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DIFFERENTIABLE FUNCTIONS DEFINED IN
ARBITRARY SUBSETS OF EUCLIDEAN
SPACE*

BY
HASSLER WHITNEY

1. Introduction. In a former paper} we studied the differentiability of a
function defined in closed subsets of Euclidean n-space E. We consider here
the differentiability “about” an arbitrary point of a function defined in an
arbitrary subset of E. We show in Theorem 1 that any function defined in a
subset 4 of E which is differentiable about a subset B of E may be extended
over E so that it remains differentiable about B. This theorem is a generaliza-
tion of AE Lemma 2. We.show further that any function of class C™ about a
set B is of class Cm~* about an open set B’ containing B. In the second part of
the paper we consider some elementary properties of differentiable functions,
such as: the sum or product of two such functions is such a function.} We
end with the theorem that differentiability is a local property.§

2. Definitions and elementary properties. We use a one-dimensional nota-
tionasin AE. Thus fi(%) =fr, ..k, (%1, -+ -, %), 0t =wt - - -aln [l=01 - 2L,
Dif(x) =001t~ +oaf(x) [Qaits - + - Jx,bn, etc.; we set ar=hki4 - - - +ky, 74, =dis-
tance from x to y. We always set f(x) =fo(x). Suppose the functions fi(x) for
or=m are defined in the subset 4 of Euclidean n-space E. Define R;(x'; )
for x, 2" in 4 by

* Presented to the Society, January 2, 1936; received by the editors October 26, 1935.

T Analytic extensions of differentiable functions defined in closed sets, these Transactions, vol. 36
(1934), pp. 63-89. We refer to this paper as AE. See also Functions differentiable on the boundaries of
regions, Annals of Mathematics, vol. 35 (1934), pp. 482-485, and Differentiable functions defined in
closed sets, 1, these Transactions, vol. 36 (1934), pp. 369-387, which we refer to as F and D respec-
tively.

P. Franklin in Theorem 1 of a paper Derivatives of higher order as single limits, Bulletin of the
American Mathematical Society, vol. 41 (1935), pp. 573-582, has given a necessary and sufficient
condition for the existence of a continuous mth derivative. We remark that this theorem is exactly
the special case of Theorem I of D obtained by letting f(x) be defined in an interval. It is also a special
case of Theorem 2 of the author’s Derivatives, difference quotients, and Taylor’s formula, Bulletin of
the American Mathematical Society, vol. 40 (1934), pp. 89-94 (see also Errata, p. 894). For his as-
sumption is easily seen to imply the needed uniformity condition; it also implies at once that f(x) is
continuous, so that no considerations of measurability are necessary. His Theorem 2 should be com-
pared with Theorems IT and III of D.

1 If the set is closed, these theorems may be proved by first extending the functions through-
out E.

§ For the case of one variable this follows from D, Theorem I.
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o pey - 3 L

g Sm—ay l

(o — x)t 4+ Ry(s'; ).

Let 2 be an arbitrary point of E. If for each k (ox <m) and every >0 there
isa § >0 such that

(2) l Ri(x'; x)] < Fe if x, ol in A, 1 < 8, ran <8,

we shall say that f(x) is of class C™ in A about x° in terms of the fi(x), or,
f(x) is (C™, A, 2%, fi(x)). If this is true for each x° in B, we say flx) is
(Cm, A, B, fi(x)), and replace “about 2*” by “about B.” We say fx) (de-
fined in A) is of class C™ in A about B, or, f(x) is (C™, 4, B), if there exist
functions fi(x) (cx<m) defined in A4 such that f(x) is (C™, 4, B, fi(x)). If
B=2A in the last two definitions, we leave out the words “about B”; this is
in agreement with the previous definitions. We say f(x) is (C*, A, B, fi(x))
if f(x) is (C™, A, B, fi(x)) for each m. Any function defined in 4 is (C,A,E).

Remark. We might define in an obvious manner such relations as
(Cm, A, %, (C*, A, B). To study them would require a study of the different
possible definitions of the fi(x) if f(x) is (C™, 4, B). The fi(x) are not in gen-
eral determined by f(x). Thus if 4 =B is the x:-axis, only the fir(x) with
ko= - - - =k,=0 are determined by f(x). It is not obvious for what point
sets 4 the fi(x) are all determined by f(x).

If f(x) is (C™, A, B, fi(x)) (m=0), then the fi(x) are continuous at each
point of B;* that is, the fi(x) may be defined in B—B-4 so that this will be
true. To show this, take 20 in B, set e=1, and choose & so that (2) holds for
any k (o <m). Take x in A within & of «° (if there is such a point); then (1)
and (2) show that fi(x’) is bounded for #’ in A within & of «° (¢ <m). Now
let {«'} be any sequence of points of 4, xi—a’; (1) and (2) show that
{fr(x")} is a regular sequence.

If A is open and f(x) is (Cm, 4, A, fi(x)), then D;f(x) exists and equals
fe(x) in A (6x<m). (See AE.) If #" is an isolated point of 4 or is at a positive
distance from A, then f(x) is (C™, A, #%, fi(x)) for any fi(x). If f(x) is
(C», A, B, fu(x)) [or (Cm, A, B)], and A’ is in A, B is in B, then f(x) is
(Cm A, B, fi(x)) [or (Cm, A’, B")]. Also f(x) is (C°, 4, B) if and only if
it is continuous at each point of B. If f(x) is (C, 4, B, fi()), then it is
(C™, A, B, fx(x)) for all m’ <m; a stronger theorem is proved in Theorem 2.
Iff(x) is (Cm7 A7 B7fk(x))7 then fk(x) is (Cm_dk, A; B;fl(x))

3. Extension theorems. We prove here a theorem which gives the maxi-
mum range of differentiability of a function, and a theorem about the still
larger range of differentiability of a function to an order one less.

* Or better, “continuous in 4 about B.”
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THEOREM 1. If f(x) is (C™, A, B, f1(x))* (m finite or infinite), then the fi(x)
may be extended throughout E so that f(x) is (C™, E, B, fi(x)).}

We note, conversely, that if f(x) is not (C™, 4, &%, fi(x)), then no extension
of f(x) will be so. We remark also that f(x) may be made analytic in E—4
(4 = A plus limit points).

To prove the theorem, we first extend the fx(x) through 4 — 4 as follows:
Take any «° in 4 —A. Let f1(x°) be the upper limit of fi(x%) for sequences
{ai}, xi—x, & in A4, if this is finite; otherwise, set f(x%) =0. Next we extend
the fi(x) throughout E—4 by the method of AE Lemma 2. We shall assume
in the proof that m is finite. If m =, we prove C™ for every integer m/'.
The only alteration needed in the proof is that AE §12 should be used; but
this makes no essential change.

As E—4 is open, f(x) is (Cm, E, E—4, fi(x)); we must show that f(x)
is (Cm, E, B 4, fi(x)). Take a fixed point x° in B-4. Let us say (k, €, A1, A3)
holds if there is a >0 such that (2) holds whenever x is in 4;, x’ is in 4.,
and 7,0 < 8, 7,0 < 8. We must prove (%, ¢, E, E) for each k (¢, <m) and each
€>0.

First we prove (k, ¢, 4, 4). Set ¢ =¢/[2(m~+1)"], and let § be the smallest
of the &’s given by (I, ¢/, A, A) for ¢, <m. Let U be the spherical neighborhood
of x° of radius §; then f;(x) is bounded in U-A4 (¢:<m). Given x, " in U -4,
choose sequences {xi}, {#'i} of points of U- A4, with «'—x, 'i—«’. Suppose
first o,=m. Then we may take these sequences so that fi(x%)—fx(x),
fiu(®")—fr(x"), and the desired inequality for Ri(x’; x) follows from that
for Ri(x#; x%). Suppose now that o, <m. Relations (1) and (2) with &, «/,
x replaced by I, %, #7 show that for any such {xi}, { fi(x?)} is a regular se-
quence (0;<m); hence fi(x")—fi(x), and similarly fi(x')—fi(x") (o:<m).
Relation (1) now shows that for ¢ large enough, A=R;(x; x) — Ri(x'%; x7)
differs as little as we please from

¥ Frrr(%) — frpr(a?) (o — ),

ai=m—ay, I
As |fi(x) —fi(x)| € (o;=m) and | (x' —2)!| <7LL, |A] < (m+1)ne'rmrox for i
large enough; the inequality again follows.

Next we prove (k, ¢, A, E—A). Set ¢ =¢/[2-4m(m+1)"], and define ¢
in terms of €' and then 6 asin AE §11, using (k, 5, 4, 4). Take x in 4 and
x’' in E—4, each within §/4 of x°. By AE (6.3) and the equation following
(11.6),

* Or merely locally (C™, 4, B); see Theorem 6.

1 If A=B is closed, then B may be replaced by E; the present proof then gives a proof of AE
Lemma 2 which makes no use of AE Lemma 1.
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Ri(a'; %) = Dif(2) — ¥u(a’; %)
Ripi(x*; x) . ¢ k
= Z Ll'-“ (2" — &™)t + Z < ! ) Dy (2) i 50—2(57),
1 . s=1 1
where x* is a point of 4 distant 8x/4 from x’, 8+/4 being the distance from
%' 10 A. AS Voxg S 2par, Torox <200, and 0y <47,., we find with the help of
AE (11.8)

| Re(o’s @) | < m+ 1) Q@rea)”™ "+ ()7 )2 < rane

Next we prove (k, ¢, E—4, 4). As is easily seen from AE (6.3) or by F (6)
with 21, x¢ replaced by x, &/,
. !
Ri(a'; 2) = 2 &iﬁc’—x) (2" — x)t.
1 .
Set ¢ =¢/(m—+1)", and take the smallest & given by (k+1, ¢/, 4, E—4) for
o1 <m—ay. The required inequality now follows at once.

Finally we must show (k, ¢, E—4, E—4). Set ¢ =¢/[2n(m~+1)"], and
take 6 smaller than the §/4 given by AE §11 with e replaced by ¢’ and smaller
than the &’s given by (k+I, ¢, 4, E—4) and (k+I, ¢/, E—4, 4) for
o1 <m—ay. Now take x and «’ in E—4 within 8 of #°; we must consider two
cases. Case I: The line segment S=xx" lies wholly in E—4. By AE (11.2),
| fi(y) — fi(x")| <2¢€ for y on S (s:=<m); the desired inequality now follows
from F, Lemma 3. Case II: There is a point x* of 4 on S. From AE (6.3), or
F (6) with x=1, xi replaced by #, «*, we find

Rip(x™*; )

Ri(a"; x) = Rp(a'; o) + Z T (" — «*)t,
1 .

and the inequality again follows.

TaroreM 2. If f(x) is (Cm, A, B, fi(x)) (m finite), then there is an open
set B’ containing B such that f(x) is (Cm*, A, B, fi(x)).

For each z in B, let 6(x) be the largest of the numbers & for which (2)
holds for all & (o <m) with e replaced by 1. Let U(x) be the set of all points
«’ within 8(x) of «; then B’ is the sum of all U(x). The set B’ is open. To prove
(€1 A, B', fi(x)), take any «° in B’ and any e>0. For some «* in B,
7o < 8(x%). There is an M such that |fi(y)| <M for yin 4-U(x*) (cx <m).}
Let & be the smaller of 8(x*) —#.0 and €/ [2(m+1)"M +2]. Now take any
x and #’ in 4 within 8 of 2°. We are interested in the remainders

t For the proof, see the paragraph following the remark.
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R (2 0) = D, G

0 |=m—0} l!

(& — %)' + Ri(s'; %)

with o, <m. As 7,.» <286,

m—aoy m—1l—ap

| RE (25 2) | £ m 4+ )" Mree ™ + 1w © < e e

CoRrOLLARY. If f(x) is of class C™ in any given point set about B, then it
may be extended through an open set B’ containing B so that it is of class C™!
in B" and of class C™in B’ about B.

4. Composite functions, etc. We prove here three theorems.

THEOREM 3. If f and g are of class C™ in A about B, then so are f+g and
f—g, with
(3 (f £ &= e £ &

This is obvious.

THEOREM 4. If f and g are of class C™ in A about B, then so is fg, and f/g
if g5#0. The derivatives are given by the ordinary formulas. Thus

k
(4) (o = 22 ( ] >flgk—l-
l
We might prove this theorem directly, but it follows from Theorem 5:
fg and f/g are functions (of two variables) of class C* of the functions f and g.
(The condition B in A4 is obtained by using Theorem 1.)

THEOREM 5. Let A and B be subsets of n-space E,, and let A’ and B’ be
subsets of v-space E,. Let fi(x) be (Cm, A, B, fii(x)) GG=1,---,v), and let
g(y) be (Cm, A', B, gi(v)) (m finite or infinite). Suppose B is in A, x in A
implies

y = (3’1, T y") = (fl(x)r T 7fv(x)) =f(x)
in A’, and x in B implies f(x) in B'. Then the function
h(x) = g(f'(x), - - -, f1(x) = g(f(=))

is (C™, A, B, hv(x)); the hi(x) are given by the ordinary formulas (9) for deriva-
tives.

As a consequence of this theorem, the definition of being of class C™ is
independent of the coordinate system chosen. If the condition x in A [or B]
does not imply f(x) in A’ [or B’], we may apply the theorem to any subset
A, [or B1] of A [or B] for which it does. We shall suppose m is finite; if m= o,
we merely apply the reasoning below for each positive integer.
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Suppose first #*(x), - - -, #’(x) are functions of class C™ in an open set
T of E,, suppose v(y) is of class C™ in an open set T of E,, and suppose x in
T implies #(x) in I'. Letting R’, S” denote remainders for #¢, v, Taylor’s
formula gives

(5) wé (&) = Dawi(a’) = 22 ”k’w‘ll‘(x) (o' — ) + R (o; %),
vi+1()
(6) w() =Du(y) = X H;y (' = N+ SEG5 ),
0 Sm—ay, .

certain inequalities on the RjJ* and S/ being satisfied. We have set
o =ki+ - - - +k. Set w(x) =v(u(x)); then (5) and (6) with k=0 give

, 0u(()) wi®)
D {2 E <x—x>+ze<x,x>}

+ 8" (u(x"); u(x)),
where S"=S{. Also, by Taylor’s formula,

® w@) = = 2D oy i),
1 !

Subtract (8) with £=0 from (7); then as R’%, S’, and T’ all approach 0 to
the mth order as x’—x,t we may equate coefficients of (x'—x)* for o, <m.%
Thus we find polynomials

Py(uy, vg) (0p S 0k, 00 S 04506 = M)

such that, for any x in T,
) wi(x) = Pr(uyg (%), vo((x))).
Using (8) gives for wi(x")
Pryi(uy (%), vo(1(x)))

(10) wi(a’) = 2. i (" — &)+ T¥ («'; %).

We may also evaluate it by replacing x by " in (9) and using (5) and (6).
(In (6) we replace ¥’ by #(x") and use (5) again.) Each variable in the result-
ing polynomial P consists of a polynomial in quantities R’, S’, and other
quantities; if we multiply out and collect all terms with an R’ or an S’ as
a factor, we obtain

t Thisis clear for S’ if m=0; if m>0, then
87 =187 [u(@) —u(@) ] [[ux) —u@)| /ren 1",
where Iy’—y [ =r,,, and the last factor is bounded in U- 4.
1 This is easily proved in succession for gx=0, 1, - - - on letting x'—x.
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wk(x/) — Pk [ Z upi+8(x) (x/ _ x)“,

. s!

)3 vq+t(u(x)){ > () (v — x)f}t] ¥ o,

t ¢! ozt J!

(11)

where Qy is a polynomial containing an R’ or an S’ as a factor in each term.
It must be understood that 3w, (x)(x’ —x)*/s! appears as the variable in
the position of u,, etc., in Pi(uj, v,).

We now prove: If u¢ (o =m;i=1, - --,v), v, (of <m) are any numbers,
then

) Upys Vgt u; )¢
Pk*(x;up'yvq)=Pkl:Z . xs;ZL{Z%x]}:l
s s! ¢ t! o2l ]'

(12)

1
Y

Pryi(uy, v,)
_ oy Dl %)
7 Al

considered as a polynomial in x, contains no terms of degree <m—a. To prove
this, define the polynomials

. ui V1
(13) w(x) = Bl e = Xy = )
71Sm . u'lém .
then u;f (0) =Dwu*(0) =u# , vi(uo) = Div(uo) =v. Set w(x) =v(u(x)). Replacing
', x by #,0in (10) and (11) and putting in (12) gives, as 0, =0 in this case,

(14) Pi¥(x; uyt, v9) = TH (x;0).

As T —0 to the (m—a))th order as x—0, P cannot contain any terms of
degree <m—o;.

We return now to the functions fi(x), g(v), k(x). Set hu(x) =Pi(fs (x),
g4(f(%))). The formulas (10) and (11) hold equally well for the 7% g, h. Hence
using (10), (11), and (12), we find for the remainder for ()

(15) Ti("; ®) = Pe*(s" — w; [ (%), g(f())) + Qs

To show that k(x) is (C, 4, B, hi(x)), take any «° in B, and set y°=j(x?).
As f(x) is continuous in 4 about B, for each neighborhood V of 3" there is a
neighborhood U(V) of #° such that x in U(V)- 4 implies f(x) in V-4’. As y°
isin B’, we may take V so that the g.(y) are bounded in V- 4’. We may take
Uin U(V) so small that the fi(x) are bounded in U-A. Because of the prop-
erty of P¢, we may obviously take § small enough so that P satisfies an in-
equality of the nature of (2). Moreover each term in Q contains an R,(x’; x)
or an S,(u(x"); u(x)) with ¢,<0; or ¢/ <o; as each such remainder satisfies
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an inequality (2) (see a recent footnote) and all other quantities entering into
Qr are bounded, we may take & small enough so that Q;, also satisfies an in-
equality (2). Hence the same is true of 7', and the theorem is proved.

5. Differentiability a local property. Our object is to prove

THEOREM 6. Let f(x) be locally (Cm, A, B) (m finite or infinite). For each
point x° of B there is a neighborhood U of x° and functions =" (x) defined in
U-A such that f(x) is (C, U-A, U-B, f="(x)).t Then f(x) is (C, A, B). If
the =" (x) for o < p are independent (at any x for which they are defined) of &°,
then these functions may be included among the fi(x) (cr <m).

We may take each neighborhood U as an open n-cube, so small that
the f,¢"(x) are bounded in U. A finite or denumerable number of them,
Cy, Cyy - - -, cover B; we may take them so that any one touches at most a
finite number of the others, and so that any boundary point of any C; is in-
terior to some C;.1 By hypothesis, to each ¢ there correspond functions f# (x),
o <m, such that f(x) is (Cm, Ci-A, C; B, fé (x)). In each C; we define the
function 7;(x) as it was defined in I; in AE §9; set

(16) $il®) = mi(x)/ 3 mi(x)

in Ci4+Ce+ - - - . Set gi(x) =¢:(x)f(x) in C;-A. By Theorem 4, gi(x) is
(Cm C;-4, C;-B), and

k
an gi (%) = Z ( Z>Dl¢i(x)fki—l<x)-

l

As the f (x) are bounded in C;-4 and the Dp:(x)—0 to infinite order as x
approaches the boundary of C; (see AE §9), the latter statement is true also
of the gi (x). Hence, evidently, if we set g#(x)=0 in 4—C,;-4, gi(x) is
(Cm, A, B, gi (x)). Set

(18) Si(®) = gi(x) + gd(x) + - - -,

which in any C;-4 is a finite sum; this reduces to f(x) for £=0. Theorem 3
shows at once that f(x) is (C™, 4, B, fi(x)). (Given 2° in B, to apply Theorem

1 Note that “f(x) is locally (C*®,- - -)” is not the same statement as “f(x) is locally (Cm, - - - )
for each m.”

i Let C1, C? - - - be a denumerable set of the cubes which cover B. Express each C* as the sum
of a denumerable number of cubes C,* with the following properties: Each C; is, with its boundary,
interior to C%; the diameter of Cj%, §(C,?), is <1/i; 8(C,")—0 as j— = ; the cubes C;* approach the
boundary of C? as j— «. Now drop out all cubes C;* which are interior to larger cubes C/*; the remain-
ing cubes Cy, Cy, - - - still cover B. To each cube Cj* corresponds a number >0 such that any point
set of diameter <% having points in common with Cj* lies interior to some Ci*; using this fact, it is
easily seen that any C; has points in common with but a finite number of the C,.
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3, we choose 8 so small that the points within 6 of #° lie in but a finite number
of the C;.)

To prove the second statement, let f/ (x) denote the common value of
fi (x) for o, < p. Differentiating Y ¢;=1 gives

1if 1=0,
(19) 2 Digi() {Oifal>0.
Define the fi(x) as before. Take any k with ¢ <p; then (17) and (18) give
k
fu(®) = 22 < ] >fk’—1(x) ZDz¢i(x) = fi (x)

l

in C;4Cy+ - - - . It does not matter how fi(x) is defined outside this set.

The second statement in the theorem does not hold for an arbitrary set
of fi(x), at least using the above method. To see this, take n=m=2, 4 =B
=the interval (—1, 1) of the x;-axis, C;=C,=the square with corners
(+1, £1); set f=0,

1 1 1 1 1
Jio =t =tu=1u=0, o =1,
and fi;= —fi; on 4. Also set
oi(x, ) = 3+ 3w — 308, a(w, 9) = 3 — fx + 1a?

(Though ¢; and ¢, are not the functions defined above, they have the neces-
sary properties.) We find on 4

gil (%, y) = gfl(x; y) = § — $a7, fulx, 9) = § — §2* # 0.

HARrRvARD UNIVERSITY,
CAMBRIDGE, MASS.



