0,(x) =min [e(x), distance from x to A+T,] (p=1, 2, - - -). Then
go(x) is continuous in E—A4_;.

We shall now define in succession functions gi(x), ga(x), - - -, with the
following properties:

(a) gp(x) is defined in E—A_y, is of class C* in E— A4, (s=0, - - -, ),
and is analytic in E— (4 +Tp1).

(b) Dkgp(x) =fk(x) in A_A8—1+FP+1 (0k§s7 S=0, ) P)-

(©) | Digp(®) — Digpa(x) | <e(x)/27+? in B, 1—B, (gi<s, s=0, - - -,
p—1.

(@) | Digo®) —fs(x)| <e@)/27 in B,—B,s (01 59).

Assuming go(x), - - -, gp—1(x) are defined, we shall define g,(x). Consider
any point of T',; it is at a positive distance from the closed set 4,1, and hence
we can enclose it in an open set lying at a positive distance from 4,;. We
thus enclose I', in an open set I') containing no points of 4,_, and having no
limit points in 4,_, other than limit points of I',. Take a subdivision of the
open set E—(4+4T,), let y»* (v=1, 2, - - - ) be the vertices of the cubes, and
let #»* be a point of I', whose distance from y?* is not more than twice the
distance from y»* to I', (v=1, 2, - --). Define the functions ¢, (x) in
E—(A4T,) asin §9 and define y,,:(x’; x) by (6.1) (61 < p), replacing m by p.
Remembering that f(x) is of class C? in T',, set

(24.2) gr (%) = 2 dp(®)Wpio(x; 47) in T} — Ty,

and set g, (*) =g,—1(x) in T',. From the proof in §11 it is seen that g, (x) is an
extension of class C? of the values of f(x) in T,.
Set ¢p(x) =g, (®) —gp_1(x) in T ; then {,(x) is of class C»~'in T/, and

(24.3) Ditp(x) = 0in T, (or < p — 1).

Set n,=1/{27%c[(p+1)!]*(36nYH)>N®} (p=0, 1,---), where N® =
max Ny for o, < p. Let K,_; be the set of points of B,_; for which

| Dyt p(x) | = np-16(x)8 .21 for some k (er = p—1),

where 0. is the distance from x to T, or 1 if that is smaller. Each point of
A—A4,is at a positive distance from K, i, as B, ; has no limit points in
A—A,,, and each point of B—B,, is at a positive distance from K, ; on
account of (24.3), as e(x) >0 in B; hence each point of T, is at a positive
distance from K, ;, and we can enclose I', in an open set T';’ which lies in
I';) and contains no points of K, ;. Now
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(24.4) | Ditp(2) | < np_re(2)8,7"17 in T’ - B,_4 (or < p — 1).
We can also take I';)’ so that if p,(x) is the distance from x to 4,_;, then
(24.5) | Digs(®) | < np-10p(2)62~1 in T (e =p—1).
Let I,, be those sets I, of the subdivision of E—(4+4T,) lying wholly in
r)’ (¢t=1,2,---), and set

(20.6) £ = ga(® + 6@ :'Zlm,(x) inE— (4 +T,),

and g,' (®) =gpa(x)=f(x) in A—A_;+T,. Then g,’'(x) is of class C? in
E—A4,_,, and with the help of (24.4) we find

(24.7) | Dags’ (%) — Dagoa(2) | < e(2)/27* in By (Gr=p—1)
(see §13). Also (24.5) gives

(24.8) | Digy” (#) — Digos(a)| < pp(0)/279inE— 4 (ox S p— 1),
and hence g,’ (x) is of class C*in E— A4, (s=0, - - -, p), as the same is true

of gp-l(x) (S=0, ) P—l)'
Finally let g,(x) be an analytic function such that

(24.9) | Dugo(x) — Digy (%) | < 0,41(2)/27%in E — (A + Tpy1) (o0& = p);

set gy(x) =gp1(x) =f(x) in A —A_;+T ;1. Then g,(x) has all the required
properties. (c) is a direct consequence of the above inequality and (24.7);
(d) follows from (24.9) and the fact that Dig.’ (x) =f1(x) in T, (s =p); (a)
and (b) follow with the aid of Lemma 1.

Set

(24.10) g(x) = lim gy(x) in E — A_;.
P

By (24.8) and (24.9), g(x) exists and is of class C* in E—A. Let x be any
point of any 4,—A4,_; by (a), go(x) is of class C® in a neighborhood of x for
p=s,and by (24.8) and (24.9), the same is true of g(x). The same argument,
using (b), shows that

(24.11) Dig(x) = fr(x)ind — Ayey (o S 5,5=0,1,---).

Finally (c), (d), (24.1) and the definition of g¢ (x) show that
(24.12) | Dig(x) — fu(x)| < e(x)/2in B — By (0% < 5,5 =0,1,---).

We have now found an extension g(x) with all the properties but (4). It
is replaced by an analytic extension F(x) just as in §23; we must be careful
merely to make
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(24.13) | DiF(x) — Dig(x) | < e(x)/2in B — By (0x < 5,5 =0,1,---).

Let @y, as, - - - be the @, arranged in a sequence, and set m,=s if g, is in
A,—A, ;. Set R=E—A’. Let R, consist of those points of the R, of §19
whose distances from the closed set A+B—B,_; are >1/p (p=1,2,---).
Every point of E— A4’ lies in some R,, as B—(By+Bi+ - - - ) is void. Take
the B, (§19) small enough so that if |N,u| <28 (see (22.8)) and g*(x)
=> A\ (x), then

(24.14) | Dig*(2)| < e(%)/8 in Rpp1 — R, (ox £ p).

Let ¢/ be one eighth the lower bound of €(x) for x in R,y (s=1,2, - - - ), or
1 if that is smaller. Replace the ¢, of (20.2) by min (e, €/ ). Then for any
such g*(x), (16.1) gives

(24.15) | DiLg*(x)| < ep + | Dig*(x)| < e(#)/4 in Rpy1 — R, (0x = P).
Replace the g’(x) of §23 by the present g(x), and determine G’(x) so that
(24.16) | DiG'(x) — Dyg(x) | < min [8,, e(x)/4] in R — R, (ox £ p),

and, in particular, in B—B,_;. Now if G(x) and F(x) are determined as in
§23, then (24.13) and hence property (3) hold; the other properties are easily
verified, and the proof of the theorem is complete.
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